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Protein tertiary structures are known to have significant correlations with their biological functions.
To understand the information of the protein structures, Structural Classification of Protein (SCOP)
Database, which is manually constructed by human experts, classifies similar protein folds in the same
domain hierarchy. Even though this approach is believed to be more reliable than applying tradi-
tional alignment methods in structural classifications, it is labor intensive. In this paper, we build a
non-parametric classifier to predict possible SCOP domains for unknown protein structures. With su-
pervised learning, the algorithm first maps tertiary structures of training proteins into two-dimensional
distance matrices, and then extracts signatures from visual contents of matrices. A knowledge discov-
ery and data mining (KDD) process further discovers relevant patterns in training signatures of each
SCOP domain by mining association rules. Finally, the quantity of rules whose patterns match signa-
tures of unknown proteins determines predicted domains in a ranked order. We select 7,702 protein
chains from 150 domains of SCOP database 1.67 release as labelled data using 10 fold cross vali-
dation. Experimental results show that the prediction accuracy is 91.27% for the top ranked domain
and 99.22% for the top 5 ranked domains. The average response time takes 6.34 seconds, exhibiting
reasonably high prediction accuracy and efficiency.

1. Introduction

Protein structure information is known to be more conserved than amino acid sequences
and serves as ideal references to study protein structure-to-function relationships. Similar
protein folds may suggest similar biochemical functions.27 In our knowledge, the most reli-
able structural comparison method is to manually inspect similar protein structures such as
SCOP.17 Proteins with high structural similarity will be classified into the same hierarchical
SCOP domain. Even though manual inspection provides more accurate structural classi-
fication, it is labor intensive for a large number of protein tertiary structures. Automated
structural comparison methods such as Distance Alignment (DALI)12 and Combinatorial
Extension (CE)22 algorithms globally find a structural alignment between two polypeptide
chains such that superimposed segments of amino acids can have a good structural match
within a small Root Mean Square Deviation (RMSD) threshold. Due to the huge combi-
nation of possible alignments, exhaustively searching a local optimal solution is known to
be computationally expensive, proving a complexity of NP-Hard.9 Therefore, life science
researchers and biologists have a great demand on efficient and accurate protein structure
classification systems.

Several well-known structural classification databases have been studied in computa-

1



October 8, 2005 19:34 Proceedings Trim Size: 9.75in x 6.5in APBC˙SCOP˙Domain˙Prediction

2

tional molecular biology literatures. Secondary Structure Alignment Program (SSAP) uti-
lizing double phases dynamic programming techniques for optimal structural alignment of
two proteins becomes a framework to construct CATH database.18 The DALI algorithm
that applies Monte Carlo heuristics to compare structural similarities from distance ma-
trices is used to conduct structural classifications in FSSP database.13 Applying specific
heuristics for reducing computational complexity, these classical structural alignment al-
gorithms may return variant classification results from the same protein set. To avoid suf-
fering from drawbacks of subjective heuristics, recent classification works3,6 that maintain
higher accuracies than applying each individual method by intersecting multiple interme-
diate results of existing structural alignment algorithms. Even though structural alignment
methods present satisfactory classification accuracies, the process of performing multiple
pairwise alignments between an unknown protein and known proteins in databases is still
incapable of providing fast predictions.

With the advent of x-ray diffraction and high-resolution nuclear magnetic resonance
(NMR) techniques, the amount of newly discovered proteins has grown rapidly in recent
years. As July 5th, 2005, Protein Data Bank (PDB), announces 32,107 protein structures
and 8,070 of them have not been classified in the latest SCOP release (1.67). This no-
ticeable gap is well-recognized and continues to grow. Hence, there is an urgent need to
develop an efficient domain classification method with sufficiently high accuracy to stream-
line the labor-intensive classification process. It is noteworthy to mention that, instead of
replacing human inputs from this classification process, a more realistic approach is to
suggest a handful set of top ranked domains for further studies.

In this work, we extend our recent research results in a real-time tertiary structure re-
trieval system called ProteinDBS7,14,24 and develop a series of knowledge discovery and
data mining techniques to perform fast SCOP domain predictions with reasonably high
accuracy. This paper is organized as follows. Section 2 introduces our unique model to
cast protein backbone structures into high-dimensional feature vectors. Section 3 describes
the algorithm to transform feature values into a set of feature intervals and illustrates the
association rule mining using a supervised learning technique. Experimental results of pre-
diction accuracy and efficiency are reported in Section 4. Finally, we conclude this paper
and discuss possible future works in Section 5.

2. Preliminaries

Protein Tertiary Structurerefers to a single polypeptide chain that is constructed by a long
amino acid string. For a protein chaink with n amino acids, its backbone is represented

by a n-dimensional vector{ ~
Ck,1

α ,
~

Ck,2
α , ...,

~
Ck,n

α }, where the element,~Ck,i
α , is the three-

dimensional coordinate of thei-th Cα atom. The distance matrix ofk is defined as a
n × n symmetric real matrix whose element ati-th column andj-th row is the Euclidean

distance between~
Ck,i

α and ~
Ck,j

α . A distance matrix is generally sufficient to recover the
original three-dimensional backbone structure in polynomial time using distance geometry
methods.11 Several literatures12,16,26 study comparing similar distance matrices as a equiv-
alent problem to protein tertiary structure comparisons. Our assumption is based on the fact
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Figure 1. The three-dimensional backbone structures and distance matrices from protein chains selected from
the SCOP domainCarbonic anhydrase: (a-b)1am6, (c-d)1bic, and the SCOP domainD-xylose isomerase: (e-
f)9xim D, (g-h)1xlb A

that similar protein folds should have distance matrices with similar visual contents. We
also expect that proteins in the same SCOP domain should present high similarities in dis-
tance matrices. To pictorially explain our assumption, Figure 1 shows that protein chains
from SCOPCarbonic anhydraseandD-xylose isomerasedomains present high similarities
in both three-dimensional tertiary structures and two-dimensional distance matrices. Even
though similar visual patterns can be identified by manual inspections, it is still a challeng-
ing research topic to mimic distance matrix comparisons automatically using computational
techniques. Fortunately, there exists a rich body of literatures in the area of content-based
image retrieval (CBIR) since early 80’s.5,21,23 The concept of CBIR is to retrieve visually
similar images from databases for a query image. This is a perfect fit to the protein dis-
tance matrix comparisons. To effectively retrieve similar candidates in a large population
of distance matrices, extracting relevant features becomes an important issue to study. In
our previous works,7,24 the distance matrix is divided into six band regions, parallel to its
diagonal. In each band, four local features are computed by histograms of four bins of
distance ranges: [0-5], [6-10], [11-15], and [16-∞]. We also have extracted nine global
features from visual patterns of distance matrices using a suite of standard computer vision
algorithms.10,20,19 After features are extracted, each protein backbone can be transformed
into a high-dimensional feature vector and clustered in the feature space. Readers are re-
ferred to our previous publications7,24 for the details of the feature extraction algorithms
applied in this work.

The distribution of feature values is expected to have significant correlation to pro-
tein domains in SCOP. A set of features with certain ranges could best describe structural
patterns of proteins in a specific SCOP domain. Figure 2 depicts a simplified example
using three features, namely the8th localized histogram (The4th gray-scale level in the
2nd partitioned band region of distance matrix), the5th texture10 (Homogenity), and the
9th texture (Cluster Tendency). For proteins in SCOP domainsCarbonic anhydrase
(D1), D-xylose isomerase(D2) and Calmodulin (D3), these three features are partially
overlapped in multiple intervals. From the top range line of Figure 2, it is clear that all
database protein structures fromD1 andD2 mix in the same “Histogram 8” feature in-
terval. Similarly, the “Texture 5” feature is unable to separate proteins inD2 from those
in D3. Adding association information among feature intervals, the algorithm is able to
predict an unknown protein structure toD1 : {fHistogram8 ∈ [0.040,0.045) andfTexture9

∈ [0.005,0.010)}, D2 : {fHistogram8 ∈ [0.040,0.045) andfTexture5 ∈ [0.085,0.090)}, or
D3 : {fTexture5 ∈ [0.085,0.090) andfTexture9 ∈ [0.005,0.010)}.
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Figure 2. An example of feature intervals for SCOP domains,D1:Carbonic anhydrase, D2: D-xylose isomerase
andD3: Calmodulin

Knowledge discovery and data mining techniques have been widely studied in high-
throughput data analysis of various aspects such as classification,15 mining in web usage,
spatial data, document indexing,8 and biological domains.26 Among data mining tech-
niques, association rule (AR) mining is able to retrieve hidden patterns and discover mean-
ingful information from the data. Given a protein chainp1, it will be preprocessed into
anm-dimensional feature vector{fp1

1 , fp1
2 , fp1

3 , ..., fp1
m }, wherefp1

i has been normalized
in R[0, 1] and1 ≤ i ≤ m. Then, the algorithm partitionsR[0, 1] space of each individ-
ual feature of proteins into a set of disjoint intervals{[0, η1], (η1, η2], ..., (ηn, 1]}, where
0 < η1 < η2 < ... < ηn < 1. To discuss data mining algorithms used in this work, each
feature interval(ηi, ηi+1] is defined as anitem. For example, there exist three feature inter-
vals (items) generated from a partition of R[0,1] that are associated with thejth feature of
all database proteins such asI1 = [0.0, 0.2], I2 = (0.2, 0.75], andI3 = R(0.75, 1.0]. For
a proteinp1, thejth feature value,fp1

j = 0.5, will be transformed intoitemI2. Applying
the same item mapping process form features, each backbone structure is then represented
by a set ofm items (m = 33 in our work). This collection of items forms atransaction
for mining item associations. In addition, a databaseD that includesn proteins can be
described byn transactions. With a set of items,I, an association rule is defined as an im-
plication rule composed of items with a form{X ⇒ Y }, whereX, Y ⊆ I andX ∩Y = ∅.
ItemsetsX andY are calledAntecedentandConsequent, respectively. For an association
rule represented by{X ⇒ Y }, thesupportof the rule is the percentage of alltransactions
in D that include{X ∪ Y } items. Theconfidenceof the rule is a ratio of the total amount
of transactionsthat contain{X ∪Y } to transactionswith {X} items. The association rule
mining generates relevant rules in the database with thesupportandconfidencethat can
passminimal supportandminimal confidencethresholds, respectively.

3. Method

To precisely predict an unknown protein structure among hundreds or even thousands of
SCOP domains, it is critically important to identify appropriate feature intervals, as well
as associations among these relevant intervals within each SCOP domain. The way to for-
mulate a partition of a real spaceR[0, 1] has vital impact on determining relevant items.
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Figure 3. A binary decision tree to determine thresholds for a space partition of featurefi

Partitioning a real space too finely will generate many tiny intervals within one domain,
resulting in huge amount of association rules. A coarse partition of space will create inter-
vals that mix multiple domains without enough discriminatory power. Instead of randomly
or evenly partitioning the real space into intervals, we apply C4.5 decision tree25 to find
relevant intervals for each feature among all database domains.

3.1. Space Partition Algorithm Using C4.5 Decision Tree

For each individual feature of allm-dimensional feature vectors, the algorithm constructs
a C4.5 decision tree. In total, there are 33 trees for all features used in this work. The
splitting criterium to grow the decision tree is based on the minimization of entropy. Let
Dt be the set of protein features at a certain nodet. The entropy,H(Dt), of nodet and the
weighted entropy,H(Dt′), of its child nodestl andtr are computed as follows:

H(Dt) = −
r∑

j=1

pt
dj
× log(pt

dj
),H(Dt′) = α×H(Dtl) + (1− α)×H(Dtr ) (1)

wherept
dj

denotes the ratio of proteins in domaindj to the total number of proteins that

exist in nodet. To computeH(Dt′), α represents the percentage of protein chains that have
been dispatched from a parent node to the left child by the thresholdη, which is an optimal
threshold and selected based on the maximization ofH(Dt) −H(Dt′). With a top-down
iterative node splitting, the algorithm collects sorted thresholds ofk internal nodes using
in-order traversal, and the space R[0,1] will be partitioned intok + 1 intervals as a set of
items. For example, Figure 3 shows that eightitems, I1 = R[0.0, η4], I2 = R(η4, η2], ...,
I8 = R(η7, 1.0], are partitioned by seven threshold values{η4, η2, η5, η1, η6, η3, η7}. Each
protein is then mapped into a 33-item transaction for mining item associations using the
intervals selected by the decision trees.
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Figure 4. Association Rules generating from partitioned feature intervals using Apriori algorithm

3.2. Mining Training Data and Prediction Model

After transforming three-dimensional protein backbones into the form oftransactions, the
system then mines associations of the items from training data by applying the Apriori
algorithm.2 The main concept of Apriori algorithm is to generate association rules from
frequent itemsets whosesupportis greater than theminimal supportthreshold. Since any
subset of a large transaction is still a frequent itemset, the algorithm finds candidates of
frequent itemsets withni items from frequent itemsets withni − 1 items, whereni ≥ 1.
In Apriori algorithm,minimal supportis an important criterium to determine the quantity
of association rules. Due to the non-uniformly distributed proteins among all domains,
it is inappropriate to mine rules from the entire database using a singleminimal support.
Therefore, for each domaind, we perform Apriori algorithm and each frequent itemset,
I, refers to an association ruleI ⇒ d. For instance, itemsets{I1, I3, I5} and{I2, I5, I6}
are frequent for SCOP domainCarbonic anhydraseandD-xylose isomerase, respectively.
Examples of association rules for domain predictions are shown in Figure 4. After ob-
taining rules from all SCOP domains, a small portion of rules (2.81%) shared by multiple
domains has been pruned out prior to the prediction stage. Our current setting of themin-
imal supportis 90% within each domain. Mining training proteins of 150 SCOP domains
populates 2,354 association rules. Discovered rules has been efficiently organized and
loaded into main memory for fast predictions.

The next task is to design a scoring function that suggests possible SCOP domains in
a ranked order. For an unknown proteint, a complete itemset,It = {It

1, I
t
2, ..., I

t
m}, is

formed by mapping features into item intervals as discussed in Section 2, wherem is the
total number of features (m = 33 in our work). Givenk association rules in domaind, each
rule can be represented by{Ii

1, I
i
2, ..., I

i
n} ⇒ d, wherem ≥ n ≥ 2 andk ≥ i ≥ 1. Among

these rules, we group them into two sets:matched rulesRd
c andmismatched rulesRd

m,
where|Rd

c |+ |Rd
m| = k. Thei-th rule is categorized asmatched ruleswhen the condition,

{Ii
1, I

i
2, ..., I

i
n} ⊆ It, is satisfied. Contrarily, a mismatched rule has at least one item in its

antecedent that is not included inIt for the unknown proteint. The scoring function re-
wards matched rules and penalizes mismatched rules in each domain. For thei-th matched
rule, the scoring function further considers the degree of rewardNi, which is the size of
its antecedent. To gauge the degree of penalty for mismatched rules, we use adiscrete
distancemeasurement, which is demonstrated as follows. Letrm:{Im

1 , Im
2 , ..., Im

n } ⇒ d

be a mismatched rule,fea(Im
i ) be a function that returns which feature maps itemIm

i ,
andidx(Im

i ) be a function to return the index value of itemIm
i in integer. As an example,

a decision tree for the3rd feature generates 10 items{I ′

1, I
′

2, ..., I
′

10}, which are sequen-
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(a) (b)

Figure 5. (a) A precision-to-recall chart for 10 rounds of experiments (b)An accumulated recall chart for top 13
predicted domains

tially stored in an array of position{65, 66, ..., 74}. Since itemI
′

1 is partitioned from the
3rd feature,fea(I

′

1) is equal to 3 andidx(I
′

1) returns 65. For any two itemsx andy, we
defineg(x, y) = 1 whenfea(x) = fea(y) andg(x, y) = 0 if fea(x) 6= fea(y). The
discrete distancebetween a mismatched rulerm and an unknown proteint is defined as:∑

x∈δrm

∑m
n=1 |idx(x) − idx(It

n)|2 × g(x, It
n), whereδrm is the set of mismatched items

in rm. From the same decision tree, items in the neighborhood of partitioned feature inter-
vals are expected to have structural similarities, resulting in a smalldiscrete distance. This
penalty is then normalized byMd, the total number of mismatched items fromRd

m.

Score(d) =
∑|Rd

c |
i=1 Ni

(
∑|Rd

m|
j=1

∑
x∈δj

∑m
n=1 |idx(x)− idx(It

n)|2 × g(x, It
n))/Md

(2)

Taking both reward and penalty into consideration, the scoring function for each domain
is defined in Eq. (2). To predict ranked domains of an unknown protein, the algorithm
computes and ranks scores for all domains.

4. Experiment

We evaluate the performance in accuracy and efficiency for predicting SCOP domains.
Experiments are conducted using 10 fold cross validation on a large-scale dataset. With
7,702 protein chains from 150 SCOP domains, 10% of proteins from each domain are
randomly selected for blind test. To evaluate the prediction accuracy, we usePrecision and
Recall in the context of machine learning.4 Givennr possible SCOP domains, letNd

P be
the number of testing proteins that are predicted to the domaind, Nd

TP be the number of
testing proteins whose predicted domaind matches its true SCOP domain andNd

T be the
number of testing proteins that are from domaind, where1 ≤ d ≤ nr. The performance
metrics are defined as follows:

Precision =
1
nr

nr∑
d=1

Nd
TP

Nd
P

, Recall =
1
nr

nr∑
d=1

Nd
TP

Nd
T

(3)

Figure 5(a) presents a plot ofPrecisionsagainstRecall ranging from 10% to 90%.
The ideal case occurs when all testing proteins are predicted correctly, achieving 100%
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precision at any recall rate. Our KDD algorithm exhibits 92.42% precision with a 10%
recall, 91.35% precision recalling half of them, and 79.77% precision recalling 90% of the
entire testing protein set. Normally, the precision will drop by increasing the recall rate. A
more practical goal for domain prediction is to suggest a small set of candidate domains to
streamline the manual process. To demonstrate the usefulness of our prediction model, we
also measure the recall rate by accumulatingTrue Positivesfrom the top predicted SCOP
domains in the ranked results. In Figure 5(b), our KDD method delivers 91.27% recall rate
from the top predicted domain and 99.22% from the top 5 predicted domains. 100% recall
rate is achieved by top 13 predictions. What this means is that a human domain classifier
only needs to examine 5 domains to guarantee 99.22% coverage of the true domain and 13
domains for 100% coverage.

To evaluate the efficiency of predictions, we measure the average response time. Our
system is hosted on a standard Linux Redhat platform with Dual Xeon IV 2.4GHz pro-
cessors and 2GB RAM. Figure 6(a) shows that the response time of prediction, including
feature extractions, itemset generations, and the ranked scores computation. When the pro-
tein size increases, it demands more computational resource to extract features on larger
distance matrices. This reflects the gaps between two curves in Figure 6(a), where the top
curve reports the response time with feature extraction and the bottom curve depicts the
response time for computing scores and ranking domains. On the average, predicting an
unknown protein to a SCOP domain takes 6.34 seconds. Comparing to a well-recognized
structural alignment algorithm, CE,22 on the same testing data, we conduct pairwise struc-
tural alignments for 1 against 7,701 proteins using theLeave-One-Outstrategy. The SCOP
domain of protein with the highest score is specified as the predicted result. We find that CE
predicts SCOP domains of all testing proteins correctly. However, pairwise alignments us-
ing CE take 15,461.29 seconds. Sacrificing supportable accuracy, our algorithm runs near
2,439 times faster than the CE algorithm. Even though computer algorithms present high
prediction accuracy in empirical results, classification by human experts is still believed to
be more reliable. Instead of replacing manual classifications, our proposed method assists
human experts to make the task of SCOP domain classification achievable and efficient.

In addition, our method is able to predict the SCOP fold of an unknown protein struc-
ture from the predicted domain by referencing the known mapping information between
domain and fold. For the fold level, our approach exhibits 94.47% prediction accuracy,
which is higher than the accuracy of SCOP domain predictions, 91.27%. Due toone-to-
manyrelationship between fold and domains, it has a chance to conclude correct folds
from incorrectly predicted domains. Therefore, SCOP domain predictions are more chal-
lenging than predictions in fold level. For instance, a SCOP foldf1 contains three domains,
such asd1, d2, andd3, respectively. Even though the algorithm predicts a testing protein
of SCOP domaind1 asd2, the fold is still mapped tof1. Since the standard testbed of
SCOP fold predictions is not available at this moment, we briefly compare to a recent
approach in terms of data size, precision, and response time. A prominent work called
3-step scheme(PA+CP+DALI)1 reports 98.8% accuracy in fold prediction and the average
response time is 24,501 seconds. It is noteworthy to mention that their experiments are
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(a) (b)

Figure 6. (a)Average response times to predict SCOP domains with various protein chain sizes (b) The publicly
available domain prediction system based on this our prediction model.

conducted on a comparably small testing set (600 proteins) from 15 SCOP folds.

5. Conclusion

Our automatic SCOP domain ranking and prediction algorithm accelerates the processes
of structural recognition for newly discovered proteins. In this paper, we introduce an ad-
vanced algorithm to convert high-level features of distance matrices into itemsets for rule
mining. The advantage of this KDD approach is to effectively reveal the hidden knowledge
from similar protein tertiary structures for ranking and predicting possible SCOP domains.
Although a multi-variate decision tree might be able to give comparable performance in
classification and response time, the tree approach normally could not provide reasonable
ranking results that are more valuable in the real world setting, as discussed previously.
From the experimental results, our method can achieve reasonably high prediction perfor-
mance in both accuracy and efficiency. To extend the scope of SCOP domain predictions,
one possible direction is to computationally analyze text-based gene annotations, especially
the passages related to gene functions, from structurally similar proteins.

To provide a tool for the research community, we have implemented a web-based inter-
face to predict possible SCOP domains for unknown protein structures. Users are allowed
to upload a protein file that follows PDB ATOM format. In Figure 6(b), the superimpo-
sition view shows that the query protein is structurally similar to a protein5xin A from
the top ranked SCOP domainD-xylose isomerase. Our system is publicly accessible at
http://ProteinDBS.rnet.missouri.edu/Predict.php.
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