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Finding motifs in DNA sequences plays an important role in deciphering transcriptional regulatory
mechanisms and drug target identification. In this paper, we propose an efficient algorithm, EDAM,
for finding motifs based on frequency transformation and Minimum Bounding Rectangle (MBR) tech-
niques. It works in three phases,frequency transformation, MBR-clique searchingandmotif discovery.
In frequency transformation, EDAM divides the sample sequences into a set of substrings by slid-
ing windows, then transforms them to frequency vectors which are stored in MBRs. InMBR-clique
searching, based on the frequency distance theorems EDAM searches for MBR-cliques used for motif
discovery. Inmotif discovery, EDAM discovers larger cliques by extending smaller cliques with their
neighbors. To accelerate the clique discovery, we propose a range query facility to avoid unneces-
sary computations for clique extension. The experimental results illustrate that EDAM well solves the
running time bottleneck of the motif discovery problem in large DNA database.

1. Introduction

In the process of gene expression, one or more proteins, called transcription factors have
to bind to several specific regions named binding sites. These sites typically have a similar
short DNA sequence pattern which is simply referred tomotif. According to the traits of
motif, the motif discovery problem is to find a pattern in sample sequences whose length
is l, and in every sample sequence there is a pattern which has no more thand mismatches
with this motif pattern [1]. The identification of short sequence motifs, such as transcrip-
tion factor binding sites, is at the center of the transcriptional regulation understanding.
The functional sites are constrained to contain motifs, since their changes will disrupt reg-
ulation, which is detrimental to the organism [2,3].

Several motif-based methods have been proposed to count the total number of motifs
rather than sequences, and construct a similar contingency table [4]. Some other methods
including Consensus [5], Gibbs Sampler [6] and ANN-Spec [7] for multiple local align-
ment have been employed to resolve the identification of motifs problem. In many cases
where motifs have been experimentally determined, these algorithms have been shown to
yield the known motifs, indicating that such methods can discover unknown motifs from a
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collection of sequences believed to be implanted motifs. Brazma et al. algorithms [8] find
and analyze combinations of motif that occur in the upstream regions of genes in the yeast
genome. These algorithms can identify all the motifs that satisfy given parameters with
respect to a given sample sequences. However, they perform an exhaustive search through
all 4l l-letter patterns and find the high-scoring patterns, thus the algorithms become im-
practical forl > 10. Tompa raised the problem of Brazma, and improved this approach for
longer patterns. One way around this problem is to limit the search spaces on the patterns
appearing in the sample sequences [9–11].

WINNOWER is an outstanding algorithm for finding motifs in respect that it proposes
a clique discovery approach to finding global optimal results [12]. WINNOWER indicates
that the motif discovery problem is similar to the clique discovery problem. A clique is a
set of nodes in a graph, each of which is connected to the others in this set. The sample
sequences are divided into a set of substrings which are represented by nodes. If two
substrings are similar, there will be an edge connecting them. Thereby, a motif can be
taken as a clique in which different nodes are from different sample sequences. For a set
of sample sequencesS = {s1, s2, . . . , sq}, WINNOWER constructs a graph to find the
cliques which represent the motifs inS. For each substringsij from positionj to position
j + l − 1 in sequencesi , the algorithm constructs a node representing it. Two nodesij

andspq are connected by an edge, ifsij andspq are similar (i 6= p). A q-clique in a graph
is aq-nodes set, in which all the pair nodes are connected. Thereby, (l, d)-motif is a clique
with sizeq in the graph. Since most of edges in the graph cannot make up a clique, called
spurious edges, WINNOWER prunes some of these spurious edges to speed up searching.
SupposeC is a clique, noden is a neighbor ofC if and only if n connects to each node in
C. If a clique has at least one neighbor, it isextendable. If an edge does not belong to any
extendable clique of sizeq, it is spurious. WINNOWER prunes the spurious edges based
on the observation that every edge in aq-clique belongs to at least

(
q
k

)
extendable cliques

of sizek.
Although WINNOWER is a typical algorithm for motif discovery, it still has two main

problems. (1) For the case that there are a few motifs in the sample sequences, so only a
few cliques and edges in the graph. However, most of running time is spent to compute
similarity of pairwise nodes during the construction of the graph. Therefore, most of sim-
ilarity computations are unnecessary. (2) For the case that numerous motifs exist in the
sample sequences, the graph will conclude numerous cliques and edges. In this case, WIN-
NOWER needs huge spaces to record the edges. The space requirement of WINNOWER
is often a bottleneck to find motifs in large sample sequences.

In this paper, we present an efficient clique discovery algorithm EDAM based on fre-
quency transformation and MBRs. It works in three phases,frequency transformation,
MBR-clique searchingandmotif discovery. In frequency transformation, EDAM divides
the sample sequences into a set of substrings by sliding windows, then transforms them
to frequency vectors which are stored in MBRs. InMBR-clique searching, based on the
frequency distance theorems EDAM searches for MBR-cliques used for motif discovery.
In motif discovery, EDAM discovers larger cliques by extending smaller cliques with their
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neighbors. To accelerate the clique discovery, we propose a range query facility to avoid
unnecessary computations for clique extension. EDAM has the following advantages over
WINNOWER. (1) EDAM avoids a lot of unnecessary similarity computations by MBR-
cliques searching, since it only computes the similarity of nodes within the same MBR-
clique. (2) Since EDAM uses MBRs to store similar substrings, it saves storage space
compared with WINNOWER.

The rest of this paper is organized as follows. Section 2 formally defines the motif
discovery problem. Section 3 describes the algorithm EDAM in detail. Section 4 gives an
analysis of the time and space complexity of EDAM and WINNOWER. Section 5 shows the
experimental results and compares the performance of EDAM with WINNOWER. Finally,
Section 6 concludes this paper.

2. Problem Description

Known regulatory motifs are short, sometimes degenerate and appear frequently through-
out the sample sequences. Additionally, Protein-binding DNA motifs often contain am-
biguous nucleotides, which can have more than one equivalent nucleotide, so the problem
is to discover the following motifs in a sample sequences [13].

Definition 1. Motif discovery.Given a sample sequencesS = {s1, s2, . . . , sq}, the motif
pattern lengthl and the maximum hamming distances between the motif occurrencesd.
Then the(l, d)-motif discovery problem is defined as finding suchl-length patternm.

(∀si ∈ S)(∃sub ∈ si)(Length(sub) = l ∧ hd(m, sub) ≤ d) (1)

Finding motifs, as WINNOWER demonstrated, is similar to the clique discovery problem.
If we choose the hamming distance between a motif and any its occurrence is at most
d, 2d is the longest acceptable distance between any two occurrences presenting a same
motif. Therefore, a clique discovery problem corresponding to(l, d)-motif can be defined
as follows.

Definition 2. Clique discovery.Given a sample sequencesS = {s1, s2, . . . , sq} and a
(l,d)-motif discovery problem. Anyl-length node setC is called a q-clique if and only if

(1) In C, different substrings come from different sample sequences.
(2) For any pair substringssi andsj (i 6= j) in C, hd(si, sj) ≤ 2d.

3. EDAM

EDAM is a different algorithm for finding motifs in sample sequences, and it has some
advantages over WINNOWER. EDAM avoids a lot of unnecessary similarity computations
by MBR-cliques searching, since it only computes the similarity of nodes within the same
MBR-clique. Moreover, EDAM uses MBRs to store similar substrings, it saves storage
space compared with WINNOWER.
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3.1. Frequency Transformation

In Frequency transformation, EDAM divides the sample sequences into a series of sub-
strings and transforms these substrings into frequency vectors that are stored in MBRs. Be-
fore we explain Frequency transformation, we first introduce frequency vector and MBR.

The frequency vector indicates the number of each kind of nucleotide in the DNA se-
quences. Since DNA sequences are composed of 4 different nucleotides, they always are
treat as strings with the alphabet

∑
= {A,C,G,T}. EDAM transforms substrings divided

from the sample sequences to a 4-dimensional vectors, and the value in every dimension
indicates the number of one kind of nucleotide in the substring [14,15]. For example, given
a substrings = TAGCCGAA, the frequency vectorf(s) = [3, 2, 2, 1].

Definition 3. Frequency vector. Given s be a substring and the alphabet
∑

=
{α1, α2, . . . , ασ}, fi indicates the number ofith nucleotide in

∑
, then the frequency vec-

tor: f(s) = [f1, f2, . . . , fσ]

Minimum Bounding Rectangle(MBR) represents a subspace in the multidimensional
space. Each dimension of MBR has a maximum and a minimum, which bound the
subspace. The frequency vectors stored in the MBR are restricted in its subspace.
In other words, for each frequency vectorf = [f1, f2, . . . , fσ] in a MBR mbr =
[(min1,max1), (min2,max2), . . . , (minσ,maxσ)], the valuefi of any dimension(1 ≤
i ≤ σ) must be in the interval[mini,maxi]. In this way, the similar vectors representing
similar substrings definitely are in an identical MBR or adjacent MBRs.

Frequency vector and MBR are two useful definitions for frequency transformation.
In frequency transformation, EDAM reads only one sequencesi of the sampleS =
{s1, s2, . . . , sq} each time and sets up the MBRs forsi. These MBRs divide the multi-
dimensional space into different subspace (e.g. the multidimensional space is divided into
subspaces by a grid using dichotomy). For each substringsij from positionj to position
j + l − 1 in sequencesi, EDAM transforms it to the frequency vectorf(sij) and stores
f(sij) in the proper MBR.

3.2. MBR-clique Searching

Most of the frequency vectors in the MBRs cannot make up any clique, thus, how to avoid
finding cliques in these frequency vectors is one of the foundational problems. In this sec-
tion, we suggest usingMBR-clique searchingto resolve this problem base on the fact that
the vectors in a clique are stored in the adjacent MBRs. The similarity of a pair substrings
is generally measured by hamming distance, but hamming distance requires to count the
number of mismatches, thus, it is difficult to calculate hamming distance by frequency vec-
tors. Here, we suggest using frequency distance as the lower bourn of hamming distance.

Definition 4. Frequency distance.The summation of frequency differences (only positive)
on every dimension in

∑
= {α1, α2, . . . , ασ} of the given substringss1, s2. fi(s1) fi(s2)

denotesith dimension’s value ofs1 ands2 respectively. The frequency distance betweens1
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ands2 is defined as follow.

fd(s1, s2) =

σ∑

i=1

{
fi(s1)− fi(s2) if fi(s1)− fi(s2) ≥ 0

0 else
(2)

Suppose the hamming distance of a pair substringss1, s2 is d, it means that ifs1 is trans-
formed tos2, based on that one mismatch needs one substitution,s1 requiresd substitution
operations. According to the definition of frequency vector,d substitutions at most maked
differences on frequency vectors.

Theorem 1. Supposes1 and s2 are two substrings. The frequency distance betweens1

ands2 is a lower bound on their hamming distance.

hd(s1, s2) ≥ fd(s1, s2) (3)

Since the clique in EDAM is a set of similar vectors, and these vectors are stored in adjacent
MBRs, we estimate the distances between vectors by the distances between vectors and
MBRs.

Theorem 2. Supposembr is a MBR,v is a vector, not inmbr, then for any vectorm
in mbr, the frequency distance between m and v is no more than the minimum frequency
distance between v and the bounding of mbr.

fd(m, v) ≥ fd(v, mbr) (4)

For the vectors are stored in MBRs, we suggest using the MBR distance to estimate the
distances between the vectors in them.

Definition 5. MBR distance.Supposembr1 andmbr2 are two MBRs,mini(mbrj) and
maxi(mbrj) are the minimum and the maximum ofith dimension inmbrj . The frequency
distance betweenmbr1 andmbr2 is the minimum frequency distance between the their
bounds, it is defined as follow.

fd(mbr1, mbr2) =

σ∑

i=1





mini(mbr1)−maxi(mbr2) if mini(mbr1) ≥ maxi(mbr2)

mini(mbr2)−maxi(mbr1) if mini(mbr2) ≥ maxi(mbr1)
0 else

(5)

Theorem 3. Supposembr1 andmbr2 are two MBRs,v1 andv2 are frequency vectors that
are stored inmbr1 and mbr2 respectively. The distance betweenmbr1 and mbr2 is the
lower bound on the distance betweenv1 andv2.

fd(v1, v2) ≥ fd(mbr1, mbr2) (6)

According to the clique definition and Theorem 3, we suggest using MBR-clique searching
to record the MBRs which make up cliques, and then finding motifs in these MBR-cliques.
A MBR-clique MC is a set of MBRs, the frequency distance between each pair of MBRs
in MC does not excess the threshold.

Definition 6. MBR-clique. Given the sample sequencesS = {s1, s2, . . . , sq} and a (l,d)-
motif discovery problem. A q-MBR setMC is called a MBR-clique if and only if

(1) In MC, different MBRs come from different sample sequences.
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(2) For each pair of MBRsmbri andmbrj (i 6= j) in MC, hd(mbri, mbrj) ≤ 2d.

EDAM only searches for the cliques in MBR-cliques to speed up the discovery. The MBR-
clique searching algorithm is illustrated in Algorithm 1. Before searching for MBR-cliques,
(step 1) EDAM scans all the MBRs, (step 2 and 3) and filters out the MBRs which is empty.
(step 4 and 5) EDAM searches for the MBRs that store the frequency vectors from the first
sample sequences1, (step 6) initializes them as the 1-MBR-cliques, then extends these
1-MBR-cliques toq-MBR-cliques. (step 7) EDAM discovers motifs in the MBR-cliques.

Algorithm 1 MBRClique()
Input: the MBR setsmbrthat all the MBR in
Output: all the MBR-clique
1: FOR∀mbr ∈ smbr
2: IF mbr is empty
3: filter outmbr from smbr
4: FOR∀mbr ∈ smbr
5: IF mbr.sequence = 1
6: extending the 1-MBR-cliqueMC1 to aq-MBR-cliqueCq

7: searching for the motifs inCq

For the motif pattern generally is short, the number of MBR is not large compared with
the number of frequency vectors, and MBR-clique searching only takes a small part of the
total running time for EDAM.

3.3. Motif Discovery

In this section, we illustrate the algorithm for finding motifs in the MBR-cliques found
by MBR-clique searching. To discover the cliques representing the motifs, we employ a
simple idea extending a known(k − 1)-clique with its neighbor to ak-clique.

The motifs discovery problem implies us that for every sample sequencesi, there is one
and only one vector fromsi in the clique representing a motif. Following this clue, EDAM
first finds a known cliqueC = {v1, v2, . . . , vk} (k ≤ q), and every vectorvi (1 ≤ i ≤ k)
in C representing a substring from the sequencesi, then searches for a neighborv which is
from the sequencesk+1 to extendC. Since any single vector makes up a 1-clique, in this
way, EDAM can iteratively extend the 1-cliques made up of a vector froms1 to q-cliques
composed of vectors from every sample sequence.

Since the neighborv must be similar to all the vectors inC, the extension has to calcu-
late totallye(k−1) times hamming distance (there are e neighbors). These calculations for
extension cause a running time bottleneck for applications. To resolve this problem EDAM
sets a signature on every neighborne of C

′
= {v1, v2, . . . , vk−1}, if hd(ne, vk) ≤ d, ne

is also a neighbor ofC = {v1, v2, . . . , vk−1, vk}. EDAM can set the signature iteratively,
because every vector is a neighbor of 0-clique.

Theorem 4. Cliques combination property.Given a hamming distanced, and twok-
cliquesC1 = {v1, v2, . . . , vk−1, v

′} andC2 = {v1, v2, . . . , vk−1, v
′′}

if hd(v
′
, v
′′
) ≤ d then C3 = {v1, v2, . . . , vk−1, v

′
, v
′′} (7)
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After the neighbors of thek-cliques have been found, we will extend the(k + 1)-
cliques to discovery larger motifs. For only a few of the new discovered(k + 1)-cliques
can be extended toq-cliques, it is necessary to prune the cliques namedspurious cliques
which can not be extended toq-cliques. According to the clique definition, if the(k + 1)-
clique Ck+1 = {v1, v2, . . . , vk+1} can be extended toq-clique Cq = {v1, v2, . . . , vq},
the neighborvk+1 of Ck must be similar to every vectorvi(k + 2 ≤ i ≤ q). Thus, we
use a range query based on the Theorem 2 to prune some spurious cliques. There are
two important parametersv andr in range query,v is the query vector andr is the range
radius. A range queryR(v, r) is to record the MBRs whose distances tov are withinr. To
prune some spurious cliques, we set the neighborvk+1 as the query vector and the hamming
distance2d as the radius, then propose a rang queryR(vk+1, 2d) in the MBR-clique. Based
on Theorem 2, if any MBR in the MBR-clique is outside the range query, thenCk+1 is a
spurious clique, thus, EDAM prunes it to avoid unnecessary clique discoveries.

We describe the algorithm on the clique extension for finding motifs illustrated by Al-
gorithm 2. Since every vector is a neighbor of 0-clique,EDAM initializesvector1 from s1

as the neighbor of 0-clique, and initializes the MBR-clique in whichvector1 stored as the
query MBR-clique. (step 1-2) For every vectorv in the query MBR-cliquembrClique, the
algorithm calculates the hamming distance betweenv and the neighborvectork. If there
is no vector in the known cliqueCk that comes from same sequence asv does, moreover
hd(v, vectork) ≤ 2d and the signature onv has indicatedv is a neighbor ofCk−1, then it
is a neighbor of the cliqueCk. Thus, (step 3) the algorithm resets a signature onv. (step
4) After every neighbor has been set signatures, EDAM extendsCk for finding q-cliques.
(step 5) ifv comes from the sequence next tovectork does,Ck+1 = Ck ∪ {v} makes up a
known(k+1)-clique. (step 6) If theCk+1 is aq-clique, (step 7) all the vectors inCk+1 that
represent the occurrences of a motif are recorded. (step 8) IfCk+1 is not spurious, (step 9)
the algorithm extendsCk+1 for further clique discovery. (step 10) Afterv is extended, ifv
has been set a signature, (step 11) the algorithm resets the signature onv.

Algorithm 2 searchMotifs()
Input: a knownk-cliqueCk = {vector1, vector2, . . . , vectork} ; a neighborvectork ; the query MBR-
cliquembrClique ;
Output: all the motifs

1: FOR∀ v ∈mbr

2: IF hd(v, vectork) ≤ 2d and v.sequence > vectork.sequence and v.signature =

vectork.sequence− 1
3: v.signature = vectork.sequence

4: FOR∀ v ∈mbr

5: IF v.sequence = vectork.sequence + 1 andv.signature = vectork.sequence
6: IF {vector1, . . . , vectork, v} hasq vectors
7: record all the vectors{vector1, vector2, . . . , v}, which represents a motif.
8: ELSE IF RangeQuery(v, mbr)=false
9: searchMotifs(v, mbr).

10: IF v.signature = vectork.sequence
11: v.signature = vectork.sequence− 1.
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4. Analysis

In this section, we give an analysis of the time and space complexity of EDAM and WIN-
NOWER.

4.1. Space complexity

For the sample sequencesS = {s1, s2, . . . , sq} , there are aboutN =
∑q

j=1 lenj sub-
sequences. The spaces for WINNOWER are primarily composed by two parts: nodes
and edges in the graph. For WINNOWER constructs a node for each valid subsequence
in the sample sequences, it needsO(N) nodes andpdO(N2) edges, thereby, the WIN-
NOWER’s space complexity isO(N2). The spaces for EDAM are also composed by two
parts: frequency vectors and MBRs. EDAM transforms subsequences divided for the sam-
ple sequences into the frequency vectors, thereby, there areO(N) frequency vectors. If
the MBR width isw, for every sequencesi ∈ S, EDAM at most constructs(l/w)4 MBRs.
Sincel ¿ N , the EDAM’s space complexity is approximatelyO(N).

4.2. Time complexity
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Figure 1. The contrast between the time complexity analysis and the performance of EDAM of motif discovery
in 15 4KB length sequences with increasing distance, fixed pattern lengthl = 15.

Given two l-length subsequencess1 and s2, the probabilitypd that hd(s1, s2) ≤ d

equals
∑d

i=0

(
l
i

)(
1
4

)l−i( 3
4

)i
. If the similarity of the vectors inq-clique is completely inde-

pendent (d = l), the probabilitycq thatq vectors make up aq-clique equalsp
(

q
2

)

d . In con-
trast, the similarity of the vectors inq-clique is completely dependent (d = 0), cq equals
pq−1

d . Suppose the length of thejth sample sequence islenj , the expected number ofq-

cliques discovered in the sample sequences is in the interval[p

(
q
2

)

d

∏q
j=1 lenj , pq−1

d

∏q
j=1 lenj ].

The running time of WINNOWER is primarily spent in two parts: graph construction
and clique discovery. For the graph construction has to compute the hamming distances
of every pair nodes, it requires0.5 l N2 calculations. Additionally, since each node
in the graph haspd N edges, WINNOWER requires

∑q
k=1(ck

∏k
j=1 lenj pd N)

calculations to find all theq-clique. In sum the time complexity of WINNOWER is
0.5 l N2 +

∑q
k=1(ck

∏k
j=1 lenj pd N).
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Although EDAM works in three phases, the frequency transformation and MBR-clique
searching only take small part of the total running time(primarily because the number of
MBR is much smaller than the number of vectors). In motif discovery, eachk-clique has
potentialpd+w lenj vectors for further extension. Consequently, the time complexity is∑q

k=1(ck

∏k
j=1 lenj pd+w lenj l). Figure 4 illustrates the time complexity analysis and

the practically performances of WINNOWER and EDAM with the same parameters.

5. Experimental Results

In this section, we illustrate EDAM’s efficiency for discovering motifs in the sample se-
quences. The experiments were performed on a PC with 2.6GHz P4 CPU and 512MB
memory, programmed in JAVA. The sample sequences originated from human gene se-
quences section (chr22) and the MBR width is 2. We do not present the experimental
results in terms of some algorithms used the performance coefficients to the known mo-
tifs, which mainly measure the algorithm results accuracy. Because EDAM uses the same
model (clique) as WINNOWER for finding motifs, and both of the two algorithms can find
out all the global optimal results, thus, the performance coefficients of the two algorithms
are the same. Beside above problem, running time is another big bottleneck, especially
when we discover motifs in large DNA database, so in this paper we compare the running
time of the two algorithms instead.

In Figure 1(b) WINNOWER took up a steady running time for all distances, for the run-
ning time was mostly for the graph construction. The performances of EDAM occurred a
sharp rise as soon as the distance exceeded a percentage of pattern length. The sharp rise re-
veals that the techniques to avoid necessary computations in EDAM are efficient for short
distances, but breaks for the liberal distances. In Figure 2(a) EDAM discovered(2, 15)-
motifs in two different samples: original sample and synthetic sample. The original sample
was from human gene sequences section. The synthetic sample sequences were implanted
a serious of rational motifs with randomly distributed background, thus, the number of the
results in synthetic sample emerged an outstanding increment over original sample. Due
to the effect of the number of results, the running time in the synthetic sample was over in
original sample for all the distances.Due to avoiding unnecessary computations, in Figure
2(b) EDAM’s merit was obvious for the pattern length increment, whereas WINNOWER
did not appear any distinct change. With the increment of the number of sequences in these
sample, in Figure 2(c) the running time of WINNOWER for(2, 15)-motifs occurred a dis-
tinct rise, however, the running time of EDAM rose smoothly (we stopped the tests whose
running time were more than one hour). Figure 2 imply that in the tests with a few number
of the results or low distance-pattern ratio, EDAM performs better than WINNOWER. It
is because EDAM well approximates hamming distance by frequency distance and avoids
most of the unnecessary computations. On the other side, the merits are not so distinct.

6. Conclusions and Discussions

Although the motif discovery problem has a long history, it is still far away from being
resolved. The well-known algorithm WINNOWER shows better performances than other
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Figure 2. The performances of WINNOWER and EDAM with different parameters.

algorithms, but it still has some shortages. In this paper, we suggest a unique algorithm
EDAM using frequency transformation and MBR techniques to solve the running time
problem of WINNOWER. The experimental results indicate that EDAM is more efficient
than WINNOWER for motif discovery. Although EDAM shows excellent performances,
further improvements are still necessary.

References

1. X. Dong, S. Y. Sung, W. Sung and C. L. Tan. Constraint based method for finding motifs in DNA sequences.
In proc. BIBE’04, 2004.

2. M.Lapidot and Y. Pilpel. Comprehensive quantitative analyses of the effects of promoter sequence elements
on mRNA transcription.Nucleic Acids Research, Vol. 31, No.13,3824C3828,2003

3. J. Shapiro and D. Brutlag. FoldMiner: Structural motif discovery using an improved superposition algorithm.
Protein Science, 13:278C294,2004.

4. R .Sharan, I.Ovcharenko, A.Ben-Hur, and R.M. Karp. CREME: a frame work for identifying cis-regulatory
modules in human-mouse conserved segments.Bioinformatics, 19 (Suppl1), I283-I291,2003.

5. G. Hertz, and G. Stormo. Identifying DNA and protein patterns with statistically significant alignments of
multiple sequences.Bioinformatics 14:563-577, 1999.

6. M. Jerrum. Large cliques elude the Metropolisprocess.Random Structures and Algorithms 3(4):347-
359,1992

7. C.T.Workman and G.D. Stormo. ANN-Spec:a method for discovering transcription factor binding sites with
improved specificity.Pac.Symp.Biocomput.,467-478,2000.

8. A. Brazma, I. Jonassen, I. Eidhammer and D. Gilbert. Approaches to the automatic discovery of patterns in
biosequences.Journal of Computational Biology 5:278-305, 1998.

9. M. Li, B.Ma and L. Wang. Finding similar regions in many strings.In proceedings of the 31st ACM Annual
Symposium on Theory of computing.473-482, 1999.

10. X. Liu , D.L. Brutlag and J. S. Liu. BioProspector:discovering conserved DNA motifs in upstream regulatory
regions of co-expressed genes.Pac Symp Biocomput 127-38, 2001.

11. X. Liu, D.L. Brutlag and J. S. Liu. An algorithm for finding protein-DNA binding sites with applications to
chromatin-immunoprecipitation microarray experiments.Nat biotechnol 835-9, 2002.

12. P. A. Pevzner and S. H. Sze. Combinatorial approaches to finding subtle signals in DNA sequences.In Proc.
ISMB’00, 2000.

13. R. V. Satya, A. Mukherjee and U. Ranga. A Pattern Matching Algorithm for Codon Optimization and CpG
Motif engineering in DNA Expression Vectors.In proc. CSB’03, 2003.

14. M. Garofalakis and A. Kumar. Deterministic Wavelet Thresholding for Maximum-Error Metrics.In proc.
PODS’04, 2004.

15. T. Kahveci and A. K. Singh. An Efficient Index Structure for String Databases.In proc. VLDB’01 351-360,
2001.


