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For determining functionality dependencies between two proteins, both represented as 3D structures,
it is an essential condition that they have a matching structure. As 3D structures for proteins are large,
complex and constantly evolving, it is very time-consuming to identify possible locations and sizes
of such a matching structure for a given protein against a large protein database. In this paper, we
introduce a novel representation model and apply a transformation and formalization to this problem.
We then propose a database solution by using innovative high dimensional indexing mechanisms.
Experimental results demonstrate a promising performance of the high dimensional indexing to this
biologically critical but previously computationally prohibitive problem.

1. Introduction

The structure of a protein can be represented as a collection of points (atoms) or vectors
(from one atom to another) in a three dimensional space. It has been shown thatProtein
properties are a direct consequence of the protein’s unique three-dimensional structure.11

Certain structural regions of a protein often perform some specific function. Analyzing
the three-dimensional structure of a protein therefore provides a basis for understanding
its biological functionality. Having a matching (similar) structure has been considered
as an essential condition for the existence of potential interaction between two proteins.
As 3D structures for proteins are large, complex and constantly evolving, it is very time-
consuming to identify possible locations and sizes of such a matching structure for a given
protein against a large protein database. In this paper, we adopt a novel vector representa-
tion and formalize the protein structure matching problem. We propose a database solution
and investigate various innovative indexing mechanisms. Our initial experimental results
demonstrate a promising performance to this biologically critical but previously computa-
tionally prohibitive problem.

The rest of the paper is organized as follows. Section 2 gives a brief introduction to
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protein structures as well as an overview of related work. Section 3 defines the 3D vector
representation of protein structures and formalizes the protein structure matching problem.
A database solution to the problem is proposed in Section 4. Various high dimensional
indexing approaches to facilitate efficient structure matching are investigated in Section 5.
Section 6 shows the experimental results. Section 7 concludes the paper and highlights the
future work.

2. Preliminaries and Related Work

A protein is a large molecule composed of one or more chains of amino acids in specific
order. Each amino acid contains a central atomCα to which asidechainR, an amino (N -
H) group and a Carboxyl (C ′ = O) group are attached. For each of these amino acids
exceptGlycine (which is the simplest amino acid without a sidechain), thesidechainis
connected toCα via another atomCβ .4 A protein is constructed from amino acids that are
linked by peptide bonds forming a polypeptide chain(Figure1).
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Figure 1. Structure of amino acid.

The amino acid sequence of a protein’s polypeptide chain is called its primary structure,
which can be represented a linear string of residues, abbreviated with one-letter codes.

Different regions on the sequence form regular secondary structures, including theα

helices andβ sheets in a three-dimensional space. As a consequence, the protein’s structure
can then be folded into a three-dimensional configuration.

2.1. Structure and sequence similarities

It is important to distinguish structural and sequence similarities, according to which pro-
teins can be classified. The former is an indicator of an evolutionary relationship between
linear sequences, while the latter is based on comparison between atoms or regions in three
dimensional space.Significant structural similarity is common, even among proteins that
do not share any sequence similarity or evolutionary relationship.12 Structural comparison
and alignment service can discover similar patches from two proteins without any measur-
able sequence similarity. This paper will be focusing on the structure similarity.
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2.2. Methods for comparing of 3D protein structures

The protein structure can always be represented as a set of points (atoms) in 3D space.
For example, PDB (Protein Data Bank)1 uses this method by arranging a protein on an
imaginary Cartesian coordinate frame and assign (x,y,z) coordinates to each atom. This
representation serves as a basis of different simplified high level representations.

Distance Matrix A matrix of inter-atomic distances can be constructed to represent the
three-dimensional structure. Atom-atom distance (e.g.,Cα-Cα, Cβ-Cβ) matrix has been
used by many similar structure searching approaches.

The SSAP system14 uses a distance plot-based method to compare internal geometry
between proteins via the Needleman - Wunsch dynamic programming algorithm.13 The
structure of a protein is represented by describing a structural environment for each amino
acid as a set of vectors from itsCβ atom toCβ atoms of all the other amino acids in the
protein. If the structural environments in two protein structures are similar, the structures
are supposed to be similar.

The DALI system8,9,10 also uses distance matrix method to compare structural rela-
tionships between the proteins. The residue-residue (Cα-Cα) distance matrix is calculated.
Distance plot-based methods compare all the inter-residue distances in one protein to corre-
sponding distances in another. Similar patches of residues in two proteins are superimposed
as closely as possible into a common core structure by minimizing the sum of the atomic
distances between the alignedCα atoms.

The SARF system2 performs comparison between protein structures on the level of sec-
ondary structures, represented as vectors ofCβ-Cβ atoms, instead of residues. It searches
large sets of secondary structure elements in two protein structures which could be super-
imposed with a small RMSD (Root Mean Square Deviation). Another system, VAST,7

adopts the similar representation.

Abstract Chain Fold It is a usual way to tabulate the torsion (dihedral) angles for each
residue to reconstruct protein structure using standard covalent bond length and angles.3

The backbone can be further represented by virtual bond betweenCα-atoms. The main-
chain is fully described by the virtual dihedral angleαi defined by four successiveCα

atoms and the virtual bond angle. This description is used for building backbone wire
models.

Our Approach All the above mentioned methods are based on measuring internalCα-Cα

(residue-residue) orCβ-Cβ (sidechain-sidechain) distances. This paper will adopt a differ-
ent way by representing a protein’s structure as vectors ofCα-Cβ atoms, which has been
advocated by Mckie 1995.5 The overall spatial relationships between theCα-Cβ vectors
will be taken into account.
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3. Problem Formulation

3.1. Vector representation of a protein in 3D space

Since positions ofCα atoms are variant from time to time,Cβ atoms are introduced in our
method to give more information for representing a protein’s structure(Figure 2). A pair of
Cα-Cβ atoms in the same residue constructs a vector fromCα atom toCβ atom. A protein
(or more precisely, a snapshot of a protein, as the shape of a protein can change over time)
can be defined as a vector collection:

P = {vi|1 ≤ i ≤ n} (1)

Figure 2. Protein structure as 3D vectors.

Eachvi is a vector of (Cα, Cβ) for residuei, n is the number of residues (except Gly)
of a protein. The number of vectors in a protein can vary between 10 to 10,000. The length
of a vector (i.e., from itsα end to theβ end) is always about 1.5̊A (angstrom).

Since PDB (Protein Data Bank) supplies the coordinates of each atom of proteins, it is
easy to build aCαCβ vector space and represent a protein as a collection of vectors in a
three-dimensional space.

3.2. Bowties

For two vectorsu andv, their spatial relationship can be described using four distances
between theirCα andCβ ends. We denote these four distances, as illustrated in Figure
3 (a), asdαα, dββ , dαβ , anddβα. All these four distances are Euclidean distances in 3D
space. This characterization of spatial relationship between two vectors using the four
distances is called the “bowtie” method. A bowtie consisting of vectorsu andv is denoted
asBu,v(dαα, dββ , dαβ , dβα), in shortBu,v.

As a vector is directional and can point to any direction in a 3D space, twist-
ing a bowtie Bu,v = (dαα, dββ , dαβ , dβα) in the 3D space leads toBv,u =
(dαα, dββ , dβα, dαβ), which is considered identical toBu,v. If the two diagonal dis-
tancesdαβ and dβα are ordered, we can representBu,v and Bv,u in an unified form
B(dαα, dββ ,min(dαβ , dβα),max(dαβ , dβα)).

It is obvious that the maximal number of bowties derived fromn vectors isC2
n. A

bowtie whosedαα(u, v) distance is not greater than 25Å is referred to as aqualified bowtie.
The constraint of 25̊A here reflects the distance cut-off of a distant contact in a protein
structure.
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Figure 3. (a)The bowtie of vectorsu andv (b)An example of motif

For any two bowtiesB andB′, they are similar if the following conditions are satisfied:

(1) B(dαα) ≈ B′(dαα) ∧B(dββ) ≈ B′(dββ), and
(2) min(B(dαβ), B(dβα)) ≈ min(B′(dαβ), B′(dβα)) ∧

max(B(dαβ), B(dβα)) ≈ max(B′(dαβ), B′(dβα))

The second condition considers bowtie similarity by allowing mirror images. Clearly, if
all bowties are stored in the unified form, this condition can be simplified. The relationship
”≈” reads as ”equals to within a tolerance”, and the tolerance is typically 1.5Å.

3.3. Motifs

The structural regions of a protein can be modeled by motifs. A motifM of a proteinP is
defined as a subset of vectors:

M = vi1, vi2, ..., vim ⊆ P (2)

∀(vik, vil) ∈ M,dαα(vik, vil) ≤ 25Å

Obviously, a motif can also be viewed as a set of qualified bowties, formed by all the
possible vectors pairs whoseα-α distance is less than 25Å.

As an illustration, Figure 3 (b) visualizes a motif:

3.4. Motif Matching

For two motifsM1 = {q1, ..., qm} andM2 = {r1, ..., rn}, they are similar if there exists a
sub-motifS1 ⊆ M1 and a sub-motifS2 ⊆ M2, ∀(v, v′) ∈ S1 × S1, ∃(u, u′) ∈ S2 × S2,
such thatB(v, v′) ≈ B(u, u′) and the sizes ofS1 andS2 are larger than 5 but smaller than
20.

3.5. Protein structure matching

For two proteinsP1 andP2, they have a matching patch if there exists motifM1 ⊆ P1 and a
motif M2 ⊆ P2 such thatM1 ≈ M2. In summary, given a query proteinQ, the problem we
investigate is to find all the proteins from a protein database such that the resultant proteins
have a one or more matching motifs withQ.
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4. A Database Solution to the Problem

The protein structure matching problem can be split to three tasks, which are construction
of 3D vector database - extractingCαCβ vectors from the PDB via pre-processing; motif
detection and indexing; and matching. The matched proteins or fragments of proteins
(motifs) will be returned for post-processing of functional analysis, which is out of the
scope of this paper. The key issue is an indexing schema to facilitate efficient searching.

As defined in Section 3, a motif can be viewed as a set of bowties and the matching of
two motifs is done via the one-to-one mapping of similar bowties between the two maxi-
mally matched sub-motifs. Therefore, efficient indexing of bowties is essential to the motif
formation and matching. The following sections will focus on this issue.

5. Indexing and Querying Bowties

The most commonly used one-dimensional indexing approaches in the database literature
arehashingand the B+-tree. The hash based method basically uses a hashing function to
map search key values into a range of bucket numbers. However, the hashing method does
not support range queries, which are exactly what we need to match two bowties within the
1.5Å tolerance. Therefore, the hash indexing is not applicable to the problem we deal with
in this paper.

The B+-tree maintains a dynamic index structure, which is a balanced tree where search
is directed by its internal nodes (index entries) and data entries are stored in its leaf nodes.
An advantage of B+-tree indexing is that it provides efficient support to the range queries
without decreasing the efficiency of equality selections. Therefore, only B+-tree based
(and more generally, tree-based) indexing methods will be considered in this paper.

Recall a bowtie is represented by four distances. Thus bowties can also be viewed as
points in a four dimensional space. The most popular multidimensional (spatial) access
method is R-tree indexing, which has been provided in most commercial database manage-
ment systems such as Oracle.

The R-tree is a height-balanced data structure like B+-tree. It is based on the approxi-
mation of a complex spatial object (or a group of spatial objects) with the minimum bound-
ing rectangle (MBR) that encloses the geometry. The sides of a MBR are parallel to the axes
of the data space. An R-tree consists of a hierarchical index on the MBRs of the geometries.
For illustration, Gaede’s paper6 shows an R-tree for a working example. Because R-tree
indexing is fast and works directly on geodetic data, it has been widely used for working
with spatial data. The R-tree idea is applicable to higher dimensional data indexing, and
high dimensional R-trees are supported by Oracle and many other database management
systems.

Using Four B+-TreesA simple way to index bowties is to create four B+-tree indexes sep-
arately on the four distances of a bowtie. Given a query bowtie, four separate searches are
conducted. The final result will be the intersection of the four sets of intermediate results.
This approach may generate up to four immediate datasets (using one B+-tree for selec-
tion using one distance). It is clear that the selectivity using one distance is much higher
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than that using four distances together, such intermediate datasets can be very large. These
large intermediate results are costly to generate and store, and costly to merge, and have no
indexes on them. It is clear that such one-dimensional indexes are not really suitable for
supporting multi-dimensional queries.

Using One 4D B+-Tree Instead of building a separate B+-tree on each distances, a bowtie
is considered as a quaternary set of its four distances ordered by descending priorities:dαα,
dββ , dαβ , anddβα. The “quartets” are then indexed by using a B+-tree, wherein each key
stores an ordered quartet. We refer this as the 4D B+-tree approach, which is considered
here a “pseudo” high-dimensional indexing. A similar approach was proposed by Wang
200215 for pattern discovery in a three dimensional space.

Using One 4D R-TreeBy considering the four distances as coordinates, a bowtie can be
mapped to a (x, y, z, k) point in the four dimensional space. The bowties (as 4D points)
can be treated as spatial objects and then indexed using a 4D R-tree. Given a query bowtie
Q = (x1, y1, z1, k1) and a tolerance valueε. The R-tree query can be represented as a 4D
cube(x1 ± ε, y1 ± ε, z1 ± ε, k1 ± ε), with Q as its centroid. In our case,ε is the tolerance
value1.5Å.

Using 2D R-TreesThe four distances of a bowtie can be grouped into two 2D points
(dαα, dββ) and(dαβ , dβα). Then two 2D R-trees can be used to index the set of first points
and the set of second points separately. Given a query bowtieQ = ((x1, y1), (z1, k1)). Its
R-tree query consists of two 2D rectangles(x1 ± ε, y1 ± ε) and(z1 ± ε, k1 ± ε), whereε

is the tolerance value1.5Å.

Using One 3D R-TreeWe can also consider a bowtie as a 3D point(dαα, dββ , dαβ +dβα).
Given a query bowtieQ = (x1, y1, z1 + k1) and a tolerance valueε. The 3D R-tree query
can be represented as a 3D cube(x1 ± ε, y1 ± ε, z1 + k1 ± 2ε) , with Q as its centroid.

6. Bowtie Indexing Experiments

6.1. Test Data

Over 20,000 proteins (13.5G) protein data (in format ofmmcif ) are downloaded from
Protein Data Bank.1 A total of 448 sample proteins are randomly selected for our initial
experiments. For the sample protein data set, the average number of vectors for each protein
is 174. The total size of final vector space is 78,218, from which 5,272,573 qualified
bowties are built. Oracle 10g with Spatial Data Option is used to store all bowtie data, to
create both B-tree and 2-4 dimensional R-trees, and to process all queries (represented in
SQL). No special code is used for bowtie similarity search.

6.2. Queries

A set of three query bowtiesQmax = (24.9, 28, 26.5, 26.5), Qmin = (2.6, 2.7, 2.9, 2.6),
Qavg = (17, 17.2, 17.1, 17.1) is used throughout the experiment. They are selected to
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cover the cases of maximal, minimal and average values of the four distances in the test
data. The numbers of matching bowties are respectively 34530, 104, and 456520, indi-
cating the query bowties differ from each other in density of data distribution in the query
boxes.

The query bowties and the 1.5Å tolerance are translated to different SQL queries with
respect to different indexing mechanisms under investigation. The follow example shows
the Oracle SQL queries ofQavg for 4D R-tree indexing:

query box3 mdsys.sdo geometry(4003, null, null,mdsys.sdo elem info array(1,1003,3),
mdsys.sdo ordinate array(15.5, 15.7, 15.6, 15.6, 18.5, 18.7, 18.6, 18.6));

select * from h 4d test where mdsys.sdo filter( h 4d test.point, query box3,
’querytype=window layer gtype=POINT’)=’TRUE’;

Note that the query bowtie is represented as a 4D cube and its bottom-left and top-right
corners are used to identify the geometry.

6.3. Performance Indicators

Disk reads(number of times the disk is read),Buffer Gets(number of times the buffer in
main memory is read) andCPU time(in seconds for SQL query parsing and executing,
and query result fetching) are chosen to measure the efficiency of the indexing methods.
The first two are considered as indicators of intermediate data set traversed during the
query processing. In addition, precision (the percentage of the returned bowties being
correct) and recall (the percentage of correctly matching bowties being returned) are used
as effectiveness measures.

6.4. Experimental Results

Figure 4 summarizes the experimental results. High dimensional indexing, as expected,
generally saves CPU time and reduces intermediate Dataset sizes (disk reads and buffer
gets), in comparison to using four separate one dimensional indexes. Scanning four B+-
trees produce four sets of intermediate data which may contain a large amount of duplicated
bowties. Joining the fours sets to find their intersection leads to more CPU time used.

The 4D B+-tree demonstrates a quicker response time and less intermediate data by
combining the four distances into a single key which has less unique values and thus less
number of intermediate nodes in the tree.

The 2D R-trees approach requires the least disk reads and buffer gets, suggesting the
spatial indexing in 2D space does help reduce the intermediate data.

However, 3D and 4D R-Trees are not as good as 2D R-Trees. This is probably due
to the fact that already skewed data will be more skewed in higher dimensional spaces.
Therefore, there is a high degree of overlapping among MBRs containing the 3D and 4D
points, resulting in a large amount of overlapping with the query box and in turn a large
number of subtrees are traversed. Particularly for the 3D method, the query box is bigger
than others since its third dimension is the sum of thedαβ anddβα so that the tolerance
value for this dimension is doubled.
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CPU TIME DISK READS BUFFER GETS PRECISION RECALL
4×B+ Tree 25.2 203314 201347 100% 100%

4D B+ TREE 1.6 35851 35872 100% 100%
2×2D R-TREE 1.1 1681 12520 100% 100%

3D R-TREE 1.4 34948 38692 99.7% 100%
4D R-TREE 2.4 42414 45646 84% 100%

(a) Experimental results of queryQmax.

CPU TIME DISK READS BUFFER GETS PRECISION RECALL
4×B+ TREE 21.9 407370 168770 100% 100%
4D B+ TREE 1.3 35849 35862 100% 100%

2×2D R-TREE 0.03 178 1004 100% 74%
3D R-TREE 0.02 303 669 46% 100%
4D R-TREE 0.04 209 447 61% 80%

(b) Experimental results of queryQmin.

CPU TIME DISK READS BUFFER GETS PRECISION RECALL
4×B+ Tree 42.4 313002 323085 100% 100%

4D B+ TREE 1.7 35849 35862 100% 100%
2×2D R-TREE 11.2 24869 123828 100% 100%

3D R-TREE 40.5 616707 669350 75% 100%
4D R-TREE 22.6 531884 565838 88% 100%

(c) Experimental results of queryQavg .

Figure 4. Experimental results.

It can also be observed that the 4 B+-trees approach and one 4D B+-tree approach
achieve 100% precision and recall, due to their nature of using exact values of attributes as
search keys. On the other hand, all the R-Tree based methods cannot guarantee this, as they
are based on approximations. The 2D method achieves much higher precision and recall
than the other two due to the same reasons discussed above for intermediate set. This can
also be explained by considering data skew and the trend of more skewed data when the
number of dimensions increases.

It seems the performance of each approach is dependent on the number of correctly
matching bowties of different test queries. For a query with lower such number, e.g.,Qmin

(104), the 2D R-Tree would seem the best. For query with higher such number, such as
Qavg (456,520), the 4D B+-tree shows its advantage in both CPU time and Buffer gets.

7. Conclusions and Future Work

We have formulated a problem of protein structure matching in a 3D space ofCα-Cβ

vectors. The problem is broken down into finding matching similar motifs. A motif can
be viewed as a set of bowties and the matching of two motifs is done via the one-to-one
mapping of similar bowties between the two maximally matched sub-motifs. Therefore,
efficient indexing of bowties is essential to the motif formation and matching. As a bowtie
is represented by four distances describing the spatial relationship between two vectors,
it is hypothesized that high dimensional indexing would be more appropriate for this pur-
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pose. We have investigated in detail various high-dimensional indexing approaches and
compare their efficiency and effectiveness using a collection of over five millions bowties
derived from 448 proteins. The experimental results demonstrate the advantages of high-
dimensional indexing over one-dimensional approach. The 2D R-tree and 4D B+-tree
approaches are observed as the best performing ones. However, this needs to be further
verified using larger scale data set. We leave it as part of our future work.

The work we have done so far has been focusing on the bowties level. In the future, we
need to move up to the motif level for an efficient motif detection and matching algorithm,
which will be underpinned by bowtie indexing and matching mechanisms reported in this
paper.
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