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The central role phylogeny plays in biology and its pervasiveness in comparative genomics studies
have led researchers to develop a plethora of methods for itsaccurate reconstruction. Most phylogeny
reconstruction methods, though, assume a single tree underlying a given sequence alignment. While
a good first approximation in many cases, a tree may not alwaysmodel the evolutionary history of
a set of organisms. When events such as interspecific recombination occur, different regions in the
alignment may have different underlying trees. Accurate reconstruction of the evolutionary history
of a set of sequences requires recombination detection, followed by separate analyses of the non-
recombining regions. Besides aiding accurate phylogenetic analyses, detecting recombination helps
in understanding one of the main mechanisms of bacterial genome diversification. In this paper, we
introduce RECOMP, an accurate and fast method for detectingrecombination events in a sequence
alignment. The method slides a fixed-width window across thealignment and determines the pres-
ence of recombination events based on a combination of topology and parsimony score differences in
neighboring windows. On several synthetic and biological datasets, our method performs much faster
than existing tools with accuracy comparable to the best available method.

1. Introduction

Phylogeny, i.e., the evolutionary history of a set of organisms, plays a major role in repre-
senting and understanding relationships among the organisms. The rapidly-growing host of
applications of comparative genomics has moved phylogeny to the forefront, rendering it an
indispensable tool for analyzing and understanding the structure and function of genomes
and genomic regions. Further, understanding evolutionarychange and its mechanisms also
bears direct impact on unraveling the genome structure and understanding phenotypic vari-
ations. One such mechanism of evolutionary change isinterspecific recombination—the
exchange of genetic material among different organisms across species boundaries.

Accurate detection of recombination is important for at least two major reasons. Stud-
ies have shown that the presence of recombination events hasnegative effects on the quality
of the reconstructed phylogenetic tree.9,12 Therefore, accurate reconstruction of the evolu-
tionary history of a set of sequences that contains recombination events necessitates first
detection of recombination events and then individual analyses of the non-recombined re-
gions. Further, recombination plays a significant role in bacterial genome diversification.
Whereas eukaryotes evolve mainly though lineal descent andmutations, bacteria obtain a
large proportion of their genetic diversity through the acquisition of sequences from dis-
tantly related organisms, via horizontal gene transfer (HGT) or recombination.6 Further,
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recombination is one of the processes by which bacteria develop resistance to antibiotics.1,7

In light of their effects on the accuracy of phylogenetic methods and their significance
as a central evolutionary mechanism, developing accurate methods for detecting recombi-
nation is imperative. Many methods have been proposed for this problem (for example,
Posada studied the performance of 14 different recombination detection methods8). Re-
combination detection methods fall into various categories, depending on the strategies
they employ.10 Among those categories, phylogeny-based detection methods are currently
the most commonly used.10 Recombination events result in different phylogenetic trees
underlying different regions of the sequence alignment, and it is this observation that forms
the basis for phylogeny-based recombination detection methods. The most recent methods
include PLATO (Partial Likelihood Assessed through Tree Optimization),2 DSS (Differ-
ence of Sum of Squares),5 and PDM (Probabilistic Divergence Measure).3,4 Central to all
these methods is the idea of sliding a window along the alignment of sequences, fitting data
in each window to a phylogeny, and comparing phylogenies in neighboring windows.

Ruths and Nakhleh addressed the limitations of these methods, and introduced prelim-
inary measures for recombination detection.12 In this paper, we extend our previous work
by considering both the topologies of trees and their parsimony scores across adjacent
windows of the alignment. We introduce a new phylogeny-based framework, RECOMP
(RECOMbination detection using Parsimony), that uses parsimony-based tree reconstruc-
tion and evaluation, coupled with measurement of topological differences. We have im-
plemented and studied the performance of four different measures (within the RECOMP
framework) on synthetic as well as biological datasets. Ourresults show that RECOMP’s
accuracy is comparable to the most accurate existing methods, and is much faster.

The rest of the paper is organized as follows. In Section 2 we briefly describe interspe-
cific recombination and review the most recent phylogeny-based methods for its detection.
In Section 3, we describe our new method, RECOMP. We describeour experimental set-
tings and results in Section 4, and conclude in Section 5 withfinal remarks and directions
for future research.

2. Phylogeny-based Recombination Detection

Interspecific (or inter-species) recombination is a process by which genetic material is ex-
changed between different species lineages. When interspecific recombination events oc-
cur, different regions in the sequence alignment may have different underlying trees, as
illustrated in Figures 1 and 2. The sequence alignment depicted in Figure 1 has three non-
recombining regions I, II, and III, defined by a recombination event that involves the ex-
change of region II sequences between organismsB andD. The phylogenetic tree shown in
Figure 2(a) models the evolutionary history of regions I andIII of the alignment, whereas
the phylogenetic tree in Figure 2(b) models the evolutionary history of region II of the
alignment.

The scenario depicted in these two figures illustrates that recombination events may
result in different phylogenetic trees underlying different regions; this phenomenon is the
basis for phylogeny-based recombination detection methods. Three of the most recent and
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Figure 1. An alignment of four sequences whose evolutionaryhistory contains a recombination event that in-
volves the exchange of sequences in region II between organismsB andD.A

B
C
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Figure 2. (a) The phylogenetic tree underlying regions I andIII of the alignment in Figure 1. (b) The phyloge-
netic tree underlying region II of the alignment in Figure 1.

accurate phylogeny-basedrecombination detection methods are PLATO (Partial Likelihood
Assessed through Tree Optimization),2 DSS (Difference of Sum of Squares),5 and PDM
(Probabilistic Divergence Measure).3,4 Central to all these methods is the idea of sliding a
window along the alignment of sequences, fitting data in eachwindow to a phylogeny, and
comparing phylogenies in neighboring windows.

PLATO computes the likelihood of various regions of the sequence alignment from a
single reference tree. The idea is that recombination regions will have a low likelihood
score. The main problem with this approach is that the reference tree may be inaccurate
since it is estimated from the whole sequence alignment.

DSS improves upon PLATO by sliding a window along the alignment, computing a
tree on the first half of the window, and estimating the fit of the second half of the window
to that tree (using a distance-based measure). The main problem with this approach is
that it uses distance-based methods; such methods are inaccurate, especially given short
sequences (which is the case when using DSS).

PDM addresses the shortcomings of DSS by (1) considering a likelihood approach
for fitting the data to a tree, (2) using a distribution over trees, rather than a single tree
(to capture the uncertainty of tree estimation from short sequences), and (3) comparing
trees based on changes to their topologies. Later, Husmeierand Wright further improved
the performance of PDM by incorporating sophisticated treeclustering techniques.4 Since



October 11, 2005 8:47 RuthsNakhlehRecombination

4

PDM uses a probabilistic approach, it is very slow in practice. Further, since the tree space
has very high dimensionality, clustering trees may be problematic.

3. RECOMP

Our proposed method is similar to PDM in principle, yet much simpler and faster, and
comparable in accuracy. We slide a window of widthw along the alignment, obtaining a
setTi of trees onSi, the set of sequences in theith window, using a maximum parsimony
heuristic (heuristic search with branch swapping, as implemented in PAUP∗13), and com-
paring the setsTi andTi+1 of trees. The MP heuristic we use returns a set of trees, sorted by
their parsimony scores: some trees may have an identical parsimony score. We denote the
set ofall jth (j = 1, 2, . . .) best parsimony trees (with respect to their scores, sometimes
called thejth level) by LV Lj, and the set of trees in the topk levels byOPT (k) (k ≥ 1),
formally the set∪1≤ℓ≤kLV Lℓ. In the experimental study of our method, we considered
Ti = OPT (k), and studied the performance of the method as a function of thek value (we
usedk = 1, 2, 3, 4).

LetT be a set of trees. We define thecenterof the set,c(T ), to be the strict consensusa

of all trees in the set, and theradius, r(T ) = max{RF (c(T ), T ) : T ∈ T }, where
RF denotes the Robinson-Foulds distance between a pair of trees.11 Further, we define
dmin(T, T ) = min{RF (T, T ′) : T ′ ∈ T } anddmax(T, T ) = max{RF (T, T ′) : T ′ ∈

T }. We writeP (S, T ) to denote the parsimony score of treeT leaf-labeled by setS of
sequences, andP (S, T ) to denoteminT∈T P (S, T ). We investigated four functions for
comparing the sequences in two adjacent windowsWi andWi+1:

• Intersection(Wi,Wi+1) =
|{T :T∈Ti+1 and RF (T,c(Ti))≤r(Ti)}|

|Ti+1|
+ |{T :T∈Ti and RF (T,c(Ti+1))≤r(Ti+1)}|

|Ti|
.

• AvgMin(Wi,Wi+1) =
P

T∈Ti
dmin(T,Ti+1)

|Ti|
+

P

T∈Ti+1
dmin(T,Ti)

|Ti+1|
.

• AvgMax(Wi,Wi+1) =
P

T∈Ti
dmax(T,Ti+1)

|Ti|
+

P

T∈Ti+1
dmax(T,Ti)

|Ti+1|
.

• ParsDiff(Wi,Wi+1) = |P (Si+1, Ti+1) − P (Si, Ti+1)|.

Further, we normalized the values computed by each of the four functions as follows.
Let m andn be the minimum and maximum values, respectively, obtained by a function
across all windows for a given sequence alignment. We normalize each valuex computed
by the function on the alignment by

x − m

n − m
.

Therefore, the four functions return values in the range[0, 1]. The rationale behind the
functions is as follows. Given an alignment of sequences, each of lengthL, let i be a site
falling at a recombination breakpoint. Further, assume that the window we consider is of

aThe strict consensus of a set of trees is the maximally resolved tree (i.e., the tree that has a maximum number of
edges) in which every edge is also an edge of every tree in the set.
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width w. Then, the treeT on which sites(i − w) . . . (i − 1) is different from treeT ′ on
which sitesi . . . i + (w − 1) evolved. Due to the inaccuracy of phylogeny reconstruction
methods, and the potential errors in evolutionary assumptions made,T andT ′ may be
unattainable; hence the need for considering sets of trees,rather than a single tree. When
setsTi andTi+1 correspond to sequence regions that fall on different sidesof a recombina-
tion breakpoint, we expect the trees to differ between the two sets, which implies a lower
Intersection value, and higherAvgMin, AvgMax, andParDiff values. When the two sets
of tree correspond to sequence regions that fall on the same side of any recombination
event, we expect a higherIntersection value, and lowerAvgMin, AvgMax, andParDiff
values. For consistency purposes, we always report1 − I, whereI is the value computed
by the comparison function.

The outline of the RECOMP method is as follows:
RECOMP(S,w,t)

for i = 0 to L − w

Xi = f(Wi, Wi+1);
i = i + t;

Plot X .

The sequence alignment is denoted byS, the window size byw, and the step size byt. The
parameterL denotes the length of the sequences inS, f can be any of the aforementioned
four functions, andWi denotes the sequence alignment in windowi. The output of RE-
COMP is a graphical representation of the output of the functions. Choosing a threshold
that distinguishes the recombination sites can be determined by inspecting the graphical
output of RECOMP (as is the case with all phylogeny-based methods that have graphical
output). Further, such a threshold can be automatically computed by a careful training of
the method on datasets with characteristics similar to those of the dataset under investiga-
tion.

4. Empirical Performance

4.1. Data

To test our method, we applied it to the three synthetic and one biological datasets used
in another paper.4 For the three synthetic datasetsSD1, SD2, andSD3, the evolution of
three DNA sequence alignments, each of 5500 nucleotides, was simulated down trees with
8 leaves. Each of the two datasetsSD1 andSD2 contains two recombination events: an
ancient event affecting the region between sites 1000 and 1500, and a recent event affecting
the region between sites 2500 and 3000. Further, they both contain a mutational hot spot be-
tween sites 4000 and 4500 (sites were evolved at an increasednucleotide substitution rate)
to test whether the detection method can successfully distinguish between recombination
and rate variation. The average branch lengths of the phylogenetic trees underlying datasets
SD1 andSD2 are 0.1 and 0.01, respectively. The third synthetic dataset, SD3, contains
two recombination events: an ancient event affecting the region between sites 1000 and
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2000, and a recent recombination event between sites 3000 and 4000. The branch lengths
of the phylogenetic tree underlying datasetSD3 were drawn from a uniform distribution
on the interval[0.003, 0.005].

The biological dataset,HD, consists of 10 Hepatitis B Virus sequences each of 3049
nucleotides, with evidence for recombination events (the dataset contained two recombi-
nant strains and eight nonrecombinant strains). For more details on the datasets, the reader
is referred to the original paper.4

4.2. Results

We ran RECOMP with all four functions on the four datasets. Weconsidered four different
values ofk (1,2,3, and 4) for setsOPT (k) of trees, two window sizes 300 and 500, and step
size 100. We describe our results of the four functions on alldatasets when usingOPT (3)

for window size 500, which produced the best results among all parameter settings. These
results are shown in Figures 3—5 for the three synthetic datasets, and in Figure 6 for the
biological dataset.

In the case of theSD1 dataset, our method detected the four recombination break-
points (at sites 1000, 1500, 2500, and 3000) based on all fourfunctions (Figure 3). There
are clear threshold values that could be used as cutoff values between recombination/non-
recombination regions: 0.8 for theIntersection function, 0.4 for theAvgMin andAvgMax
functions, and 0.1 for theParsDiff function. Clearly, the signal for a recombination break-
point at sites 2500 and 3000 is stronger than that at sites 1000 and 1500. The reason for this
is that the recombination event involving the region between sites 2500 and 3000 occurred
between more distantly related taxa, which results in larger topological differences and
parsimony score differences among trees across recombination breakpoints. Observe that
the ParsDiff function is very robust, in this case, to the mutational hotspots: it correctly
predicts no recombination in the mutational hotspot regionbetween sites 4000 and 4500.
TheIntersection function has the strongest signal of recombination at all four recombina-
tion breakpoints (sites 1000, 1500, 2500, and 3000); however, the function is sensitive to
mutational hotspots, and exhibits large fluctuations.

Similar behavior was obtained by the four functions on the datasetSD2 (Figure 4).
However, in the case of this dataset, theAvgMin andAvgMax functions showed a weak
signal for the ancient recombination event between sites 1000 and 1500. TheIntersection
andParsDiff function still showed clear signal for recombination at allfour breakpoints.
Once again, theParsDiff outperformed all other three functions in robustness with respect
to mutational hotspots. TheSD2 dataset was evolved with a lower rate of evolution than
that of SD1 and hence was harder to analyze (which is the case for the other existing
methods4).

TheSD3 dataset was evolved down the tree with the lowest rate of evolution among all
three synthetic datasets, and hence was the hardest for the methods to analyze (which is the
case for the other existing methods4). As with the other two datasets, detecting the recent
recombination event is easier, which is shown in the performance of all four functions in
Figure 5. In particular, all four functions had a weak signalof recombination at site 2000.



October 11, 2005 8:47 RuthsNakhlehRecombination

7

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Site

1 
−

 I

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Site

A
vg

. m
in

. d
is

ta
nc

e
(a) Intersection (b) AvgMin

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Site

A
vg

. m
ax

. d
is

ta
nc

e

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Site

P
ar

si
m

on
y 

S
co

re
 D

iff
er

en
ce

(c) AvgMax (d) ParsDiff

Figure 3. Results of the four functions onSD1.

Yet again, most of the sites in this alignment were synonymous, which made it hard for all
methods to detect recombination.

On the Hepatitis B dataset, both the DSS and PDM methods detected three breakpoints
around sites 600, 1700, and 2200. Our method shows peaks at these three points, based
upon the four functions we used (Figure 6). Nevertheless, the Intersection andParsDiff
functions gave the clearest signal among the two.

The performance of PLATO, DSS, and PDM on the same datasets isprovided by Hus-
meier and Wright.4 The performance of our method is comparable to that of PDM, which
performed best among those three methods. Further, since our method uses a fast MP
heuristic, calculates parsimony scores (which is computable in polynomial time), and com-
putes simple functions, it is much faster (orders of magnitude) than PDM, which uses
compute-intensive Bayesian analysis techniques.
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Figure 4. Results of the four functions onSD2.

5. Conclusions and Future Work

In this paper, we introduced a simple, effective and fast parsimony-based method for de-
tecting recombination. In experimental studies involvingboth synthetic and biological
datasets, our method produced very good results—comparable to those of the best known
methods (and ran orders of magnitude much faster). Our future work includes exploring
ways to improve the performance of our method in the presenceof mutational hot spots.
Further, we are interested in devising methods for detecting the locations of the recom-
bination events on the organismal tree. An open-source, stand-alone implementation of
RECOMP is currently available for download and use. It is implemented in the Sequoia
software suite as both a command-line tool as well as a Java library which allows its incor-
poration into larger programs.
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Figure 5. Results of the four functions onSD3.
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