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Histones constitute a rich protein family that is evolutionarily conserved across species. They play 
important roles in chromosomal functions in cell, such as chromosome condensation, recombination, 
replication, and transcription. We have modeled histone gene 5' end segments covering [-50,+500] 
relative to transcription start sites (TSSs). These segments contain parts of the coding regions in most 
of the genes that we studied. We determined characteristics of these segments for 116 mammalian 
(human, mouse, rat) histone genes based on distribution of DNA motifs obtained from MEME-
MAST. We found that all five mammalian histone types (H1, H2A, H2B, H3, H4) have mutually 
distinct, prominent and strongly conserved properties downstream to the TSS reasonably well 
conserved across analyzed species. We then transformed the primary level motif data for each 
sequence into a higher order motif arrangement that involved only features such as presence of a 
motif, its position, its strand orientation, and mutual spacer length between motifs. We have built a 
Bayesian Network model based on these features and used the higher order motif arrangement data 
for its training and testing. When tested for classification between the five histone groups and using 
the leave-one-out cross-validation technique, the Bayesian model correctly classified 100% of 
histone H1 sequences, 100% of histone H2A sequences, 96.9% of histone H2B sequences, 94.4% of 
histone H3 sequences, and 95.8% of histone H4 sequences. Overall, the model correctly classified 
97.4% of all histones sequences. Our Bayesian model has the advantage in having a small number of 
trainable parameters and it produces very few false positives. The model could be used to scan the 
genome for discovery of genes whose products are similar to histones. 

1 Introduction 

One important task after the completion of the human genome project has been to 
identify and characterize mutually similar genes in the genome. Similar genes tend to 
share similar DNA motif patterns in their promoter and coding regions. The task of 
identifying similar genes from the genome requires that some of the characteristic 
features of the genes be identified. One approach is to look at the similarities in the 
genes' 5' regions. This is also related to localization of the transcription start site (TSS) 
and using TSS as the reference point for approximate assessment of the promoter region 
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and its characteristics. Since identifying exact TSS location is difficult, researchers have 
focused on predicting the promoter region [1] of the gene. Previously, promoter 
prediction programs extensively used individual DNA motif occurrences in known 
promoters. Unfortunately, since DNA motifs have short lengths (6-20 bp) and can often 
occur in the genome purely by chance, these programs produce unacceptably high level 
of false positive. A possible solution that may reduce this problem to an extent is to 
consider motif modules. A motif module in a genomic segment can be defined as a 
collection of DNA motifs arranged in specific order, spacing, orientation and position 
with respect to each other. Lately, there have been programs based on Hidden Markov 
Models (HMMs) that try to model motif modules, such as COMET [2], MCAST [3], 
META-MEME [4] among others. All these programs have different pros and cons, such 
as limitation on the number of motif occurrence per sequence, higher number of trainable 
parameters, different feature sets based on motif spacing and order etc. 

We propose a novel methodology to model motif modules using a Bayesian 
networks paradigm. The advantages of our proposed model are: 

1. the model is simple and easy to implement, 
2. the number of trainable parameters is linear in terms of the number of Bayesian 

network variables, and 
3. the model is made specific by probabilistically combining information on an 

exhaustive set of features such as the motif, its strand, its absolute position from the 
TSS and mutual spacer distance. 

In this paper we focus on a specific class of genes, the histone genes. Histones are 
basic proteins present in the eukaryotic cell nucleus. They are broadly divided into five 
types, namely H1, H2A, H2B, H3 and H4 [5]. Histones are evolutionarily conserved and 
have similar functions in all living organisms. This suggests that histone genes may share 
similar motif patterns in their 5' end region.  

We collected 116 gene sequences comprising H1, H2A, H2B, H3, and H4 histone 
genes from three mammalian species of man, mouse and rat. We modelled motif modules 
present in the 5' end region covering [-50,+500] of the histone genes relative to the TSS 
and observed that this region covered the coding portion in most of the histone genes 
under study. Furthermore, this region contained strongly conserved motif patterns across 
species within different histone types, which enabled us to determine gene 5' end models 
for all five histone gene groups. We tested our model on the histone data using "leave-
one-out cross-validation" technique and found that our system correctly classified 97.4% 
of the analyzed histone sequences to their respective histone groups. Our model can be 
used to classify an uncharacterized histone sequence into one of the five histone classes. 
Currently, we are working on extending the model to hunt for novel histone-like genes or 
genes co-regulated with them across mammalian genomes. Our model has a generic 
scope and can be scaled to include any type of motif definitions from a set of genes. 
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2 Methods 

We used PromoSer tool release 3.0 [6] and FIE2.1, the latest version of FIE2.0 tool [7] 
(http://research.i2r.a-star.edu.sg/promoter/FIE2_1/), to extract histone gene sequences. 
We collected histone genes from three mammalian species of man, mouse and rat and 
extracted 5' end genomic region [-50,+500] relative to the TSS for each of the respective 
genes. We analyzed 116 histone gene sequences with 16 H1, 26 H2A, 32 H2B, 18 H3, 
and 24 H4 histone types. 

Using MEME-MAST [8,9], we obtained DNA motif occurrences in the 116 histone 
sequences. Although, there are many software programs that discover DNA motifs with 
the ab-initio approach [see refs. 8,10-17], we chose MEME-MAST due to its relatively 
flexible parameter selection procedure. We built higher order motif definitions (HOMD) 
for each of these histone sequences using information on motif, its strand, its absolute 
position from the TSS, and mutual distance between motifs. We considered for HOMD a 
maximum of the first five motif occurrences per sequence. This way we had HOMD with 
20 motif feature variables for each of the 116 histone sequences. HOMD data were used 
for training and testing the Bayesian model. 

We used a naive Bayes network to develop a model for motif modules of the 5' end 
of histone genes and to classify a (known histone) gene into one of the five histone 
classes. Naive Bayes models are widely used for classification and are relatively easy to 
use. Figure 1 shows the model structure used to model the motif modules for histone 
genes. There is one parent class node representing the five histone classes and 19 child 
nodes representing tuples of four values (motif name, distance from TSS, motif strand 
and mutual distance) for the first five motifs occurring in a sequence. We used the 
Expectation Maximization (EM) algorithm [18] to train model parameters for each of the 
five histone classes, using uniform Dirichlet priors. We then used the junction-tree 
algorithm [19] for classification. 

 

 
 

Figure 1. Naive Bayes model structure used for modeling motif modules in histone gene sequences in the region 
[-50,+500] relative to the TSS.  The parent node C represents the class (H1, H2A, H2B, H3, H4) and the 19 
child nodes represent features of each of the first five motifs occurring in a sequence (Mi - motif name, L0i - 
length from start and Si - strand (+/-) for i = 1, …, 5, and Li(i+1) - mutual spacer length between motifs for i = 1, 
…, 4).   
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The classification problem for our naive Bayes model can broadly be defined as 
follows: 

Let C=(C1, C2, . . , Ck) represent k histone classes and let X = (X1, X2, . . , Xm) be a 
set of m features that characterize a test case.  The Bayesian network assigns the test case 
to the class which has the highest posterior probability given the test sequence's feature 
set, p(Ci | x1, . . , xm).  Using Bayes' rule, one can re-write the posterior probability of 
belonging to class i up to a normalizing constant in terms of a) the likelihood of the 
features given the histone class, p(x1, . . , xm | Ci), and b) a prior probability of 
membership to this histone class, p(Ci).  In other words, 
 

                                                                      
                                                                                                                                                                   

 
                                                               (1) 

 
Furthermore, since the naive Bayes approach assumes that the features are 

independent given the class membership, we can decompose the posterior probability in 
proportionality (1) to a product of the probability of each feature given the class 
membership: 

 
 

 
(2) 

 
Although the feature independence assumption may be generally not correct for 

histone genes, it does simplify the classification task because it allows the class-
conditional probabilities p(xj | Ci) to be calculated separately for each feature variable, 
thereby reducing a multidimensional estimation task to a number of one dimensional 
estimation tasks. Furthermore, the naive Bayes model gives high classification rates 
despite the model simplification. 

We validated our model using "leave-one-out cross-validation", in which each of the 
116 histone sequences was reserved for testing and the remaining 115 sequences for 
training. We implemented our Bayesian network model in MATLAB's Bayesian 
Network Toolkit (BNT) libraries [20]. 

3 Results and Discussion 

We found that all five mammalian histone gene groups (H1, H2A, H2B, H3, H4) have 
mutually distinct, prominent and strongly conserved regions with motif modules 
downstream of the TSS. These are also reasonably well conserved across the analyzed 
species. We observed that nearly all conserved motif segments were present in the coding 
portion of most of the histone genes under study. This may be because motifs found in 
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the coding regions were more strongly conserved in terms of statistical significance as 
compared to those in the non-coding regions. Most of the histone genes that we analyzed 
had very small 5' UTR segments and thus the genomic region [-50,+500] that we 
analyzed in these genes contained mostly the coding region. 

Table 1 presents the classification results of our Bayesian network model for histone 
motif modules. In total, only 3 of the 116 histone sequences (2.6%) were misclassified, 
and none of the H1 and H2A histones were misclassified. The results show that the naive 
Bayes model, which exploits histone motif module information, performs well on 
classifying analyzed histone sequences to their respective histone groups. 
 

 
 

Table 1: Classification results of Bayesian network model. 

Histone Type Correct Incorrect % Correct prediction 
H1: 16 0 100 
H2A: 26 0 100 
H2B: 31 1 96.9 
H3: 17 1 94.4 
H4: 23 1 95.8 
Total 113 3 97.4 

 
We have proposed a new methodology to model motif modules. Our model 

probabilistically combines information on an exhaustive set of features including the 
motif, its strand, its absolute distance from the TSS and mutual spacer distance between 
motifs. Furthermore, it is composed of trainable parameters, the number of which is 
linear in the number of Bayesian network variables. Consequently, the time required for 
training our model parameters is also linear in the number of network variables. 

The methodology looks promising and can be modified to search across genomes to 
recognize the 5' ends of both characterized and uncharacterized genes whose 5' end is 
similar to histone genes. This way we can search for those genes whose products 
potentially are similar to histones. We note that an alternative approach for discovering 
uncharacterized genes based on similarities with the known genes is at the protein level, 
but such an approach may not be efficient in case of genes with short exons. Our 
methodology is flexible and can be extended to model the promoter regions located 
upstream of the TSS. This work is currently underway. 
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