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This paper presents CIS, a biomedical simulation framelwased on the markov random field (MRF).
CIS is a discrete domain 2-D simulation framework emphaginin the spatial interactions of biomed-
ical entities. The probability model within the MRF framekdacilitates the construction of more
realistic models than deterministic differential equatapproaches and cellular automata. The global
phenomenon in CIS are dictated by the local conditional @bdlies. In addition, multiscale MRF is
potentially useful for the modelling of complex biomedigddenomenon in multiple spatial and time
scales. The methodology and procedure of CIS for a biomksiitaulation is presented using the sce-
nario of tumor-induced hypoxia and angiogenesis as an eearmpe goal of this research is to unveil
the complex appearances of biomedical phenomenon usirfgematical models, thus enhancing our
understanding on the secrets of life.

1. Introduction

Computational cell biology is an emerging discipline whbremedical simulations are
employed for the study of cells and their microenvironmentsarious spatio-temporal
scales?? The E-celt? and the Virtual Cefl projects focus on the molecular and bio-
chemical level within cells, addressing the dynamics ohalgransductional, regulatory
and metabolic networks. The sub-cell compartmental modelcanstructed and inte-
grated gradually so as to simulate a particular facet (dvpay) of cells. The Epitheliome
project is an example of tissue-level simulation, aimingépict the epithelial cell growth
and the social behavior of cells in cultiieSimulations on higher-level systems include
Physiomé, and the modelling of many organs such as h&aEach scale of simulation
shed light on different aspects of lifé.

Biomedical simulations have been conducted in both theimoots and discrete do-
mains. Differential equations are the key elements of coiis domain simulatioh,
where the concentration of particular receptors, ligardgymes or metabolites are mod-
elled at various spatial and temporal scales. This apprsdohited by the fact that many
biomedical phenomena are too complex to be described byfkeifferential equations!

In addition, the deterministic differential equations am adequate for describing many
biological phenomenon with a stochastic nature. Altewedyj discrete domain simula-
tion are processed on a spatio-temporal discrete lattibe. cbmbination of Pott's model
and Metropolis algorithm have been used to simulate celirept’ morphogenesis? the
behavior of malignant tumét and the Tamoxifen treatment failure of cangér.
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This paper presents cells in silico (CIS), a biomedical $ation framework based
on markov random field (MRF). The local interactions betweelts, various cytokines
and the microenvironments dominates many biomedical phenon, including chemo-
taxis, the morphogenesis of neural systems, tumor angésieand invasion. Thus, CIS
is proposed with an emphasis on (i) the spatial modellingwasgalization; (i) the com-
plex interactions between cells and microenvironmeritsn@n-deterministic (stochastic)
modelling; and (iv) a general framework with solid matheicafoundation applicable to
many biomedical applications.

MREF is a spatial stochastic framework in either the contirsiar discrete domaih? It
has been applied to the modelling of protein-protein irttioa network$ and for solving
various global optimization problenis* MRF is closely related to the Pott's model, the
Ising model in statistical mechanics, and cellular aut@gain the sense that all these
models address the local interactions between spatigtadt entities. The Ising model is
in fact a sub-class of MRF (see Section 2). Compared witluleelautomata, the stochastic
nature of MRF enables the construction of more realistiecng@dical models. In addition,
MRF is extendable to a multiscale framework which facié#tathe simulation of complex
biomedical phenomenon on multiple degrees of details. Eleibés adequate to serve as
the basis of a biomedical simulation framework.

2. Markov Random Fieldsand CIS

Cells in Silico (CIS) is a discrete, stochastic framework tfee modelling of cells, cy-
tokines, extra cellular matrix and their spatial interacti. CIS employs a bottom-up ap-
proach. The biomedical phenomenon shown in CIS is not @idthy global deterministic
equations, rather, it emerges when the local interactibestities are computed iteratively,
enabling the study of biological self-organization.

CIS is constructed upon a discrete domain MRF defined on daetaitice of 2-D
space. The latticé represents a physical space of interest, such as the microement
of a tumor clump, or a certain type of tissue in cultureyitro or in vivo. A random field
B = {Bi|1 < i< mn,i€ Zt} (Z denotes the integer) is a family of discrete or
continuous random variables defined ®nEach random variabl8; assumes a valusg,,
in the state spac€;, C; € C = {Ci|1 < i < n,i € Z*}. EachB;(s) represents the
characteristic at a particular spatial locatiars € S. It could be either a real biomedical
characteristic (such as the neoplastic state of a cell eopltlysical pressure induced by cell
proliferation in a small space) or a hidden state which ti&ta real characteristic as in a
hidden Markov model. In this paper, a symbol in the upper cageesents either a random
field, a random variable or a set, while the lower case reptsgeparticular realization of
a random variable.

B is a MRF if and only of (i) all its realizations have positiveopability, and (ii) the
local conditional probability of its realizations maniféise Markov property:

Pr(B(s) | B(S - 5),5 € S) = Pr(B(s) | B(s + ). 5 € S,q € Q) ()

where( denotes the neighborhoddror example, the second order neighborhood system



September 14,2004 8:36 Proceedings Trim Size: 9.75in r 6.5i cis

Q={(z,y)|-1<2z,y<lz,y€Z(z,y) #(0,0)} 2

where a sites has 8 isotropic neighboring sites. The second order neitloloal system
is adopted in this paper if not indicated specifically. Thie-tand side of equation (1)
shows that, in general, the state of a site is conditionadjyeshdent on the state of all the
sites except itself. The right-hand side indicates that d@rily dependent on its neighbors.
The equivalence of (1) forces the state of a site to be dittayethe local property in the
neighborhood. Long range interactions of entities cahtsibchieved through the iteration
of the local process.
The realization oB;(s) in a MRF follows a Gibbs distribution :

_Us(cm)
T

Pr(B;i(s) = cpm) =0 ' xe 3)

whereT is the parameter of temperature which is generally sdt, amless a simulated
annealing strategy is adopted in the algorithbd, is the energyd.k.a. cost) function
associated with a particular realization®f(s). U is determined byB;(s) andB;(s + q)
according to the application. The definitionldf determines the relative probabilities of a
state, thus dictates the interaction of a sind its neighboring sites. Different definitions
of U; results in different classes of MRF, such as the Gaussian, MigHsing model, the
multi-level logistic model, etc. (cf. Li* for a complete review). The normalization factor
0 (a.k.a. partition function) is defined as

o = Y e @

cm €0

This is to guarantee the sum of probabilities of all the paegiealizations of3;(s) to be
1,i.e.

> Pr(Bi(s) = cm) =1 ®)
cm€C;

A random variableB; (s) may be conditionally dependent on another random variable
B;(s), depending on the application. The conditional probablias been modelled in
many applications as a multivariate normal, which alsoofei a Gibbs distribution (cf.
Li'* for proof):

Us(Bj(s) | Bi(s))
Pr(Bj(s) | Bi(s)) =6~ xe”— T 6)
In several occasions, the posterior probabiltyB;(s) | B;(s)) can be obtained using
the Bayesian law, when the prior probabilRy(B;(s)), the probability ofB;(s) and the
likelihood probabilityPr(B;(s) | B;(s)) are all available:
Pr(B;(s) | Bi(s)) Pr(Bi(s))

Pr(B;(s) | B;(s)) = J (7)
The prior probabilityPr(B;(s)) reflects the prior knowledge (i.e. assumptions) about a
particular random variablB; (s).
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In CIS, all the probability models of equations (3), (6) aiii¢an be used to represent
various biomedical properties such as cell-cell or celtrirdnteractions. The probability
model could be either homogeneous (i.e. consistent in ttiees) or regionally homoge-
neous (i.e.S comprise regions with different sets of probability mogdleWe will show in
the following applications how these probability modelks eonstructed.

An important class of applications of MRF is for global opization, where a state
with minimal global energy " U, is pursued

B = arg IbIéIJIBl é Us (8)
The realizations is optimal with respect to either the maximum likelihood (MLor the
maximum a posteriori (MAP) estimations using the probability model of (6) or (7) re-
spectively. Due to the large solution space in all the navialrapplications,3 cannot be
obtained analytically. An iterative state updating prageds thus used, in either a deter-
ministic or stochastic fashion. Deterministic methodsatpdach site with the state which
is associated to the largest probability. In contrast,hsetic relaxation methods.¢.a.
Markov Chain Monte Carlo methods) first randomly assigngititeate state for updat-
ing, computed the associate probability, then use a randonbar generator to determine
whether the state updating action should take place unaér ayrobability. The Gibbs
distribution in (3) thus plays the role of the state trawsitBoltzmann probability in the
simulated annealing algorithms (a.k.a. Metropolis aldponis), wherel™ is gradually de-
creased, representing an annealing, stabilizing behatitie system. The state updating
procedure could proceed either with a random site visit caster scan. The simulated
annealing algorithms are beneficial for searching the gxjitim states of the optimization
problems.

CIS employs a stochastic relaxation strategy, which is ai@ggeous for the modelling
of a complex biomedical phenomenon. Since the aim of CIS istudy the dynamic,
evolving behavior of lifeT" is defined ad in this paper, which is consistent with typical
MRF approacheb!

3. Tumor, hypoxia and angiogenesis

A tumor is a clump of cancerous cells with distinct chardstes, such as the self-
sufficiency in growth signals, capability of inducing anggmesis, and metastastsThe
proliferation of tumor cells results in the lack of oxygerdarutrients in the center area of
the tumor clump, inducing a high survival pressure and eeenasis. tumor cells are capa-
ble of secreting tumor angiogenic factors (TAFs) for atiragnew capillaries from nearby
blood vessels (i.e. angiogenesis). This capability of @itlyiangiogenesis is strengthened
when the tumor cells are lack of oxygen (i.e. hypoxXiapngiogenesis enables the tumor
to obtain nutrients/oxygen and get rid of wastes via theutitory systend.

Angiogenesis is an important characteristic of a maligtantor, hence, the under-
standing of angiogenesis is very important for devising nasthods for cancer prognosis
and treatment. These new capillaries not only sustain tm@tgrowth but also provide



September 14,2004 8:36 Proceedings Trim Size: 9.75in r 6.5i cis

a gateway for metastasis. Known TAFs includes the vasculdotbelial growth factor
(VEGF), the basic and acidic fibroblast growth factors (FG€ptter factors and many
others. tumors have an increased expression of angiogactior$, such as VEGF and
FGFs, compared to their normal tissue counterpdrta.the mean time, the endogenous
inhibitors such as thrombospodin-1@interferon are down regulatéd.At the beginning
of angiogenesis, the subendothelial basement membrahe néarby capillary vessels are
degraded?® The endothelial cells are stimulated by the TAFs and growatdwhe tumor
clump, forming new capillary sprouts with the branchingusture and anastomosis (i.e.
loops)!® The anastomosis structure enables blood circulation. lIirthese endothelial
cells synthesize a new basement membiine.

Research has shown that the hypoxia state of tumor cells)cgtim{ulate the secretions
of TAFs so as to invoke angiogenesis;and (i) transform the cell to be more invasivé’
The reason of (ii) is because the hypoxia inducible factdi&$) within the cell detect the
low oxygen levels, and therefore induce the high expressiannMet protein, a receptor
of hepatocyte growth factor (HGE,k.a. scatter factor-1). On binding the HGF expressed
by the nearby stromal cells, c-Met triggers a signal tran8do cascade which results in
the increased cell motility, invasion and metasta&i§his explains why an antiangiogenic
treatment could risk to induce cancer cells to be prone t@stasis.” The simulation on
angiogenesis has been conducted using the combinatioffexrfeditial equations and the
random walk method (e.g. Plank et'8land Stokes et &l.).

3.1. ClIS Methodology
3.1.1. Define key entities as random variables.

The cell space in this application is set @56 x 256 sites to simulate aibvnm x 1mm
microenvironment of a tumor clumip situ. The tumor, the blood vessel (comprising both
the endothelial cells and the basement membrane of thelyassetumor angiogenic fac-
tors (TAF) are identified as the key entities of a site, deth@eT'(s), V(s) and A(s)
respectively. Hence, the random fighkl= {T'(s), V(s), A(s)|s € S} represents this mi-
croenvironment. The variablB(s) has discrete statesl'(s)|T'(s) = 0,1,2, ...}, where
T(s) = 0 denotes the non-neoplastic state dHd) > 0 denotes the degree of hypoxia in
this neoplastic site, which is mainly caused by the excessiygen consumption caused
by the neighboring proliferating tumor cells. The largex ttumber, the higher the degree
of hypoxia. The variabl& (s) = {0,1, 2}, whereV (s) = 0 denotes no vessel in this site;
V(s) = 1 denotes the vessel atbeing capable of sprouting new branch&¥;s) = 2
denotes the vessel being quiescent and not sprouting newh®s. Those sites where both
V(s) andT(s) are0 represents either normal cells or extra cellular matrixe Variable
A(s), a positive real number, represents the concentration di@kngiogenesis factors in
this current study, as has been used in many research (k. & al'®). More elaborated
simulation could be conducted where each angiogenesix fiaaepresented individually.
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3.1.2. States initialization.

The tumor clump is a circle shown in light green in Figure 1(a)khese regiong(s) = 1

and other region%'(s) = 0. The radius of this tumor clump is 14 pixels. Four vessels are
in the nearby regions of this tumor clump. Each of these \&$sa circle with a radius

of 7 pixels and shown in red in Figure 1(a). In these regidf(s,) is randomly assigned
as1 or 2 at the probability ofl0% and90% respectively. The other regions(s) = 0.

The TAF concentratiomd(s) is assumed to be 0 in the initial state. Note that each site is
a geometrical location which is not necessarily a completk tocating each single cell

is not the main interest of this current simulation. An aitgive way of initialization for

a biomedical simulation is cell-based, where a templatestific randomly placed in the
tumor clump area. This could be achieved by the object-tegeprogramming technique.
The cell-based simulation is exemplified by the Pott’'s mpalere each generalized cell
(an artificial unit which represents either real cells, &xdellular matrix or medium) are
specified individually.? In such a cell-based simulation, a more sophisticated sahabm
variables, such as the elaborafg) and A(s), should be introduced.

3.1.3. Define interactions between sites

The local conditional probability of the random variablegides the interactions between
sites, which is very important for the modelling of biomeadiproperties. As is described
in Section 2, the interactions are modelled using the lonatgy functionUs, which de-
termines the conditional probability of a particular reation of the random field. Apart
from MRF, the traditional approach utilizing different{@nd difference) equations is very
suitable for describing physical processes such as diffush combination of both MRF
and difference equations is therefore advantageous far CIS

First, the tumor survival pressufs) is modelled, which is an indication of hypoxia
and pertains to the necrosis of tumor cells. The survivadquree and hypoxia are caused
by the surrounding cells to the central area of the tumor plumence?'(s) is determined
using a multiscale neighborhood system, denote@.aéw) :

Qm(w) ={(z,y)| —w < z,y Sw,w,z,y € Z,(z,y) #(0,0)} 9)

Qm(2), Qm(4), @, (6) and@,,(8) are used so as to construct the gradient of survival
pressure of the tumor clump. The interior area of the tumamngl suffer from more severe
hypoxia. The probability of increasing the tumor survivegsure is defined as :

Pr(T(s) = T(s)+ 1) = [] [1-d(T(s+ )6V (s+q)] (10)
9€EQm

where/ is the Kronecker delta. The above equation specifies thgbrbsence of tumor
cells in a neighborhood increases the hypoxia. In addittmpresence of blood vessels in
the neighborhood alleviates the condition of hypoxia.

Second, the flow of TAF concentratiofys, t) is modelled. A tumor clump secretes
TAF in a paracrine fashion, thus, a high concentration of T&\Bissumed in the regions
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adjacent to the tumor clump (i.&(s) > 0). The secreted TAF gradually diffuse through
the space5, which is modelled using the diffusion equation, i.e.
OA(s,t)
ot
wherek is the diffusion parameter defined as 1.
Third, the directional growth of a blood vessel is modelledé¢ dictated by the concen-
tration of TAF which exceed a threshalg. Define a thresholding functiofi(x), which
reports O if its variable: < 0.

= kVZ2A(s,t) (11)

1
Alz) = 5[1+ sgn(2)](z) (12)

Given a sites whereV (s) = 1, the energy functiol/ (s + 1), n € @ is defined as

U(s +n) = —log{A[A(s + 1) — a:]} (13)
Hence, the conditional probability

A[A(s + 1) — a4

> geq AMA(s +q) — af]
Equation (12) specifies the probability of a site adjacerat w@ssel being an extension of
this vessel. The higher the TAF concentratibfs + 1), the higher the probability of vessel
growth toward this direction. This is a simplified model. kality, many other factors,

such as the fibroblast cells and the extra cellular matrikédonnective tissue, also play
important roles in determining the directional vessel gtow

Pr(V(s+mn) =1A(s),V(s)) =

s(V(s)—1)  (14)

3.1.4. Proceed Simulation.

A positive integeft|t € Z*} is used to represent the discrete time points. Every interac
tion model is associated to a particular time stepAll the sites in S need to be updated
whent = 7. The states in the current time step depends on the state préfrious time
step. CIS is programmed in the C++ object oriented style.

3.2. Results and Observations

Two simulations are conducted to manifest the angiogeresishypoxia occurred in the
microenvironment of a tumor clump. The first simulation isimpe model where the
hypoxia are not modelled. The initial states is shown in Fégl(a) whent = 0. The time
step is set as = 1 for all the rules. The 2D visualization of the results whea 50, 200
and350 are shown in Figure 1(b)-(d), respectively. The TAF (degadh blue) are diffused
away from the tumor. The new capillary grows toward the turfamrming a network with
the branching and joining structure (i.e. anastomosis) 3tmape of these capillaries is
visually similar to the results in Plank et &lwhich employs complex differential equations
and a random walk approach. Note that the method in Plank!&tislmore or lessad
hoc i.e. specific to a particular biomedical problem such asagepesis, while CIS is a
general framework and paradigm which could be employed impagplications. Different
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simulations using the identical parameter setting prodiifferent yet similar pattern of
capillary formation (data not shown). This is due to the k#stic nature of the algorithm.

(a) (b) (©) (d)

Figure 1. The 2-D visualization of CIS on tumor-induced agginesis (a) The initial condition of the simulation.
The green region represents the tumor clump and the rednegipresent the blood vessel. (b)-(d) CIS results
whent = 50, 200 and350, respectively.

(b)

(d) (e) (f)

Figure 2. (a)-(f) The 2-D visualization of CIS of tumor-inckd angiogenesis and hypoxia whee= 0, 300,
450, 600, 750, 900, respectively.

In the second simulation, the random figddsimulates a cross sectional slice of the
epithelium (top of Figure 2(a)) and connective tissue (@atbf Figure 2(a)) separated by
the basal lamina (depicted in cyan). The tumor clump is w@tlian the epithelium, shown
as a green circle with a radius of 20 pixels in Figure 2(a). rHBaod vessels, shown as
red circles with the same radius of 7 pixels, are situateddléncbnnective tissue area. The
interaction model of tumor hypoxia is employed. The timgsteset ag- = 150 for the
hypoxia modelr = 2 for the angiogenesis, and= 1 for all the other rules. The results
whent = 300, 450, 600, 750 and900 are shown in Figure 2(b)-(f), respectively. The value
of T'(s) indicates the degree of hypoxia of a site. It shows that ther ¢o the core are of
the tumor clump turns from green to black, representing theuggl elevation of hypoxia.
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A few new vessels begin to sprout on Figure 2(b). Several resgels penetrate the tumor
clump, preventing further necrosis on their adjacent sitesigure 2(d)-(f).

4, Discussionsand Conclusions

CIS, as well as all the other biomedical simulations, plagesraplementary role to wet-lab
experiments. It is evident that without solid biomedicabWtedge acquired from wet-

lab research and clinical observations, we cannot evets staidentify the key entities

for a simulation. An ideal simulation is conducted in conaeith wet-lab experiments,

starting with real data and finishing with real data. The kedinal models fill up the

gaps of unknown knowledge between the two sets of real dakas dives rise to the

systems biology, where a biomedical phenomenon is enwsias a system of complicate
interactions of many entities.

One of the plausible realization of the above notion of systbiology is, for example,
guantize a histopathology image of a cancerous tissue asitta condition, replacing
the procedure in section 3.1.2. The various parameter safueh as the time step are
also set according to the wet-lab measurements and ohisexvaClS are thus proceeded.
The result of CIS are then compared with another set of méonqais image qualitatively or
guantitatively.

CIS is extensible in terms of the complexity of simulationheTabove example on
tumor-induced hypoxia and angiogenesis can be elaborgtedding a variety of (i) en-
tities, such as scatter factors, various cytokines, andaheentrations of oxygen and nu-
trient; (ii) interaction models, such as the tumor cell gttowodel on the presence of new
blood vessels, and (iii) advanced data types such as theadized cells'?

A further extension of CIS is toward multiscale simulatiaadressing the complex,
multi-level nature of biomedical phenomenon. The framéwafr Multiscale MRF has
been well established (e.g. Wilson ef&). A multiscale simulation can illustrate both the
between cell interactions and the within cell interactiongler the same framework. For
example, 2-D spatial grids of two different scales can bestracted, where each site in
the first scale corresponds28 x 2" (e.g. 4 or 16) sites in the second scale, as in a normal
guad-tree structure. The first scale addresses the betw#eénteractions and the second
scale addresses the within cell interactions. Activitieshie two scales may take place
in different paces, reflected as their distinct time step# multiple scale representation
facilitates the incorporation of multiple levels of datasulting a realistic model. The
hypoxia model in Section 3 employs multiple neighborhoaés; which is an example of
multiscale realizations.
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