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Microarray technology allows large-scale parallel measurements of the expression of many 
thousands genes and thus aiding in the development of efficient cancer diagnosis and classification 
platforms. In this paper, we apply the genetic algorithm and the silhouette statistic in conjunction 
with several distance functions to the problem of multi-class prediction. We examine two widely 
used sets of gene expression data, measured across sets of tumors, and present the results of 
classification accuracy on these two datasets by our methods. Our best success rate of tumor 
classification has better accuracy than many previously reported methods and it provides a useful 
method towards a complete tool in this domain. 

1. Introduction 

Microarray technology allows large-scale parallel measurements for the expression of 
many thousands of genes and produces a very large amount of gene data. One of the most 
promising applications of this technology is as a useful tool for tumor classification and 
cancer diagnosis, and several analytical approaches have been applied for this task such 
as Golub et al.,3 Ben-Dor et al.,4 Alizadeh et al.5 Currently, these reported techniques 
have focused on the problem where the expression profiles which contain only two or 
three classes and gave the results, returning test success rates close to 90-100% for most 
of the binary class data. However, when this problem of tumor classification is expanded 
to multiple tumor classes, the performance of these methods decreases significantly 
because gene expression hallmarks of classification for different cancer types are still not 
clearly defined.9 This makes it for methods like Golub et al.3 or Slonim et al.,6 based on 
gene expression, starting with a feature selection to take possible correlation with an ideal 
gene marker particularly difficult. Furthermore, due to the complex relationships among 
the genes that may affect the discriminate analysis in classification, there is still less 
attention paid to the discriminate approaches, which consider take the co-action among 
the genes. 
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 Two more recent approaches have addressed this problem and applied linear 
discriminate analysis with Mahalanobis metric to compute the distance to centroids and 
Quadratics discriminate analysis with genetic algorithms (GAs) used for feature 
selection.11, 12 This leads to our proposal, which is the use of GAs to identify a set of key 
features and combine the silhouette statistic with a form of linear discriminate analysis. 
The key issue of this paper is in the context of using GA/silhouette methods not only to 
identify a set of key genes but also to take the co-action factors among these genes into 
consideration. This is in contrast to other methods, which only make comparisons 
between pair of genes (gene vs. ideal gene), and thus why they may not produce the 
comparable accuracies for more complex datasets. To achieve the maximum discriminate 
ability for genes to classify tumor samples, we have also explored several distance 
metrics to evaluate their sensitivities for the discriminate analysis. Where GAs were first 
used to summarize the input spaces into an selected subspace and evolved the selections 
to the optimal space by measuring the silhouette statistic with the one-minus-Pearson 
distance metric, our methodologies finally exhibited a 4% improvement in classification 
accuracies over several recently reported techniques, based on the same experimental 
dataset.   

2. Methods 

2.1.  The Silhouette Statistic 

The silhouette statistic of Kaufman and Rousseeuw has been used to study the quality of 
clustering by the method that measures how well an item is assigned to its corresponding 
cluster.2 In this section, we extend this concept to describe the main discriminate method 
that we will use in this paper. Our algorithm starts by assuming that we are given training 
set D. Let D ={〈 ie

r
, li 〉, for i=1…m} be a set of m training samples, where 
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 is the vector of ith sample in GR  that describes expression levels 
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∈ cr , r = s. The s( e

r
), ranging from -1 to +1, is 

the discriminate function, returning the score to indicate how well an input sample can be 
assigned to its own class under the vector of e

r
. For example, in a domain of q classes, a 

predictive gene set chosen from a selection method will constitute ei
r

 for the ith sample 
and used for calculating the silhouette value (discriminate score) to decide how well this 
set of genes represents the sample associated with its class. Essentially, this function uses 
the ratio of between-groups variance to within-groups variance in order to measure the 
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s( ie
r

) value and determines whether the associated class label li is the predicted label of 
the query sample ei

r
. In our algorithm throughout the experiments, we set the threshold to 

s(
r

) ≥ 0 for all samples in the dataset. In words, once the returning value is less than 
zero, we say the corresponding sample is misclassified under the discriminate variable 
of

e

e
r

. Therefore, the classification rule can be written as  

ie

C( ei
r

) = li, where s( ei
r

) ≥ 0. 

2.2. Genetic Algorithms 

To classify samples using microarrays, it is necessary to decide which genes should be 
included to form the sample vector (predictor set). Gene selections here for the 
classifications of multiple cancer types were based on a group of genes chosen by GAs 
and used by the discriminate analysis. The genetic algorithms were provided originally 
from the report of Ooi and Tan,12 with toolboxes of two selection methods: (1) stochastic 
universal sampling (SUS) and (2) roulette wheel selection (RWS). In addition two tuning 
parameters, Pc: crossover rate and Pm: mutation rate, were used to tune one-point and 
uniform two crossover operations in order to evolve the population of individuals for the 
mating pool. 

To determine the fitness and find increasing fit combinations of predictor genes in a 
chromosome represented by strings Si, Si = [R g1  g2  … gi=Rmax], the GA method defined 
the fitness function of f (Si) = 200 – (EC + EI), where R denotes the size of the predict set 
of genes, EC is the error rate of leave-one-out cross-validation (LOOCV) test on the 
training data, and EI is the error rate of independent test on the test data. The genes in the 
string Si, are used to form a sample vector representing sample’s expression and are 
evaluated by our discriminate function to classify tumor samples. Intuitively, the 
silhouette statistic s( e

r
) combining the selection methods of GAs then will find the best 

quality of 
r

 to discriminate samples between two or more existing groups.  e

2.3. Running the GA/silhouette Algorithm and Estimating Prediction Errors  

The running of our approach begins with setting 100 individual runs to the GA/silhouette 
algorithm, with each run beginning with a different initial gene pool in order to have an 
unbiased estimation of classifier performance. The maximum generations for GAs are set 
to 100, for which each generation produces 100 and 30 chromosomes, containing the size 
of genes ranging from 11 to 15 and 5 to 50, in a chromosome corresponding to the NCI60 
and the GCM dataset respectively. In addition, the following procedures are used to 
examine the assessment of accuracy for each chromosome in predicting the class of an 
unknown sample

r
.  

 
1. FOR each chromosome Ci to Cmax 
2. FOR each leave-one-out training sample ii le ∈

r
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3. IF (s( ie
r

)<0) 
4. XcError = XcError + 1    // Sample misclassified 
5. END FOR 
6. FOR each independently unknown samples ii le ∈

r
  

7. IF (s( ie
r

)<0) 
8. XiError = XiError + 1    // Sample misclassified 
9. END FOR 
10. END FOR 
11. EcErrorRate = XcError / Total training samples   //  LOOCV error rate 
12. EiErrorRate = XiError / Total test samples           //  Independent test error rate 
14. Fitness  = 200 – EcErrorRate + EiErrorRate        //  Fitness of  a chromosome 
15. END FOR 
16. Findmax (Fitness ) 
17. Go next generation 

2.4. Distance Matrices  

Our discriminate method is a function depending on two arguments, the distance function, 
and a query ie

r
. As generally known, the distance metrics that are used generally have a 

large effect on the performance of the discriminant analysis. Therefore, we applied 
several distance functions as described in Table 1 to deal with the silhouette statistic s( ) 
and explore the best discriminate ability for genes in classification.   

e
r

 
Table 1.  Distance metrics and Formula  (Source Dudoit and Fridlyand.8). 

Name Formula 

Euclidean metric 
2/12
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S  is the between classes common covariance matrix.1 

jµ
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3.  Datasets 

There are two published microarray datasets from human cancer cell lines used in this 
paper. Before the datasets were used in our experiments, the data was preprocessed by 
following steps. 
1. The spots with missing data, control, and empty spots were excluded. 
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2. For each sample array in both datasets, the Cy5/Cy3 ratio of every spot is 
normalized by subtracting the mean of Cy5/Cy3 ratio of control spots and dividing 
the result by the standard deviation of control spots. 

3. A preliminary selection of 1000 genes with the highest ratios of their between-
groups to within–groups sum of squares (BSS/WSS) was performed. For gene i, xij 

denotes the expression level from patient j, and the ratio is defined as 
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where Mt is the training sample size; Q is the number of classes; and I(•) is the indicator 
function which equals 1 if the argument inside the parentheses is true, and 0 otherwise. 
Furthermore µ•i denotes the average expression level of gene i across all samples, and µqi 
denotes the average expression level of gene i across all samples belonging to class q. 
This is the same calculation used in Dudoit et al.8 In our cases, the BSS/WSS ratios for 
NCI60 data ranges from 0.4 to 2.613, and from 0.977 to 3.809 for GCM data. 

3.1. The NCI60 Dataset, Ross et al.7 

The NCI60 gene expression levels were measured with 9,703 spotted cDNA sequences 
among the 64 cell lines from tumors with 9 different sites of origin from the National 
Cancer Institute’s anti-cancer drug screen and can be downloaded from http://genome-
www.stanford.edu/sutech/download/nci60/dross_array_nci60.tgz. During the data 
preprocessing, the single unknown cell line and two prostate cell lines were excluded due 
to their small sample size, leaving a matrix of 1000 genes × 61 samples. These genes are 
henceafter referred to by their index numbers (1 to 1000) in our experiments. To build the 
classifier, this dataset was divided into the ratio as 2:1 (41 samples for training and 20 for 
testing). The 41 patient samples are gene expression levels composed of 5 breast, 4 
central nervous system (CNS), 5 colon, 4 leukemia, 5 melanoma, 6 non-small-cell-lung-
carcinoma (NSCLC), 4 ovarian, 5 renal, and 3 reproductive.  

3.2. The GCM Dataset, Ramaswamy et al.10  

The gene expression levels were measured by Affymetrix Genechips containing 16063 
genes among 198 tumors with 14 different classes of tumor, and can be downloaded from 
http://www-genome.wi.mit.edu/mpr/publications/projects/Global_Cancer_Map/. During 
data preprocessing, the dataset left a matrix of 1000 genes × 198 samples. These genes 
are referred to by their index numbers (1 to 1000) in our experiments.  This dataset 
originally contained 144 samples for training, and 54 for test. The 144 patient samples 
are gene expression levels composed of 8 breast, 8 prostate, 8 lung, 8 colorectal, 16 
lymphoma, 8 bladder, 8 melanoma, 8 uterine, 24 leukemia, 8 renal, 8 pancreatic, 8 
ovarian, 8 mesothelioma, and 8 brain.  

http://genome-www.stanford.edu/sutech/download/nci60/dross_array_nci60.tgz
http://genome-www.stanford.edu/sutech/download/nci60/dross_array_nci60.tgz
http://www-genome.wi.mit.edu/mpr/publications/projects/Global_Map/
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4. Results and Discussions 

The Tables 2 and 3 summarize the parameters, gene selection and crossover operation, 
and distance metrics used in the GA/silhouette algorithm and the results corresponding to 
the LOOCV test on the training data and independent blind tests on the test data. After 
finishing the 100 runs, the best chromosome of populations with the best fitness, chosen 
from the simulations to arrive at the optimal operation is based on the idea that a 
classifier need not only to work well on the training samples, but also must work equally 
well on previously unseen samples. Therefore, the optimal individuals of each generation 
were sorted in ascending order by the sum of the error number on both tests. The smallest 
number then decides the chromosome that contains the optimal predictor set of genes and 
gives the number of test errors obtained from our methods.  

4.1. GA Parameters and Classification Accuracies of the NCI60 Dataset 

Following the parameters that can produce the best predictor gene sets, as described in 
Ooi and Tan,12 we set Pc and Pm equally to make the performances easy to compare 
among different distance matrices and described the results in Table 2.  
 

Table 2. Xc: Cross-validation errors (41 samples); Xi: independent test errors (20 samples); Xa: total 
errors (Xc + Xi); and R: the number of predictive genes.  

 1-Pearson Mahalanobis Euclidean Manhattan  Canberra 
Pc Pm Crossover Selection Xc Xi Xa R Xc Xi Xa R Xc Xi Xa R Xc Xi Xa R  Xc Xi Xa R 
1 0.002 Uniform SUS 4 2 6 14 7 1 8 14 10 4 14 15 11 2 13 15  9 6 15 15 

0.7 0.005 One-point SUS 5 2 7 15 7 2 9 13 11 4 15 14 14 4 18 13  12 6 18 12 
0.7 0.001 Uniform RWS 6 3 9 15 11 2 13 14 13 4 17 13 12 5 17 14  11 8 19 14 
0.8 0.02 One-point RWS 6 1 7 15 9 3 12 13 15 1 16 15 12 4 16 14  11 8 19 15 

 

The results listed in the Table 2 show the GA/silhouette method with the one-minus-
Pearson metric, the SUS and Uniform strategy, indicating that the 14 predictor genes can 
achieve the best cross-validation training error rate equal to 9.75% (4 errors out of 
41samples) and the best test error rate equal 10% (2 errors out of 20 samples). The 
average performances of the second best are the use with the Mahalanobis metric with 13 
to 14 features, while the worst case is the Canberra metric. We also found that when one 
method outperformed the other in one set of parameters it would also trend to perform 
better than other sets of parameters. 

4.2. GA Parameters and Classification Accuracies of the GCM Dataset 

Having obtained good performance on the NCI60 dataset with 9 classes, we next tested 
the proposed method on a more complicated dataset consisting of 14 classes, with each 
class containing more samples to examine the generality of this method. By using our 
experience with the NCI60 dataset as a guide to select appropriate parameters for the 
GA/silhouette in the classification to the GCM dataset, we utilized the uniform with SUS 
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strategy and tried two cases by setting the Pc=0.98, 0.8 and Pm=0.002, 0.001 respectively. 
As shown in Table 3, the outcomes of the one-minus-Pearson metric were still better than 
the other metrics. Therefore, we took our concerns about the gene selection/sample 
classification with the choices of distance metrics to compare the sensitivities among 
different distance metrics by taking GCM data, for example in Figure 1.  

 
 Table 3. Xc: Cross-validation errors (144 samples); Xi: independent test errors (54 samples); Xa: total 
errors (Xc + Xi), and R: the number of predictive genes. 

 1-Pearson Mahalanobis Euclidean Manhattan  Canberra 
Pc Pm Crossover Selection Xc Xi Xa R Xc Xi Xa R Xc Xi Xa R Xc Xi Xa R  Xc Xi Xa R 

0.98 0.002 Uniform SUS 22 9 31 50  29 6 35 32 46 21 67 43 51 22 73 36  69 26 95 26 
08 0.001 Uniform  SUS 28 8 36 50  28 10 38 35 50 18 68 50 52 23 75 38  64 32 96 32 
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Figure 1.  The number of training set (top line) and test set (bottom line) errors that were obtained based on  
Pc=0.98, Pm=0.002 with the Uniform and SUS strategy from the best run out of 100 individual runs. 

For the outcomes of classification accuracies on the NCI60 and GCM datasets, and 
the learning processes on Figure 1(a) and Figure 1(b), we can see that the GA/silhouette 
algorithm with one-minus Pearson metric has the comparable performances to 
Mahalanobis metric whereas the Pearson correlation distance metric seems to have a 
slightly better discrimination on the LOOCV test for training samples. Furthermore, the 
learning trends of different metrics shown in the Figure 1 also clearly illustrate the 
functionalities of these metrics.  

4.3. Comparisons of Classification Accuracies with Other Methodologies 

Since the NCI60 and the GCM datasets have become two popular benchmark datasets 
used by many classification algorithms, we list the classification accuracies of some 
previous published methods for comparison with ours.  
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From Table 4, we can see the GA/silhouette method outperforms many previous 
published methods on the NCI60 data. The best results achieve 90% accuracy (4 errors 
out of 41samples) in the LOOCV test on the training data and 90% accuracy (2 errors out 
of 20 samples) in independently blind tests on the test data. 

For the GCM dataset, it was reported that this dataset could be classified into their 
classes by methods returning promising test errors.10, 12, 13 In our comparisons with these 
methods, the best model of our methods yielded clear improvement over the others listed 
in Table 5. Even while the best classification accuracy from our test provided   
performance equal to the GA/SVM/RFE method, based on the same crossover rate = 0.98 
and mutation rate = 0.002, this method took all samples for training (leaving one sample 
for testing and training with the remaining 197 samples) and made the LOOCV test only, 
when we only used 144 samples for LOOCV training and tested with 54 samples through 
training models. 

 
Table 4. Recognition success rate comparison with some other algorithms for the NCI60 
dataset.  

Classification 
Method 

LOOCV 
(%) 

Independent test 
(%) 

Overall 
(%) 

No. of 
genes 

GA/silhouette 90.3 90 90.2 14 
Hierarchical clustering7 81 － － 6831 

GA/MLHD12 83 95 89 13 
GA/SVM/RFE13 87.93 － － 27 

 
 
Table 5. Recognition success rate comparison with some other algorithms for the GCM 
dataset. 

Classification 
Method 

LOOCV 
(%) 

Independent test 
(%) 

Overall 
(%) 

No. of 
genes 

GA/silhouette 85 83 84 50 
GA/SVM/RFE13 85.19 － － 26 

GA/MLHD12 79.33 86 82 32 
OVA/SVM10 81.25 78.26 79.75 16063 

OVA/KNN10 72.92 54.34 63.63 100 

 5. Conclusions 

Since microarray data analysis has some similarity with information theory, a machine 
learning approach that discovers subtle pattern in the data is required. Our results indicate 
that the GA/silhouette algorithm with the one-minus-Pearson distance metric achieved 
the best performance and outperformed many previous methods. Clear improvements 
were found with our approach, where the designed classification model gave a simple 
method and found gene expression fingerprints to allow accurate classification. 
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In the multi-class classification scenario, the currently available datasets contain 
relatively few samples but a large number of variables, thus making it difficult to 
demonstrate one method’s superiority. Although no method have yet become a standard 
to be adopted in this domain, we have demonstrated the use of the GA/silhouette method, 
which uses the optimal subspace of genes in microarray to take advantage of considering 
co-relation through the one-minus-Pearson metric among predictor genes in order to find 
the most important genes to classify samples into a group. From the success of the 
proposed method, we hope that the use of the GA/silhouette method would be a helpful 
tool leading to practical uses of microarray data in cancer diagnosis. 
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