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Sequencing of peptide sequences using tandem mass spectrometry data is an important and 
challenging problem in proteomics. In this paper, we address the problem of peptide sequencing for 
multi-charge spectra. Most peptide sequencing algorithms currently handle spectra of charge 1 or 2 
and have not been designed to handle higher-charge spectra. We give a characterization of multi-
charge spectra by generalizing existing models. Using these new models, we have analyzed spectra 
with charges 1-5 from the GPM [8] datasets. Our analysis shows that higher charge peaks are present 
and they contribute significantly to prediction of the complete peptide. They also help to explain 
why existing algorithms do not perform well on multi-charge spectra. We also propose a new de 
novo algorithm for dealing with multi-charge spectra based on the new models. Experimental results 
show that it performs well on all spectra, especially so for multi-charge spectra. 

1 Introduction 

Proteomics is the large-scale study of proteins, particularly their sequences, structures 
and functions. In proteomics, the identification of the protein sequences is very 
important, and peptide sequencing is essential to the identification of the proteins. 
Currently, peptide sequencing is largely done by tandem mass spectrometry. The analysis 
of the spectrum data is a non-trivial problem. This is in part because the spectrum 
obtained from MS/MS usually contains lots of noise, which do not belong to the peptide, 
but introduced because of the impurity of the peptide, and the inaccuracy of the 
machines. The problem becomes more difficult since for one peptide sequence, not all of 
its subsequences have the corresponding ions in the spectrum. 

Deducing peptide sequences from raw MS/MS data is slow and tedious when done 
manually. Instead, the most popular approach is to do a database search of known 
peptide sequences with the un-interpreted experimental MS/MS data. A number of such 
database search algorithms have been described, the most popular being Mascot [1] and 
Sequest [2]. These methods are effective but often give false positives or incorrect 
identifications. Searching databases with masses and partial sequences (sequence tags) 
derived from MS/MS data give more reliable results [3]. For unknown peptides, de novo 
sequencing [4-7] is used in order to predict sequences or partial sequences. However, the 
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prediction of peptide sequences from MS/MS spectra is dependent on the quality of the 
data, and this result in good predicted sequences only for very high quality data. 

This paper focuses on the important issue of the amount of charge on the ions in the 
spectra, particularly multi-charge spectra (charges 3 to 5). In the case of an ESI/MALDI 
source, the parent ion and many fragments may have multiple charge units assigned to 
them. Multi-charged spectra (with charges up to 5) are available from the GPM [8] web-
site. Current de novo methods work well on good quality spectra of charges 1 and 2. 
However, they do not work well on spectra with charges 3 to 5 since they do not 
explicitly handle multi-charge ions (one notable exception is PEAKS [6] which does 
conversion of multi-charge peaks to their singly-charged equivalent before sequencing). 
Lutefisk [7] works with singly-charged ion only, while Sherenga [4] and PepNovo [5] 
works with singly- and doubly-charged ions. Therefore, it is not surprising that some of 
the higher charged peaks are mis-annotated by these methods leading to lower accuracy.  

In this paper, we propose a generalized model that better describes multi-charge 
spectra (multi-charge to mean charge ≥  3) and quality measures for multi-charge spectra 
based on the new model. Our evaluation of multi-charged spectra from GPM with the 
new model shows that the theoretically attainable accuracy increases as we consider 
higher charge ions meaning that multi-charge ions are significant. In addition, we show 
that any algorithm that considers only charge 1 or 2 ions will suffer from low prediction 
accuracy. Our experiments show that the accuracy1 of these methods on multi-charge 
spectra is very low (less that 35%), and this accuracy decrease as the charge of the 
spectra increases (for charge 4 spectra, the accuracy of Lutefisk is less than 7%).  

We also proposed a simple de novo sequencing algorithm called GBST (greedy best 
strong tag) that considers higher charge ions based on our new model. Experimental 
results on GPM spectra show that GBST outperforms many of the other de novo 
algorithms on spectrum data with charge of 3 or more. 

2 Modeling of Multi-Charge Spectra 

Consider an experimental mass spectrum S = {p1,p2,…pn} of maximum charge α that is 
produced by an MS/MS experiment on a peptide ρ = (a1a2…al), where aj is the jth amino 
acid in the sequence. The parent mass of the peptide ρ is given by 

. Consider a peptide prefix fragment ρ)()( 1∑ === l
j jammM ρ k = (a1a2…ak), for k ≤ n, 

that has mass  Suffix masses are defined similarly. Then, the set of 
all possible prefixes and suffixes of a peptide forms the “full ladder” of the peptide. Let 
TS

).()( 1∑ == k
j jk amm ρ

0(ρ) = {m(ρ1), m(ρ2), … , m(ρn)} to be the set of all possible (uncharged) prefix 
fragment masses of the peptide ρ. A peak in the experimental spectrum S then 
corresponds to the detection of some charged prefix or suffix peptide fragment that 
results from peptide fragmentation in the mass spectrometer. Each peak pi in the 
experimental spectrum S is described by its intensity(pi) and mass-to-charge ratio mz(pi). 

                                                           
1  The accuracy measure we use is defined in Section 3.3. 
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However fragmentation is usually not very clean and other types of fragments occur. 
Noise and contaminants can also cause a peak in the experimental spectrum. In peptide 
sequencing, we are given an experimental spectrum with true peaks and noise and the 
problem is to try to determine the original peptide ρ that produced the spectrum. 
 

The Theoretical Spectrum for a Known Peptide:   To theoretically characterize a multi-
charge spectrum of a known peptide ρ, we consider the set of all possible true peaks that 
correspond to prefix fragments (N-terminal ions) and suffix fragments (C-terminal ions). 
Each peak p can be characterized by the ion-type, that is specified by (z, t, 
h)∈(Δz×Δt×Δh), where z is the charge of the ion, t is the basic ion-type, and h is the 
neutral loss incurred by the ion. In this paper, we restrict our attention to the set of ion-
types Δ=(Δz×Δt×Δh), where Δz ={1,2,…, α}, Δt = {a-ion, b-ion, y-ion} and Δh =  {∅, –
H2O, –NH3}.2 The (z, t, h)-ion of the peptide fragment q (prefix or suffix fragment) will 
produced an observed peak pi in the experimental spectrum S that has a mass-to-charge 
ratio of mz(p), that can be computed using a shifting function, Shift, defined as follows:  

 )1())()(()()),,(,()( −−++⋅== zhtzpmzhtzpShiftqm ii δδ   (1) 

where δ(t) and δ(h) are the mass differences associated with the ion-type t and the 
neutral-loss h, respectively. We say that peak pi is a support peak for the fragment q and 
has ion-type (z, t, h) and we say that the fragment q is explained by the peak pi.  

We define the theoretical spectrum  for ρ for maximum charge α to be the 
set of all possible observed peaks that may be present in an experimental spectrum for the 
peptide ρ with maximum charge α. More precisely, TS { p : p is an observed peak 
for the (z, t, h)-ion of peptide prefix fragment ρ

)(ρα
αTS

)(ρα
α = 

                                                          

k, for all (z, t, h)∈Δ and k=1,…,n}.   
 

Extended Spectrum: Conversely, the real peaks in an experimental spectrum S = 
{p1,p2,…pn} of maximum charge α, may have come from different ion-type of different 
fragments (may be prefix or suffix fragment, depending on the ion-type). We do not 
know, a priori, the ion-type (z, t, h)∈Δ of each peak pi. Therefore, we “extend” each peak 
pi by generating a set of |Δ| pseudo-peaks (or guesses), one for each of the different ion-
types (z, t, h)∈Δ. More precisely, in the extended spectrum , for each peak pα

αS i∈S and 
ion-type (z, t, h)∈Δ, we generate a pseudo-peak, denoted by (pi, (z, t, h)), with an 
“assumed” (uncharged) fragment mass computed using the Shift function (1). At most 
one of these pseudo-peaks is a real peak, while the others are “introduced” noise. 

We always express a fragment mass in experimental spectrum using its PRM (prefix 
residue mass) representation, which is the mass of the prefix fragment. For suffix 
fragments (y-ions), we use its corresponding prefix fragment. Mathematically, for a 
fragment q with mass m(q), we define PRM(q) = m(q) if q is a prefix fragment ({b-ion}); 
and we define PRM(q) = M – m(q) if q is a suffix fragment ({y-ion}). By calculating the 
PRM for all fragments, we can treat all fragments masses uniformly. 

 
2 The definitions and results in this paper also apply to any set of ion-types considered. 
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We illustrate the extended spectrum with an example shown in Figure 1. For 
simplicity, we only consider ion-types Δt = {b-ions, y-ions} and Δh={Ø}. Given a peptide 
ρ = GAPWN, with parent mass M = m(ρ) = 525.2, and an experimental spectrum S = 
{113.6, 412.2, 487.2} with maximum charge 2.  The first peak “113.6” is a (2, b-ion, Ø)-
ion of the prefix fragment GAP; the peak 412.2 is a (1, b-ion, Ø))-ion of the prefix 
fragment GAPW; and “487.2” is a (1, y-ion, Ø)-ion for the fragment G.  In Figure 1(a), 
only charge 1 is considered and  = {112, 430, 411, 132, 486, 57}. The entries in the 
table are the PRM values. For example, the possible fragment masses of 112 and 430 
correspond to the extension of the first peak for ion-types (1, b-ion, Ø) and (1, y-ion, Ø), 
respectively. However, if charge 2 is also considered, then  = {112, 430, 225, 31, 411, 
132, 486, 57} as shown in Figure 1(b).   

2
1S

2
2S

 

Duality between Extended Spectrum and Theoretical Spectrum:  We now describe a 
duality relationship between the extended spectrum and the theoretical spectrum 

. Given an experimental spectrum S of a known peptide ρ, the set  of 
real peaks in the spectrum S is given by: 

α
βS

)(ρα
βTS ),( ρα

α SRP

  (2)  STSSRP ∩= )(),( ρρ α
α

α
α

The set  of explained fragments in the peptide ρ, namely fragments that can 
be “explained” by the presence of support peak or pseudo-peak in , is given by: 

),( ρα
α SEF

α
αS

  . (3)  )()(),( 0
α
α

α
α ρρ SPRMTSSEF ∩=

In the set , there may be several real peaks that are support peaks for the same 
fragment . Similarly, in the set , there may be multiple pseudo-peaks in S, that 
helps to “explain” the same fragment. Indeed, we have the following duality theorem: 

),( ρα
α SRP

),( ρα
α SEF

 

Duality Theorem:  Given an experimental spectrum S of a known peptide ρ, we have 

 ))),(((),( ρρ α

α

α

α SRPShiftPRMSEF =  (4)  
 

Modelling Current Algorithms: To take into account the fact that some algorithms 
consider only ion-types of charge up to β (usually β = 2), we extend the definition to 

 which is defined to be the subset of  for which the charge z∈{1,2,…, 
β}. The case β=1 reflects the assumption that all peaks are of charge 1, and makes use of 
the extended spectrum . Algorithms such as PepNovo and Lutefisk works with a 
subset of the extended spectrum , even for spectra with charge α > 2. In general, 

does not account for peaks that correspond to ion-types with higher charges 
z=β+1, … , α. Of course, the more charge we take into account, the more accurate will 
be the accuracy that can be attained since . 

)(ρα
βTS )(ρα

αTS

α
1S

α
2S

)(ρα
βTS

)()...()( 21 ρρρ α
α

αα TSTSTS ⊆⊆
 

The Extended Spectrum Graph:  We also introduce an extended spectrum graph, 
denoted by , where d is the “connectivity”. Each vertex v in this graph 
represents a pseudo-peak (p

)( α
βSGd

i, (z, t, h)) in the extended spectrum , namely, the (z, t, h)-α
βS
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ions for the peak pi. Thus v = (pi, (z, t, h)). Each vertex represents a possible peptide 
fragment mass given by PRM(Shift(pj, (z, t, h))). Two special vertices are added – the 
start vertex v0 corresponding to the empty fragment with mass 0 and the end vertex vM 
corresponding to the parent mass M.  

In the “standard” spectrum graph, we have a directed edge (u, v) from vertex u to 
vertex v if PRM(v) is larger than PRM(u) by the mass of a single amino acid. In the 
extended spectrum graph of connectivity d, , we extend the edge definition to 
mean “a directed path of no more than d amino acids”. Thus, we connect vertex u and 
vertex v by a directed edge (u, v) if the PRM(v) is larger than PRM(u) by the total mass of 
d’ amino acids, where d’ ≤ d. In this case, we say that the edge (u, v) is connected by a 
path of length up to d amino acids. Note that the number of possible paths to be searched 
is 20

)( α
βSGd

d and increased exponentially with d. We use d=2, unless otherwise stated. 

 
Figure 1. Example of extended spectrum graph for mass spectrum regenerated from peptide GAPWN. 

 

Two extended spectrum graphs (with connectivity d=2) are shown in Figure 1. The 
spectrum graph G2( ) is shown in Figure 1(c). We can see that only the edges (v2

1S 0, v6) 
for amino acid G and (v3, vM) for amino acid N can be obtained. The subsequence APW 
is longer than 2 amino acids long and so G2( ) is unable to elucidate this information. 
By considering  (in (a) and (b)), we obtain the graph G

2
1S

2
2S 2( ) shown in (d). New edges 

can be obtained, edge (v

2
2S

6, v7) for path AP of length 2 amino acids and (v7, v3) for amino 
acid W. This gives a full path from v0 to vM and the full peptide can now be elucidated. 
However we also note that in G2( ), fictitous edges may also be introduced due to the 
introduction of more noise. One example is shown in (d) using dashed line for the 
fictitious edge (v

2
2S

4, v8). Many such fictituous edges can result in fictituous paths from vb 
to ve, thus giving a higher rate of false positives. 

2.1. Quality Measures for Evaluating Mass Spectra 

We have extensively analyzed many multi-charge spectra using our new characterization. 
In this exercise, we are only analyzing the quality of the spectra, and we are not doing 
sequencing or prediction. We define two quality measures of a multi-charge spectra 

(b) Extending the peaks for charge 2 ions.  

z mz(p1 )= 113.6 mz(p2 )= 412.2 mz(p3)=487.2 
B Y B Y B Y  

2 V7 

225.2 
V8 

318 
- 

- 
- 

- 
- 

- 
- 

- 

(d) The extended spectrum graph G2( 2
2S ) 

 V0  V6  V1  V4

(a) The spectrum 2
1S  (only B and Y ions considered)

z mz(p1 )= 113.6 mz(p2 )= 412.2 mz(p3)=487.2 
B Y B Y B Y  

1 V1 

112.6 
V2 

430.6 
V3 

411.2 
V4 

132 
V5 

486.2 
V6 

57 

  G   N 

 V7  V8  V3  V2  V5

     GM G AP W N       

 VM

(c) The spectrum graph G2( 2
1S ) 

 V6 V0  V3  V2  V5  VM V4 V1
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• Specificity(α, β)         =  /                 =   /  |)(| STS ∩ρα
β || S |),(| ρα

β SRP || S

• Completeness(α, β)   =  / |)()(| 0
α
αρ SPRMTS ∩ || ρ    =   / ||),(| ρα

β SEF |ρ  

Specificity measures the proportion of true peaks in the experimental spectrum S, and it 
can be also be consider the signal-to-noise ratio of S. However, for a given PRM, there 
may be multiple support peaks in , which lead to “double counting”. The 
completeness measure avoids this by computing the proportion of the fragment masses 
that are explained by support peaks. Multiple support peaks for the same fragments are 
not double-counted. 

),( ρα
β SRP

2.2. Experimental Data and Analysis 

The data being used for analysis and experimentation is the Amethyst data set from GPM 
(Global Proteome Machine) [8] (obtainable from ftp://ftp.thegpm.org/quartz). The GPM 
system is an open-source system for analyzing, storing, and validating proteomics 
information derived from tandem mass spectrometry. The database was designed to store 
the minimum amount of information necessary to search and retrieve data obtained from 
the publicly available data analysis servers. One feature of the Amethyst dataset is that 
there are lots of multi-charge spectra (up to charge 5). These data are MS/MS spectra 
obtained from QSTAR mass spectrometers. Both MALDI and ESI sources were 
included. 

Using the  extended spectrum graph model (with d=2), we have measured 
the average Specificity(α,β) and Completeness(α,β) on the enture Amethyst datasets from 
GPM using our extended spectra   for 1 ≤ α ≤ 5,  and 1 ≤ β ≤ α. A mass tolerance of 
0.5 Da is used for matching peak mass-to-charge ratios. All the data in the Amethyst 
dataset (12558 datasets in total, with 4000, 4561, 2483, 1175, 339 for charge 1, 2, 3, 4, 5, 
respectively) has been used for this purpose.  

)( α
βSGd

α
βS
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Figure 2. Specificity(α,β) of multi-charge spectra. 
Specificity increases as β increases. Most algorithms 
consider up to (dashed black line). But 
considering  for spectra with α 3 improves the 
specificity (black line vs grey line). 

α
2S

α
αS ≥

Figure 3. Completeness(α,β) of multi-charge spectra. 
We see that considering only  gives < 70% of the 
full ladder, which drops drastically as α gets bigger. 
On the other hand, considering  gives > 80% of full 
ladder. 

α
2S

α
αS
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The Specificity(α,β) results are showin in Figure 2. The results show that the GPM 
spectra contain an abundance of higher charged peaks in higher-charged spectra. For a 
fixed α, as β increases, the specificity increases – meaning that more true peaks are 
discovered. Furthermore, the increase is significant. For α=5, the specificity increases 
from 0.49 with β=2, to 0.81 when β=5. Algorithms that uses β =2 considering only 
charge 1 and 2 (like LuteFisk and PepNovo) are limited to specificity values of between 
0.48 to 0.56, as indicated by the dashed vertical line at β=2.  

The Completeness(α,β) results are showin in Figure 3. In this graph, we compare the 
Completeness(α,β) results for (a) using the full extended spectrum versus (b) using 
only β=2, namely, . Again, the results clearly show that significant improvement can 
be obtained by considering higher charge peaks. The disparity increases with α as seen 
from the widening gap indicated by the vertical arrows. 

α
αS

α
2S

3 A Simple de Novo Algorithm for Multi-Charge Spectra 

We now present a simple de novo peptide sequencing algorithm that takes into account 
multi-charged ion-types in the spectrum. Our main aim is to show that even with a simple 
algorithm, we can get improved results by considering multi-charged ions.  

3.1 Strong Tags in the Multi-Charge Spectra 

Tandem spectrum data analysis shows that peaks in many mass spectra can be grouped 
into closely-related sets, especially when the peptide is multi-charge. Within each set, the 
peaks can be interpreted as the same ion type (b-ions or y-ions), and the mass differences 
between “successive” peaks are such that they can form ladders (contiguous sequences). 
An example is shown in Figure 4, where we have computed the theoretical spectrum (the 
table) and the peaks from an experimental spectrum S are shown in bold. Several peaks 
are grouped together into contiguous sequences of y-ions and b-ions of charge 1.  

This motivates us to call these contiguous sequences of strong ion-types (b-ions and 
y-ions of charge 1) “strong tags”. More formally, they are defined as follows:  Consider 
the extended spectrum graph, , namely, only charge 1 ion-types. We define a 
strong tag T of ion-type (1, t, Ø) to be a maximal path (v

)( 11
αSG

1, v2, …, vr) in  where 
each vertex v

)( 11
αSG

i∈T has the same ion-type (1, t, Ø) and each (vi, vi+1) is an edge in the graph 
, namely, their mass difference is the mass of one amino acid. (For our current algorithm, 
we consider only b-ions and y-ions, namely, t = b-ions or y-ions and strong tags must 
have at least 2 edges.)   

Figure 5 shows the two strong tags obtained for the spectrum given in Figure 4.  
To help the search for good strong tags, we define a weight function that is used to 

score vertices and strong tags. The weight of vertex vi∈G1( ) is defined as  α
βS

 
)(

)()()(
)(

itolerance

iintensityilossisupport

i vf
vfvfvf

vw
++

=  (5) 
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• fsupport-ion(vi) is a function of the number of vj, with vj having a different ion-type 
as vi, but for the same subsequence  

• floss(vi) is a function of the number of vj, with (PRM(vi) – PRM(vj))=17 or 18, 
• fintensity(vi) is a function of (log10(intensity of the peak for which vi represent)), 
• ftolerance(vi) = (1/N) (∑ | PRM(vj) – PRM(vi) – mass(ak) | ), where N is the total 

number of incoming and outgoing edges for vi, and ak is the amino acid for each 
edge (vi,vj) or (vj,vi). 

For a strong tag T=(v1, v2, …, vr), the weight W(T) of the strong tag T is just the sum 
of weight of the vertices in T, namely, W(T) = ∑ . Obviously, we are interested 
in finding a set of “best” strong tags, namely, tags that optimizes the weight W(T). The 
spectrum graph G

∈Tv ii
vw )(

1( ) is a DAG that may consist of several disjoint components. For 
each disjoint component C, we use a depth-first search (DFS) algorithm to compute a 
best strong tag for component C.  We let BST denote the set of “best” strong tags from 
each of the components C in the spectrum graph.  

α
βS

 

bond +1y* +1b +1b*

 
Figure 4. Theoretical spectrum for the peptide 
sequence “SIRVTQKSYKVSTSGPR”, with parent 
mass of 1936.05 Da. “y” and “b” indicates y- and b-
ions, “+1”, “+2” indicates charge 1 and 2, and “*” 
indicates ammonia loss. Bold numbers are peaks 
present in experimental spectrum. 

 
Figure 5. Example of  strong tags in the spectrum 
graph for  spectrum in Figure 4. There are 2 strong 
tags. Vertices (small ovals) represent fragment 
masses, and edges (small triangles) represent amino 
acids whose mass is the same as the mass difference 
of the vertice 

3.2 The GBST Algorithm 

We have developed a simple de novo peptide sequencing algorithm based on strong tag 
that we call the Greedy Best Strong Tag (GBST) algorithm which uses the strong tags in 
the spectrum graph. The GBST algorithm starts by computing the set BST of best strong 

+1y 
S1 1807.0 1790.0 130.0 113.0 
I2 1693.9 1676.9 243.1 226.1 
R3 1537.8 1520.8 399.2 382.2 
V4 1438.8 1421.7 498.3 481.3 
T5 1337.7 1320.7 599.3 582.3 
Q6 1209.7 1192.6 727.4 710.4 
K7 1081.6 1064.5 855.5 838.5 
S8 994.5 977.5 942.5 925.5 
Y9 831.5 814.4 1105.6 1088.6 

K10 686.3 1233.7 1216.7 703.4 
V11 587.3 1332.8 1315.7 604.3 
S12 500.2 1419.8 1402.8 517.3 
T13 399.2 1520.8 1503.8 416.2 
S14 312.2 1607.9 1590.8 329.2 
G15 255.1 1664.9 1647.9 272.2 
P16 175.1 158.1 1761.9 1744.9 
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tag as described in Section 3.1. After the BST is compute, the algorithm proceeds to find 
the best peptide sequence that can be obtained by “linking up” the strong tags in BST. 
We first build the strong tag graph , where the vertices are the strong tags in 
BST, and we have an edge (u, v) from the tail vertex u of the tag T

)(BSTGd

u to the head vertex v 
of the tag Tv if PRM(v) is larger than PRM(u) by the total mass of d’ amino acids, where 
d’ ≤ d. (We use d=2.) Compared to the spectrum graph G, the strong tag graph Gd(BST) 
is very small – only |BST| vertices and the number of edges is also small since we only 
connect strong tags in a head-to-tail manner. A path in Gd(BST) is called a strong tag path 
since the vertices are strong tags. For a strong tag path P = (T1,T2, …, Tq), we define the 
weight W(P) of the path P to be the sum of the weight of the strong tags in P, namely, 
W(P) = ∑ . The final step in the GBST algorithm is to use a DFS algorithm to 
compute the “best” strong tag path from v

∈PT ii
TW )(

0 to vM in the graph Gd(BST). 

3.3 Experiments on Algorithms 

The experimental data are selected from GPM spectrum datasets [8]. We have selected 
spectra data with different characteristics (average peak intensities, charges, etc.) for 
analysis. We have applied our algorithm on these spectrum data. For these spectrums, we 
have also compared our results with those of the Lutefisk [7] and PepNovo [5]. For 
comparison of prediction results, we have defined two accuracy measures: 

• Sensitivity  =  #correct / |ρ| 
• Specificity  =  #correct / | P| 

where #correct is the “number of correctly sequenced amino acids”. The number of 
correctly sequence amino acids is computed as the longest common subsequence (lcs) of 
the correct peptide sequence ρ and the sequencing result P. Sensitivity indicates the 
quality of the sequence with respect to the correct peptide sequence and a high sensitivity 
means that the algorithm recovers a large portion of the correct peptide. For fair 
comparison with algorithms like PepNovo that only outputs the highest scoring tags 
(subsequences) we also use the specificity measure. 
 
Table 1: Results of GBST, compared with Lutefisk and PepNovo on GPM spectra. Results show 
that GBST is generally comparable and sometimes better, especially for multi-charge spectra. 
(*based on  +1 and  +2 spectra). 

Charge Number of spectrum Lutefisk PepNovo GBST 
0.296 / 0.315 1 756 0.261 / 0.258 0.322 / 0.186 
0.297 / 0.326 2 874 0.243 / 0.241 0.316 / 0.215 
0.262 / 0.285 3 454 0.111 / 0.113 - 
0.190 / 0.222 4 207 0.065 / 0.063 - 
0.165 / 0.223 5 37 0 / 0 - 
0.278 / 0.304 All 2328 0.203 / 0.202 0.319 / 0.202* 

 
In the experiments, we have only run PepNovo on spectra with charge 1 and 2 (since 

it only handles charge 1 and 2), and compared the results with our algorithm. In Table 1, 
the accuracy values are represented in a (specificity/sensitivity) format. 
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Experiments results show that our algorithm generally perform comparable to or 
better than Lutefisk [7] and PepNovo [5]. This is obvious for multi-charge spectra. The 
relatively high specificity accuracy of our algorithms shows that our sequencing results 
have high signal-to-noise ratio, which are comparable with results of Lutefisk and 
PepNovo. The higher sensitivity accuracy shows that our algorithms can sequence more 
correct amino acids than Lutefisk and PepNovo.   

4 Conclusion 

Multi-charge spectra have not been adequately addressed by many de novo sequencing 
algorithms. In this paper, we give a characterization of multi-charge spectra and use it to 
analyze multi-charge spectra from GPM. Our results clearly show why existing 
algorithms do not perform well on multi-charged spectra. We also present a simple de 
novo sequencing algorithm (called GBST algorithm) which makes use of this model to 
predict sequences of such spectra. Our de novo algorithm not only works well for multi-
charge spectra, but it still performs well on singly-charges spectra.  
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