
September 28, 2004 16:1 Proceedings Trim Size: 9.75in x 6.5in new-apbc2005

A GRAPH DATABASE WITH VISUAL QUERIES FOR GENOMICS

GREG BUTLER∗, GUANG WANG, YUE WANG, LIQIAN ZOU

Department of Computer Science and Software Engineering,
Concordia University,

1455 de Maisonneuve Blvd. West,
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Effective management of data is a major issue in genomics. Genomics data consists of highly inter-
related information about genes, proteins, patterns, classifications, and interactions. Graph databases,
which model graphs or networks of data, seem a natural way to manage genomics data. Graph
databases can support visualization of both queries and results by drawing on the broader field of
graph visualization, and the visual paradigm is natural for scientists working in genomics. We have
constructed a graph database system that supports visual queries and visualization of query result sets.
Our system uses Java, XML, C++, CORAL, and MySQL to implement the GraphLog language. We
have validated its applicability to genomics data through a case study, and have done initial studies on
the systems performance and the effect of several optimization strategies. We describe the system and
its application to genomics.

1. Introduction

Biology has become a discipline that generates large volumes of data. At first the focus
was on DNA sequences. The genome projects were designed to generate a large volume
of sequence data, which, of course, needed storage and analysis. However, now, genomics
also studies gene expression and gene function. The functions of genes are highly inter-
related since the activity of a cell and an organism is achieved by a series of reactions
forming a biochemical pathway, or indeed networks of pathways.

Due to the vast datasets that have been generated by genomics projects, data man-
agement, fast access and data mining are at the heart of bioinformatics. While relational
databases are widely applied within the industry, there has been considerable research into
deductive and graph databases to extend the capabilities of relational databases.

Deductive databases allow a view to be defined using logical rules, and allow logical
queries against the view. Since the rules allow recursive definitions, the resulting expressive
power of the query language is greater than the relational query languages. Graph query
languages are even more expressive, and provide a visual representation. Diagrams are
an intuitive way for scientists to pose queries to relational, object-relational, and object
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databases. They allow the full range of queries, from the very simple to the very complex, to
be more easily expressed and understood than SQL-like languages or form-based queries,
which are less intuitive to scientists. Diagrammatic queries are particularly appropriate for
interactions as found in databases for metabolic pathways, protein-protein interactions, and
gene regulations.

Our desire is to apply the benefits of deductive query language, diagrammatic queries,
and visualization of results more broadly in genomics. We use Java to implement the
interface to allow scientists to construct diagrams to express the query, which shows the
entities of their interest and the relationships among these entities. The supported graphical
query language we are implementing is GraphLog.1 The query result set is also visualized
as diagrams with the same icon and style as in the query. The system uses CORAL,2 a
deductive database management system as its database engine. Our database manages the
translation from a query diagram to a textual CORAL query program. The raw data are
stored in a MySQL3 relational database.

The rest of this paper is organized as follows: Section 1.1 describes our case study in
genomics. Section 2 introduces the related work. Section 3 presents a detailed description
of our database system architecture, its data model, the visual query formulation mecha-
nism, the translation undergoing for a query diagram, and the visualization of query results.
Section 4 concludes the paper.

1.1. A Genomics Case Study

The case study database captures the whole-genome DNA sequence assembly data fromA.
nidulansas well as the annotation and analysis of these DNA sequences.Aspergillus nidu-
lans (AN) is one of the critical fungal systems in genetics and cell biology. Spontaneous
and induced mutations have been generated in hundreds of its genes, which is of great value
because mutation analysis helps to identify gene function and to characterize the biologi-
cal roles of protein products.Aspergillus nidulanshas a well-characterized, conventional
genetic system. This fungus has also been used to express mammalian genes. The entire
Aspergillus nidulansgenome4 is approximately 31 MB, organized in 8 chromosomes. It
contains estimated 11,000–12,000 genes. We have stored 9541 distinguishedAspergillus
nidulansgene sequences, 248 contigs, 89 scaffolds (supercontigs), and 5152 identified pro-
teins that are annotated by PFAM protein domain descriptions.

Figure 1 shows the schema of the genomic database. Each rectangle corresponds to
a table in MySQL. The header of the box is the name of the table in the database. The
attribute names are listed out below the header. The symbolsPKandFK stand for primary
key and foreign key respectively. The data types of the attributes are hidden due to space
limitations. The arrows point to a foreign key’s referred table.

Briefly, the scaffolds for an assembly identified by theSCAFFOLDNUMare stored in
the tableSCAFFOLDS. Contigs that make up a scaffold are stored in the tableCONTIGS,
and are identified by a unique contig number. The genes identified byGENELOCUSare
stored in theGENEStable. However, this table does not include the gene sequence content,
as the average gene length is about 2800 characters long. A separate tableGENESEQ
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stores the gene sequence content. Proteins are identified by their encoding genes which
are identified byGENELOCUS, and their corresponding protein domains are identified by
PFAM accession numbersPFAMACC. The detailed descriptions of protein domains are
stored in thePFAMtable. The protein sequence content is stored separately in the table
PROTEINSEQ.

Figure 1. Data model for the case study

The relational database schema is mapped to CORAL relations and the relational
database instances are mapped to CORAL ground facts. The corresponding CORAL rela-
tions are as follows:

SCAFFOLD(SCAFFOLD_NUM,LENGTH,START_CONTIG_NUM,STOP_CONTIG_NUM)
CONTIG(CONTIG_NUM,LENGTH,SCAFFOLD_NUM)
GENE(GENE_LOCUS,NAME,CONTIG_NUM,START_POS,STOP_POS,LENGTH,STRAND)
GENE_SEQ(GENE_LOCUS, SEQ_CONTENT)
PFAM(PFAM_ACC,PFAM_DESCRIPTION,PFAM_NAME)
PROTEIN(GENE_LOCUS,PFAM_ACC)
PROTEIN_SEQ(GENE_LOCUS,SEQ_CONTENT,READING_FRAME)

Given a relational database, the system allows the user to browse the schema, create
views of the database, to ask queries utilizing the database relations and the view rela-
tions, and then to visualize the results. Figure 2 shows three windows: the definition of
a new relation, a query, and the visualization of the query results. The example consid-
ers multi-domain proteins which are involved in the biosynthesis of fatty acids, polyke-
tides. One such protein contains a beta-ketoacyl-synthase (KS) domain, which corre-
sponds to two PFAM entries PF00109 and PF02801. The user defines a new relation called
“have commondomain” in the bottom-left window to illustrate how to specify that two
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Figure 2. System Screenshot

genes have a common PFAM domain. The relation “threedomainsin common” could be
defined similarly by listing three separate nodes for PFAM domains. In the query, shown in
the upper-left window, such a definition is modified to show two nodes for specific PFAM
domains, and one node for an unspecified domain. The query is to return all the genes
that have at least three common PFAM domains, and two of these three common PFAM
domains must be the KS domains PF00109 (KS-N, the beta-ketoacyl synthase, N-terminal
domain) and PF02801 (KS-C, the beta-ketoacyl synthase, C-terminal domain). In the re-
sults shown in the right window, the three pink octagons represent three different PFAM
domains. They are PF00698 (AT, the acyl transferase domain); PF00550 (PP,the phospho-
pantetheine attachment site); and PF00975 (TE, the thioesterase domain). The light yellow
rectangles represent genes.

This visual representation clearly shows that besides having the two domains PF00109
(KS-N) and PF02801 (KS-C) stipulated in the query: (1) All, except gene AN0523, also
have the PFAM domain PF00698 (AT); (2) Only two genes (AN7909 and AN7825) have
the PFAM domain PF00975 (TE); and (3) There are 11 genes that have KS-N, KS-C and AT
in common but donothave the PFAM domain PF00550 (PP). The results strongly suggest
that gene AN7909 and gene AN7825 appear at the final step of the polyketide synthesis
process since a thioesterase cleaves a polyketide from a phosphopantetheine attachment
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site. Furthermore, we should investigate whether the absence of the domain PF00550 in the
other genes (AN1036, AN1784, AN2035, AN2547, AN3610, AN3612, AN6431, AN6791,
AN8910, AN9005, AN9217) is simply the incompleteness of the database (and search for
the coordinates where PF00550 is likely located) or whether they have some new domain
or protein that plays a similar role to that of domain PF00550.

2. Related Work

The state of bioinformatics databases can be surmised from several sources, notably the ar-
ticle by Frishman et al,5 the January issue ofNucleic Acids Researchjournal, and the online
catalogueDBcat (http://www.infobiogen.fr/services/dbcat/) of over 500 bioinformatics-
related databases. About 80% of bioinformatics databases are flat text files, 5% use re-
lational databases, and 12% use object-based systems, primarily the AceDB system. Her-
man et al6 surveys visualization techniques, while Batini et al7 is a (dated) survey on visual
query languages.

The research group of Alberto Mendelzon at the University of Toronto developed the
GraphLog1 graph query language based on hygraphs, and a visual interface, called HY+,
for expressing queries and browsing their results. GraphLog is a graph query language
extending Datalog and negation. The language has recursion, usually as transitive closure,
and has path expressions. Path expressions are similar to regular expressions. A path
expression can refer to a primitive relation, or construct more complex path expressions
using the operators of negation/complement, inverse, concatenation, alternation, kleene
closure (*), or transitive closure (+). GraphLog is more expressive than Datalog (and SQL).

HY+ is closely related to our work. It supports GraphLog visual queries and results
visualization. HY+ was implemented in SmallTalk and translates GraphLog into a CORAL
query program. HY+ does not use a database to load the data (ground facts) into CORAL
program’s workspace. The legacy Smalltalk system is not portable. It does not utilize the
query optimization strategies in CORAL; and it has not been applied to genomics.

There are several projects that study graph databases for genomics.Biopathways
GraphDataManager (BGDM) (http://pueblo.lbl.gov/˜ olken/graphdm/graphdm.htm) sup-
ports biopathways and protein interaction network databases for microbial organisms.
GEODE8 is a graph database which enables biologists to search human genome sequence
alignment relationships for patterns of functional and structural relationships between
genes. The GGL language9 represents genome data as a graph, where vertices represent the
concepts and relationships of genetics, and edges describe the connections between them.
However, none of these genomic graph databases has a visual query mechanism.

TransparentAccess toMultiple BioinformaticsInformationSources (TaMBIS)10 is a
front-end to a heterogeneous database management system. It provides a form-based ontol-
ogy browser to guide the user to formulate biologically-appropriate queries. The TaMBIS
Ontology (TaO) is a conceptual representation of biological concepts and terminology. It is
not a graph database and the query results are not visualized, but are presented to the user
as text in a Web browser.
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3. A Tour of Our System

In this section, we will have a tour of our graph database. We introduce the system archi-
tecture and the major components, then we discuss how to formulate a diagrammatic query,
how a query is processed, and how the results are visualized.

3.1. System Architecture

Our system has five layers, as shown in Figure 3:GUI , TGL Translator , CORAL Client ,
CORAL Server andMySQL Data Storage. The description of responsibilities for each
layer follows.

Figure 3. System architecture

GUI: The GUI is the system’s interface to end-users. End-users may draw a query in the
query editor. The GUI component translates user’s query that is defined as a diagram into
XML format and send it to the next layer of the system: TGL Translator. TGL (Transferable
GraphicLanguage) is an XML format that defines the communication protocol between
GUI layer and TGL translator layer. The GUI is also responsible to visualize the query
result set into a graph.

TGL Translator: The TGL translator is the transformation engine that transforms an



September 28, 2004 16:1 Proceedings Trim Size: 9.75in x 6.5in new-apbc2005

XML formatted query, which it receives from the GUI layer, to a CORAL query program.
A set of translations rules is defined in the TGL translator to regulate the translation from
an XML formatted query to a CORAL program. The TGL translator calls up the CORAL
client. The TGL translator is also responsible to transform the CORAL query result into
XML and pass the XML-format query result to the upper GUI layer.

CORAL Client: The CORAL client is responsible for two tasks: one is to receive a
query plan from the TGL translator and to send the CORAL query programs in the query
plan to the CORAL Server; the other is to receive the query result from the CORAL server,
and pass it to the TGL translator.

CORAL Server: During the CORAL server initialization, two workspaces, the default
workspace and the RDB workspace, are created to collaboratively manage incoming and
outgoing data. The default workspace is responsible for maintaining CORAL’s relations
and executing queries. The RDB workspace is in charge of connecting with MySQL and
manipulating relational data. At the RDB workspace, a dictionary describing the mapping
between relational tables in MySQL and corresponding relations in the CORAL database
is constructed first. Then the data in the relational tables are loaded into CORAL’s default
workspace according to this dictionary. A CORAL program sent by a CORAL client is
evaluated and executed in the CORAL server and the query result is returned to the CORAL
client.

MySQL Data Storage: The data is stored physically in a MySQL database. The
conventional data manipulations can be performed on data in MySQL. During the CORAL
server initialization, the connection between MySQL and CORAL is set up, all the stored
tuples in the target database are loaded into the CORAL server’s computer main memory
as a runtime database for the CORAL system.

3.2. Query Formulation

The end users only deal with a graphical user interface where they can draw a database
query by dragging-and-dropping inside the graph query editor (see Figure 2 and Figure 4).
The query interface imports the database schema. A query, which consists of nodes and
edges that connect nodes, is constructed by selecting an appropriate mode in the control
panel. A mouse-click on the query editor undercreate a nodewill create a node with a
circle and a machine-generated identifier. An edge has a direction. Undercreate an edge
mode, the first mouse-click will locate the source node, and the second mouse-click will
locate the destination node. To change the properties of a node, such as its label, its shape
and or label position, the mouse has to be underselect a nodemode to open a node property
dialog window. Similarly one can change the properties of an edge.

A node may represent an abstract entity class in the database or a “ground” symbol (an
attribute’s atomic value). An edge is to represent the relationship between entity classes
and “ground” symbols. The legal edge names between two abstract entity classes are those
available relation names in the database. The legal edge names between an abstract entity
class and a “ground” symbol can be arbitrarily named.

A node/edge is either a content node/edge or a distinguished node/edge. The content
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nodes/edges define the query constraints. The distinguished nodes/edges define what to
retrieve as the query result. The distinguished nodes that will appear in the query result
have to be rectangles. The content nodes that assist formulating the query context are ovals.
The distinguished edges need to be in blue color. The content edges that assist formulating
the query context are in default black color.

Figure 4. Formulating a View and a Query

Figure 4 shows the formulation of a query in terms of a view definition (a new relation)
and then the query itself. This is the same query as in Figure 2. The existing relations
in CORAL’s workspace and any possible user-defined relations can be displayed in a tree
hierarchy (top-right window). The tree nodes are clickable. Once an intermediate node
or a leaf is selected, the detailed information for the relation or for a entity is displayed
(bottom-right window). The view (bottom-left window) shows how to define a new rela-
tion “havecommondomain” between genes which have a common PFAM domain. This
example could be extended to have three (unspecified) PFAM domains to define a rela-
tion “min threedomainsin common”, however, the result set is large. The query shown
in the upper-left window retrieves all the genes that share the same three PFAM families
where two of them are specified to be KS domains: PF00109 (Beta-ketoacyl synthase, N-
terminal domain) and PF02801 (Beta-ketoacyl synthase, C-terminal domain). The edge for
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min three and KS in commonis highlighted with blue color to distinguish this edge
from other edges.

3.3. Translation of Queries

The translation of the query diagrams takes place in two phases: one is from a diagrammatic
query to an XML representation, and the other one is from an XML representation into a
CORAL query program.

The transformation from a diagrammatic query into XML format is straightforward.
Both nodes and edges are modeled as objects in the system. The XML presentation of the
query captures only thecontentof the query diagram, i.e. the nodes and the relationships
between nodes, but not the layout positions of nodes or edges. This XML representation of
the query diagram also groups the distinguished nodes and the distinguished edges under
one parent element<distinguished-show> . The nodes and edges under this element
are meant to be present in the query result.

A query diagram is assigned an unique identifier in the<id> element.
For a node, the<id> element contains the node’s identifier, which is assigned by the

system. The<entity> element encapsulates the entity class’s name with<name> ele-
ment and the entity class’s attribute(s) of interest with<field> element. The<entity>
element for a “ground” symbol has only<name> to capture an attribute value.

Similarly, for an edge, the<id> element captures the edge’s system-assigned identi-
fier. The label of an edge, which corresponds to a relation in the database, is captured in
the <predicate> element. The source and destination node IDs for an edge are also
recorded.

The transformation of a query from a diagram to XML representation is a process of
depicting the query diagram in format of XML with pre-defined tags. The structure of
an XML representation for a query diagram follows theTransferableGraphicLanguage
(TGL) schema. The TGL translator11 builds up a mapping between an XML document
that conforms to the TGL schema and a CORAL program.

3.4. Visualization of Query Results

The query result computed by CORAL is in textual format. The TGL translator transforms
it into XML. The query result in XML may contain the “ground” symbols, i.e. the returned
attribute values, and relationships between these symbols. This information is extracted
and visualized as a query result graph. To visualize the query result, we use an open source
graph drawing softwareGraphviz from AT&T Research Lab. Since the query result
computed by CORAL has only the content for nodes and relationships among nodes, the
GUI takes no assumption about the initial position of nodes.

4. Conclusion and Future Work

In this paper, we have provided a detailed description of our graph database that manages
genomics data. It is a database that supports visual queries and visualization of query
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result sets. We have described our data model, our system architecture, the visual query
formulation process, the translation of queries from a query diagram to CORAL program,
and the visualization of query results. The system is implemented end-to-end from query
construction through query execution to result visualization. Due to space limitations we
do not report the results12 on performance here. The use of the optimization strategies in
CORAL is important, though the best choice of strategy is not uniform across queries.

The capabilities of the system will be expanded to include all features of GraphLog.
Currently simple diagrammatic Graphlog queries such as selection, projection, queries with
negation, and recursive queries can be handled by the system. We must in future support
blobs, since they help to modularize queries, and guide orthogonal visual layout of results.

We also wish to explore 3-dimensional visualizations, and to enrich the complexity
of our genomic database to include tree hierarchy data such as the Gene Ontology and
networks for metabolic pathways and protein-protein interactions.
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