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Recent developments in large-scale monitoring of gene expression such as DNA microarrays have 
made the reconstruction of gene regulatory networks (GRNs) feasible. Before one can infer the 
structures of these networks, it is important to identify, for each gene in the network, which genes 
can affect its expression and how they affect it. Most of the existing approaches are useful 
exploratory tools in the sense that they allow the user to generate biological hypotheses about 
transcriptional regulations of genes that can then be tested in the laboratory. However, the patterns 
discovered by these approaches are not adequate for making accurate prediction on gene expression 
patterns in new or held-out experiments. Therefore, it is difficult to compare performance of 
different approaches or decide which approach is likely to generate plausible hypothesis. For this 
reason, we need an approach that not only can provide interpretable insight into the structures of 
GRNs but also can provide accurate prediction. In this paper, we present a novel fuzzy logic-based 
approach for this problem. The desired characteristics of the proposed algorithm are as follows: (i) it 
is able to directly mine the high-dimensional expression data without the need for additional feature 
selection procedures, (ii) it is able to distinguish between relevant and irrelevant expression data in 
predicting the expression patterns of predicted genes, (iii) based on the proposed objective 
interestingness measure, no user-specified thresholds are needed in advance, (iv) it can make explicit 
hidden patterns discovered for possible biological interpretation, (v) the discovered patterns can be 
used to predict gene expression patterns in other unseen tissue samples, and (vi) with fuzzy logic, it 
is robust to noise in the expression data as it hides the boundaries of the adjacent intervals of the 
quantitative attributes. Experimental results on real expression data show that it can be very effective 
and the discovered patterns reveal biologically meaningful regulatory relationships of genes that 
could help the user reconstructing the underlying structures of GRNs.     

1 Introduction 

Large-scale monitoring gene expression such as DNA microarrays [1,2] is considered to 
be one of the most promising techniques for reconstructing the gene regulatory networks 
(GRNs). A GRN is typically a complex biological system in which proteins and genes 
bind to each other and act as an input-output system for controlling various cellular 
processes. Since, living cells contain thousands of genes, each of which codes for one or 
more proteins. Many of these proteins in turn regulate the expression of some other genes 
through complex regulatory pathways to accommodate changes in different external 
environments or carry out the essential developmental programs. The key to 
understanding living processes is therefore to uncover the structures of these regulatory 
networks that underlie the regulations of cells. 
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Previous attempts have been reported to inferring the underlying structures of GRNs 
such as the biochemically driven approaches [3,4], the Boolean network approaches [5], 
the Bayesian network approaches [6] and the data mining approaches [7-9]. However, 
these approaches have several limitations need to be overcome in order to effectively 
deal with the problem. For example, for the biochemically driven approaches, most of the 
biochemical reactions under participation of proteins do not follow linear reaction 
kinetics and also gene expression data seems not sufficient to globally understand 
regulatory networks at this level of detail [3,4]. For the Boolean network approaches, the 
validity of the pre-defined assumptions [5] and the values of the Boolean approach in 
general, have been questioned by a number of researchers, particularly in the biological 
community, where there is a perceived lack of connection between simulation results and 
empirically testable hypotheses [10]. For the Bayesian network approaches, the task of 
learning model parameters is NP-hard especially for high-dimensional data. Moreover, 
many parameters need to be estimated accurately and this requires a large amount of 
samples that may not always be readily available [6]. For the data mining approaches, 
clustering of gene expression data [7] only measures whether genes share a significant 
linear relationship with each other. The regulatory relationships such as which gene 
affects which other genes cannot be discovered. On the other hand, the crisp 
discretization procedures of the classification algorithms [8,9] such as C4.5 [11] do not 
take into account that values at the borderline between value categories may be very 
similar. This makes the classifiers less resilient to noise and some useful patterns exist at 
this borderline can be overlook.                

Besides the above limitations, the patterns discovered by most of the existing 
approaches are not adequate for making accurate prediction on gene expression patterns 
in new or held-out experiments. Hence, it is difficult to compare performance of them or 
decide which approach is likely to generate plausible hypothesis. Therefore, we need an 
approach that not only can provide interpretable insight into the structures of GRNs but 
also can provide accurate prediction. For this reason, we propose a novel fuzzy logic-
based approach in this paper. The rest of the paper is organized as follows. In Section 2, 
the proposed algorithm is described in details. The effectiveness of the proposed 
algorithm has been evaluated and compared through various experiments with real 
expression data. The experimental set-up, together with the results, is discussed in 
Section 3. Lastly, in Section 4, we give a summary of the paper. 

2 The proposed algorithm 

Fuzzy logic and fuzzy sets allow the modeling of language-related uncertainties by 
providing a symbolic framework for knowledge comprehensibility [12,13]. Fuzzy 
representation is becoming increasingly popular in dealing with problems of uncertainty, 
noise and inexact data. Recently, fuzzy logic has successfully been used for clustering 
gene expression data. For example, the fuzzy k-means algorithms [14,15] have been 
applied to discover the clusters of co-expressed genes so that genes have similar 
biological functions can be revealed. However, for the inference of GRNs, only limited 
studies have been proposed [16]. Due to the fact that there is a need to have an effective 
fuzzy logic-based algorithm, here, we propose such an algorithm and discuss the details 
in this section.            
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2.1. Linguistic variables and linguistic terms representation  

Given a set of data D , each record r  (experimental condition), is characterized by a set 
of attributes (genes), . For any record, },K,,,{ 1 ni AAAA K= Dr∈ , ] denotes the value 
in 

[ iAr
r  for attribute . Let  be a set of linguistic variables such that 

 represents . For any quantitative attribute, , let  
denote the domain of the attribute, where  and  represent the lower and upper 
bounds of  respectively. Moreover,  is represented by a linguistic variable, , 
whose value is a linguistic term in  where  is a linguistic term 

characterized by a fuzzy set, , that is defined on  and whose membership 

function is 

iA },,,,{ 1 ni LLLL KK=

LLi ∈ AAi ∈ iA ℜ⊆= ],[)( iii ulAdom

il iu

iA iA iL

},...,2,1|{)( iiji sjlLT == ijl

ijF )( iAdom

ijFμ . The degree of membership of the value in r  with respect to  is given 

by 
ijF

]).[( iF Ar
ij

μ  The degree to which r  is characterized by , 
ijl )(r

ijlλ , is therefore 

defined as follows: 

      ]).[()( iFl Arr
ijij

μλ =  (1) 

If 1)( =r
ijlλ , the attribute  of iA r  is completely characterized by the linguistic term 

. If 
ijl 0)( =r

ijlλ , the attribute  of iA r  is not characterized by the linguistic term . If 
ijl

1)(0 << r
ijlλ , the attribute  of iA r  is partially characterized by the linguistic term . 

In the case where  is unknown, 
ijl

][ iAr 5.0)( =r
ijlλ , which indicates that there is no 

information available concerning whether the attribute  of iA r  is or is not characterized 
by the linguistic term .  

ijl

2.2. Discovering the interesting patterns  

Let  be the observed degree to which the records in the given dataset are 

characterized by the linguistic term . It is defined as follows: 
)( ijlo

ijl

        ∑
∈

=
Dr

lij rlo
ij

)()( λ . (2) 

Also, let  be the association between the linguistic terms  and . Then, 

the observed degree to which the records are characterized by this association, 
, is defined as follows: 

pqij ll ⇔ ijl pql

)( pqij llo ⇔

           ∑
∈

=⇔
Dr

llpqij rrllo
pqij

))(),(min()( λλ .                (3) 

To decide whether an association, 
pqij ll ⇔ , is interesting, it is objectively evaluated 

using the proposed objective interestingness measure, )( pqij lld ⇔ . This measure reflects 
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the differences in the observed )( pqij llo ⇔  and expected )( pqij lle ⇔  degrees to which the 

records are characterized by these linguistic terms. The objective interestingness 
measure, )( pqij lld ⇔ , is defined as follows: 
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If  (i.e., the 9596.1)( >⇔ pqij lld
th percentile of the normal distribution) [17-19], we 

can conclude that the association 
pqij ll ⇔  is interesting. It means that it is more likely for 

a record to be characterized by both  and . 
ijl pql

2.3. Prediction based on the discovered patterns 

Given that  is interesting, the patterns can be constructed as follows: 
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The term  can be considered as being the probability that a record is 

characterized by  and , and the term 
)Pr( pqij ll ⇔

ijl pql )Pr( pqij ll ¬⇔  can be considered as being the 

probability that a record is characterized by  and , where 
ijl pul qu ≠ . Then, the term 

 is a confidence measure that represents the uncertainty associated with 

. It can be interpreted as being a measure of the difference in the information 

gain when a record that is characterized by  is also characterized by  as opposed to 

being characterized by other linguistic terms , where 

)( pqij llw ⇔

pqij ll ⇔

ijl pql

pul qu ≠ . 

Given a testing record r  and it is characterized by n  attribute values, 
, where  is the value that is to be predicted. Let  be a 

linguistic term with a domain of . The value of  is determined according to 

. To predict , the discovered patterns are searched. If an attribute value, say 

, , of 

][],...,[],...,[ 1 np ArArAr ][ pAr pl

)( pLT ][ pAr

pl ][ pAr

][ iAr pi AA ≠ r  is characterized by the linguistic term in the antecedent of a pattern 

that implies , then it can be considered as providing some confidence that the value of 

 should be assigned to . By repeating this procedure, that is, by matching each 

attribute value of 

pql

pl pql

r  against the discovered patterns, the value of  can be determined by 

computing the total confidence measure. Since each attribute of 
pl

r  may or may not 
provide a contribution to the total confidence measure and those that may support the 
assignment of different values. Therefore, the different contributions to the total 
confidence measure are measured quantitatively and then combined for comparison in 
order to find the most suitable value of . For any attribute value, , , of 

pl ][ iAr pi AA ≠ r , it 

is characterized by a linguistic term, , to a degree of compatibility, 
ijl )(r

ijlλ . Given the 

patterns those imply the assignment of , then, the confidence provided by  for 

such as assignment is as follows: 
pql ][ iAr

      )()(][ rllwW
ijipq lpqijArl λ×⇔= . (10) 

Suppose that among the 1−n  attributes excluding , only some combinations of 

them, , are found to match one or more patterns. Then, the total 

confidence measure of assigning the value of  to  is given as follows: 

pA

][],...,[],...,[ 1 βArArAr i

pl pql

        . (11) ∑
=

=
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1

][
i

ilq ArWTW
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Based on the above total confidence measure, in the case if , where 

. Then,  is assigned to . 
cq TWTW >

cq ≠ pl pql
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3 Experimental results 

3.1. Experimental data 

For experimentation with real data, we used a set of gene expression data that contains a 
series of gene expression measurements of the transcript (mRNA) levels of S. cerevisiae 
genes [7,20]. In this dataset, the samples were synchronized by three different methods: α 
factor arrest, arrest of a cdc15, and cdc28 temperature-sensitive mutant. Using periodicity 
and correlation algorithms, a total of about 800 genes that meet an objective minimum 
criterion for cell cycle regulation were identified [7]. The expression data we used is 
available at [21]. Since gene expression can be described in a finite number of different 
states/patterns [22]. We therefore represented it in terms of three fuzzy sets: low ( L ), 
medium ( M ) and high ( H ). For any quantitative attribute , the degree of 
membership of a record, , can be computed as follows [23] (in Fig. 1): 
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where  is sorted in the ascending order of its values,  is the value of  that exceeds 
one-third of the measurements and is less than the remaining two-thirds and  is the 
value of  that exceeds two-thirds of the measurements and is less than the remaining 

one-third. And also,  and  denote the maximum and minimum values 

encountered along attribute , and 

iA 1iP iA

2iP

iA

maxiA
miniA

iA
2

1min
1

ii
i

PA
Av

+
= , 

2
21

2
ii

i
PPAv +

=  and 
2

max2
3

ii
i

AP
Av

+
=  
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Figure 1. Membership function. 

3.2. Method of evaluating the results 

In this analysis, we chose the cdc15 experiment as the training set. Another two datasets: 
alpha and cdc28 experiments were used as the testing sets. For experimentation, we 
randomly selected 6 genes (CLN1, HTA1, HTB1, CLB1, CLN2, and CLB6) to evaluate 
the effectiveness of the proposed algorithm. Using the proposed algorithm, the patterns 
of these genes in the independent testing sets are predicted. Then, the predicted patterns 
are compared with the original patterns of these genes and the percentage of accurate 
prediction can therefore be determined. 

3.3. Results 

To evaluate the performance of the proposed method, we also compared it to the popular 
decision-tree based algorithm called C4.5 [11] as discussed in Section 1. Moreover, since 
one of the desirable features of the proposed algorithm is its feature selection capability, 
it is able to distinguish between relevant and irrelevant expression data. Therefore, for 
fair performance comparisons, we performed additional experiments to compare it to 
C4.5 with feature selection approach. There are many feature selection methods have 
been proposed for gene expression data such as filter and wrapper methods [24,25]. In 
this analysis, we adopted t-statistics measure [25]. Based on the t-statistics measure, the 
new subset of genes with largest t-values was obtained. The selection method of genes 
with largest t-values is as follows: (i) sorted the genes in descending order based on their 
t-values, (ii) initially, 5% (empirically set) of genes were selected from top of the rank 
list, (iii) the classification performance based on this subset of genes was measured by 
C4.5 (10-fold cross validation), (iv) added another 5% of genes from the rank list into 
this subset, (v) repeat steps (iii) and (iv) until the classification performance converged, 
(vi) the final subset of genes was selected.  

In Tables 1 and 2, the comparisons of average prediction accuracy are showed. 
According to these tables, we found that the performance of C4.5 can be improved with 
the feature selection procedure. In addition, we also compared another well-known 
decision-tree based algorithm called FID [26] and trained the algorithm only using the 
significant features identified by C4.5 during the feature selection process as discussed 
above. FID is a fuzzy logic-based classifier that combines symbolic decision trees with 
approximate reasoning offered by fuzzy representation. It extends C4.5 by using splitting 
criteria based on fuzzy restrictions and using different inference procedures to exploit 
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fuzzy sets. The experimental results of FID are also showed in Tables 1 and 2. According 
to these results, we found that the performance of the proposed algorithm is not only 
better than other popular algorithms and also the average prediction accuracy in each 
testing set is high. This indicates that the proposed algorithm is very effective in 
predicting gene expression patterns in the unseen samples. 

 

Table 1. Result comparison (alpha dataset). 

Gene Proposed C4.5 
C4.5 + 
Feature 

selection 

FID + 
Feature 

selection 
CLN1 0.94 0.67 0.83 0.94 
HTA1 0.89 0.61 0.78 0.83 
HTB1 1 0.67 0.78 0.94 
CLB1 0.94 0.67 0.83 0.94 
CLN2 1 0.67 0.78 0.83 
CLB6 0.89 0.72 0.83 0.83 
Avg. 0.94 0.67 0.81 0.89 

 
Table 2. Result comparison (cdc28 dataset). 

Gene Proposed C4.5 
C4.5 + 
Feature 

selection 

FID + 
Feature 

selection 
CLN1 0.88 0.65 0.76 0.88 
HTA1 0.94 0.58 0.71 0.88 
HTB1 0.94 0.53 0.65 0.88 
CLB1 0.94 0.71 0.82 0.82 
CLN2 0.94 0.71 0.82 0.94 
CLB6 0.88 0.65 0.82 0.76 
Avg. 0.92 0.64 0.76 0.86 

3.4. Biological interpretation  

In order to evaluate the biological significance of the discovered patterns, we tried to 
verify that any known regulatory relationships of genes could be revealed from them. In 
Fig. 2, it shows some of the discovered patterns (with high confidence measures, Section 
2.3) represented in rules that reveal known regulatory relationships [27]. Based on the 
discovered relationships, we can then construct the gene interaction diagrams [28] as 
showed in Fig. 3 that might provide important clues in reconstructing the structures of 
the underlying GRNs. One of the appealing advantages of network reconstruction using 
the proposed algorithm is that the user can easily improve the classifier by adding new 
samples or experimental conditions and reproduce the architecture of a network 
consistent with the data. Since such iterative improvements can be part of an interactive 
process. Therefore, the proposed algorithm can be considered as a basis for an interactive 
expert system for gene network reconstruction. 
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Figure 2. Patterns discovered (A - known activation relationships and I - known inhibition relationships). 
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Figure 3. Gene interaction diagram discovered (12 known regulatory relationships involved). Solid lines 
correspond to activation relationships and broken lines correspond to inhibition relationships. 

4 Conclusions 

In this paper, we have presented a novel fuzzy logic-based approach for the inference of 
GRNs. The proposed algorithm is able to distinguish between relevant and irrelevant 
expression data in predicting the expression patterns of predicted genes without the need 
for additional feature selection procedures. And also, it is able to explicitly reveal the 
discovered patterns for possible biological interpretation. With the proposed objective 
interestingness measure, no user-specified thresholds are needed in advance. 
Experimental results on real expression data show that the proposed algorithm can be 
very effective and the discovered patterns reveal biologically meaningful regulatory 
relationships of genes that could help the user reconstructing the underlying GRNs. 
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