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Microarray gene expression data often contains missing values resulted from various reasons. How-
ever, most of the gene expression data analysis algorithms, such as clustering, classification and net-
work design, require complete information, that is, without any missing values. It is therefore very
important to accurately impute the missing values before applying the data analysis algorithms. In this
paper, anIterated Local Least Squares Imputation method(ILLsimpute) is proposed to estimate the
missing values. In ILLsimpute, a similarity threshold is learned using known expression values and
at every iteration it is used to obtain a set of coherent genes for every target gene containing missing
values. The target gene is then represented as a linear combination of the coherent genes, using the
least squares. The algorithm terminates after certain iterations or when the imputation converges. The
experimental results on real microarray datasets show that ILLsimpute outperforms three most recent
methods on several commonly tested datasets.
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1. Introduction

DNA microarray experiments are extensively used to monitor the expression of a large
amount of genes under various conditions. Associated with mathematical analysis meth-
ods, DNA microarray has important applications in biological and clinical studies. The
data generated from a set of microarray experiments is usually expressed as a large matrix,
with the expression levels of genes in rows, and the experimental conditions ordered in
columns.7 In other words, letGm×n = (gij)m×n be the expression matrix ofm genes in
n experiments. Thengij records the expression level of thei-th gene in thej-th experi-
ment. One frequent issue that affects microarray data analysis is the existence of missing
values, that is, matrixGm×n could contain many entries with unknown expression levels.
A number of reasons could lead to the missing data, including insufficient resolution, im-
age corruption, or even dust and scratches on the slides.7 On the other hand, most of the
microarray data analysis algorithms, such as gene clustering, disease (experiment) classi-
fication, and gene network design, require the complete information. In other words, they
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require matrixGm×n contains no missing values. It is therefore very important to accu-
rately estimate the missing values in matrixGm×n, if any, before we can apply the data
analysis algorithms. One straightforward solution is to repeat the experiments a sufficient
amount of times1,7 and use a combination of them to obtain a complete expression matrix.
It is easily seen that such an approach is very costly and inefficient. Moreover, a portion of
expression information would be wasted.

There are several proposals on effectively imputing the missing values, without extra
experiments, through taking advantage of modern mathematical and computational tech-
niques. To name a few, Troyanskayaet al.7 proposed aweightedK-nearest neighbor
method (KNNimpute) and asingular value decompositionmethod (SVDimpute) to impute
the missing values. In more details, KNNimpute method selects for every target geneK

nearest neighboring genes from the entire set of genes (one measure of distance will be de-
tailed in Section 2). It then uses weighted linear combinations of these neighboring genes
to predict the missing values in the target gene. In SVDimpute method, from the expression
matrix Gm×n, a set of mutually orthogonal expression patterns (calledeigengenes) is ob-
tained that can be linearly combined to approximate the expression levels of all the genes.
Subsequently,K most significant eigengenes are selected to estimate the missing values.
It has been shown7 that KNNimpute works well on static microarray data and noisy time
series microarray data; SVDimpute performs better on time series microarray data with low
noise levels.7 In year 2003, Obaet al.4 proposed a novel missing value estimation method
based onBayesian Principal Component Analysis(BPCA), which estimates a probabilistic
model and latent variables within the framework of Bayesian inference. More recently,
Kim et al.3 successfully appliedLocal Least Squares Imputation(LLSimpute) method to
estimate the missing values. In LLSimpute, a target gene with missing values is modeled as
a linear combination ofK coherent genes that were found using nearest neighbor method,
whereK is learned using known expression values.

In this paper, we propose a novel iterated way of using local least squares to more accu-
rately impute the missing values —Iterated Local Least Square Imputation(ILLsimpute).
Note that in most existing imputation methods, a constantK coherent genes are selected
for a target gene. This constant is usually pre-specified, though in LLSimpute it is learned
out of the microarray dataset. But they select for every target geneK coherent genes. In
our ILLsimpute, we do not put a hard constraint on the numbers of coherent genes picked
for target genes, i.e., they may vary. In fact, the known expression values in the microarray
dataset are used to learn athresholdof similarity to obtain a set of coherent genes for every
target gene. Subsequently, the target gene is represented by a linear combination of those
coherent genes using the local least squares, and the missing values are estimated as done
in LLSimpute method. The process is repeated for a number of iterations or terminates
when the imputed values converge. The detailed steps of operations in ILLsimpute will
be presented in Section 2. We have compared the performance of ILLsimpute with three
other most recent methods, namely, BPCA and LLSimpute, and KNNimpute method on
six microarray datasets that we were able to obtain using a number of different percentages
of missing values. The detailed experimental results are summarized in Section 3. Finally,
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we conclude the paper in Section 4 with some future works and discussions.

2. Iterated Local Least Squares Imputation — ILLsimpute

Again, letGm×n denote the gene expression matrix form genes inn experiments. Note
that in general we havem � n. gij denotes the expression level of thei-th gene in the
j-th experiment. TheIterated Local Least Squares Imputation(ILLsimpute) method is
made up of two parts: In the first part, a similaritythresholdis estimated using the known
expression values inGm×n. In the second part, thethresholdis used in LLSimpute method
for several iterations to obtain the final estimated values for the missing entries inGm×n.
In what follows, we introduce how LLSimpute method3 works and then how we estimate
the similaritythresholdfor finding a set of coherent genes for each target gene.

First of all, we introduce a distance measure between two genes, which is adopted
throughout the paper in finding coherent genes for a target gene. Atarget gene is one
that contains missing values to be estimated. To determine its coherent genes, for every
other gene, the missing values are filled with the average of the known expression levels
of the gene, calledrow average. Then, ignoring those entries in the gene that correspond
to missing value columns in the target gene, as well as those missing value columns in the
target gene, we have two complete vectors of (known or row average) expression levels,
whose Euclidean distance is taken as the distance between the candidate gene and the tar-
get gene. For example, if the target gene is(U, 1.5, U, 2.0,−0.5, U, 3.3), whereU stands
for unknown, then for gene(1.5, 1.4, U, U,−0.5,−3.9, 3.5) in which the unknowns are
estimated to be15 (1.5 + 1.4 − 0.5 − 3.9 + 3.5) = 0.4, the distance to the target gene
is the Euclidean distance between(1.5, 2.0,−0.5, 3.3) and(1.4, 0.4,−0.5, 3.5), which is√

2.61 ≈ 1.61.

2.1. Local Least Squares Imputation — LLSimpute

Using LLSimpute method to estimate missing values in a target gene, one first chooses
K nearest neighboring genes using the distance measure defined in the above (K to be
determined, Section 2.3). These genes are regarded as coherent genes to the target gene.
The missing values in these coherent genes are filled with their respective row averages.

To explain how local least squares imputation works, we assume without loss of gener-
ality that gene1 is the target gene and it has missing values at the firstn−n′ positions. That
is, g11, g12, . . . , g1,n−n′ are unknown. Suppose theK nearest neighboring genes of gene1
are geness1, s2, . . . , sK . Denote the submatrix ofGm×n containing rows1, s1, s2, . . . , sK

asG′
(K+1)×n. We rewriteG′

(K+1)×n as:


g1

gs1

...
gsK

 =
(

g1×(n−n′) wT

BK×(n−n′) AK×n′

)
=


g11 . . . g1,n−n′ w1 . . . wn′

B11 . . . B1,n−n′ A1,1 . . . A1,n′

...
...

...
...

...
...

BK1 . . . BK,n−n′ AK,1 . . . AK,n′

 .

We then proceed to compute aK-dimensional coefficient vectorx such that the square
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|AT x− w|2 = (AT x− w)T (AT x− w) is minimized, that is,

min
x
|AT x− w|2.

Let x∗ denote the vector such that the square is minimized, that is,

w ' AT x∗ = x∗1a1 + x∗2a2 + . . . + x∗KaK .

Therefore, we may take

g∗1×(n−n′) = BT x∗ = x∗1B1 + x∗2B2 + . . . + x∗KBK

as an estimation for the missing valuesg1×(n−n′).

2.2. Measures of Performance

The performance of an imputation method, or theimputation accuracy, is generally mea-
sured by thenormalized root mean squared error(NRMSE). LetS be the set of expres-
sion matrix entries containing missing values. Since these missing values were simulated
(see Section 3.1 for more details), every entryxi ∈ S has its true expression valueai.
The imputed value for this entry isa∗i . The difference|a∗i − ai| is the imputation er-
ror associated with this entryxi. Let µ denote the mean of all squares of errors, i.e.
µ = 1

|S|
∑

xi∈S(a∗i − ai)2, andσ denote the standard deviation of all the true expres-

sion values for these entries, i.e.σ =
√

1
|S|

∑
xi∈S(ai − ā)2, whereā = 1

|S|
∑

xi∈S ai is

the mean of these true expression values. Then, NRMSE is defined to be

NRMSE =
√

µ

σ
.

Clearly, the lower NRMSE, the better performance the method has.

2.3. Nearest Neighboring Gene Determination

In LLSimpute method, there is a stage to determine the value for parameterK, before
actually doing the imputation. For every target gene, it first replaces every missing value in
the other genes by its row average, as is done in the distance calculation. Then, for every
gene, a certain number of known expression levels are erased to create the so-calledknown
missing values. For every value ofK ranging from1 to the total number of genes in the
dataset, it runs LLSimpute once to estimate theseknown missing valuesand calculates the
imputation accuracy, measured by NRMSE. The value that achieves the best imputation
accuracy is chosen forK. It’s worth mentioning that when there are at least400 complete
genes, only the complete genes are considered as candidate neighboring genes.

Note that onceK is determined, LLSimpute method finds exactlyK coherent genes
for every target gene, regardless however quality difference is for different target genes.
We have observed that some target genes seem to have closer coherent genes while for
the others the coherent genes are not necessarily similar. Therefore, it is more reasonable
to assume that different target genes have different numbers of coherent genes. We have
decided not to constrain the number of coherent genes, but to set up a distancethreshold
to cut off dissimilar genes. That is, only those genes within distancethresholdto the target
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gene are selected as coherent genes. We setthresholdto mean × ratio, wheremean

is the average distance of all other genes to the target gene andratio is a constant to be
determined.

We have tried several ways to determineratio. In one way, we followed the determi-
nation ofK in LLSimpute method. That is, we filled in the original missing values by their
respective row averages, and then erased a certain number of known expression levels to
create theknown missing values. We then tried different values forratio, ranging from0.5
to 1.5 with an increment of0.1, and picked the one that achieves the best imputation accu-
racy through running LLSimpute method once to be the value forratio. In another way,
we tried a greedy fashion in whichratio was set initially to1.0, and then it was increased
or decreased by0.1 depending on the direction leading to better imputation accuracy. The
process was terminated when there was no better imputation accuracy could be achieved
and the finalratio could be considered as a local optimum. Note that in the second way,
we allowedratio to go beyond0.5 and1.5.

In the third and the fourth ways ofratio determination, we first calculated the percent-
age of missing values in the dataset, i.e. themissing rate, then removed genes containing
missing values from the dataset to obtain a complete dataset, and created a same percentage
of known missing values. This new dataset, though smaller, was used to determineratio,
again by two approaches as in the last paragraph.

Among these four ways ofratio determination, we found out that the first way leads
to the best performance. The reported results in Section 3 were obtained usingratio deter-
mined in the first way.

2.4. Iterated Local Least Squares Imputation — ILLsimpute

Using the determinedratio (or equivalently, similaritythreshold), in the first iteration, our
method ILLsimpute selects the coherent genes for every target gene and then runs LLSim-
pute to estimate the missing values. Afterwards, at each iteration, ILLsimpute uses the
imputed results from last iteration tore-selectthe coherent genes for every target gene, us-
ing the sameratio. Note that the difference in the first iteration is that row averages were
used to select the coherent genes. ILLsimpute then applies again LLSimpute method once
to re-estimateeach of the missing values. ILLsimpute terminates after a pre-specified num-
ber of iterations or when the re-imputed values in the current iteration have no differences
to the imputed values in the preceding iteration, that is, the imputed values converge. In
our implementation, we found out that convergence usually took hundreds of iterations and
according to literature discussions we have decided to set the number of iterations to5.

3. Experimental Results

We compared the performance of our method ILLsimpute to three other most recent meth-
ods, namely, BPCA, LLSimpute, and KNNimpute method.

3.1. Datasets

We have obtained six microarray datasets for our comparison purpose. The first four
datasets are from Spellmanet al.,5 which were used for identification of cell-cycle regulated
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genes in yeastSaccharomyces cerevisiae. These datasets were obtained from the file ‘CD-
CDATA.txt’ following link http://genome-www.stanford.edu/cellcycle/
data/rawdata/ . There are three parts in the file: Alpha-part, Cdc part and Elu part.
There are6178 genes in the original file. The first datasetalpha-datasetand the second
elu-datasetare the Alpha-part and the Elu-part in the file, respectively, obtained by re-
moving genes with missing values in any part. Both datasets contain4304 genes, with
alpha-dataset in18 experiments and elu-dataset in14 experiments, respectively.

Again from the original file, consider only those C-genes (i.e., YAC, YBC,. . ., YPC
genes) in the last14 columns. Removing genes with missing values gives uscyc-a-dataset
that contains2865 genes in14 experiments. Another way is to remove genes as long as
they contain a missing value in any column in the original file. This gives a much smaller
datasetcyc-b-datasetthat contains242 genes in14 experiments.

The fifth dataset was from a study of response to environmental changes in yeast2 and
can be retrieved through linkhttp://www-genome.stanford.edu/Mec1/data/
DNAcomplete dataset/ . It contains6167 genes in52 experiments. We first removed
experiments/columns that have more than2% missing values, and then removed genes still
containing missing values, to obtainenv-datasetthat contains5431 genes in13 experi-
ments.

The sixth dataset is the cDNA microarray data relevant to human colorectal cancer
(CRC) studied in Takemasaet al.,6 called ta.crc-datasetand containing758 genes in50
samples.

We note that alpha-dataset, elu-dataset, and ta.crc-dataset have been used in the studies
of BPCA4 and LLsimpute.3

3.2. Threshold Determination in ILLsimpute

As explained in Section 2.3, we have tried4 different ways to determine the best value
for ratio and we have decided to go with the first way. Figure 1 plots the NRMSE values
achieved by ILLsimpute using differentratio values on elu-dataset and cyc-b-dataset both
with 10% missing rate. We have tested allratio values from0.5 to 1.5 with an increment of
0.1. We remark that the best value forratio is dataset dependent, for example, it is0.6 and
0.9 for elu-dataset and cyc-b-dataset, respectively. (The greedy way ofratio determination
gave both1.0 for elu-dataset and cyc-b-dataset, and the subsequent NRMSE was0.246 and
0.283, respectively.)

3.3. Number of Iterations Determination in ILLsimpute

Though we expect that the imputed missing values converge, we found out that ILLsimpute
method took a large number (in hundreds) of iterations when the maximum number of
iterations was not specified. We have also observed that sometimes even at convergence
point ILLsimpute method didn’t necessarily achieve the best NRMSE values. Figure 2 plots
the NRMSE values achieved by ILLsimpute method using different maximum numbers of
iterations, ranging from1 to 10, on elu-dataset with10% missing rate andratio set to0.6
and cyc-b-dataset with10% missing rate and ratio set to0.9 — the best values forratio.
On both cases, the best NRMSE values were achieved in5 iterations. Therefore, according

http://genome-www.stanford.edu/cellcycle/data/rawdata/
http://genome-www.stanford.edu/cellcycle/data/rawdata/
http://www-genome.stanford.edu/Mec1/data/DNAcomplete_dataset/
http://www-genome.stanford.edu/Mec1/data/DNAcomplete_dataset/
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Figure 1. NRMSE values for ILLsimpute on elu-dataset and cyc-b-dataset both with10% missing rate, w.r.t.
differentratio values.

to these results and some discussions in the literature we have chosen5 iterations to be used
in the other experiments.
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3.4. Imputation Accuracy Comparison

The six datasets we have at hand were obtained through throwing away genes containing
missing values from the original files. That is, they no longer contain any missing values.
In the experiments, we randomly removed some percentage, i.e. missing rate, of expres-
sion levels to create missing values, then applied four imputation methods, KNNimpute,
ILLsimpute, BPCA, and LLSimpute, to estimate them. The performances of the methods
were measured by NRMSE values. Recall that for each dataset we needed to estimate the
value forratio in ILLsimpute (estimate the value forK in LLSimpute as well), but the
number of iterations was fixed at5. Table 1 summarizes the best values forratio (and the
average number of coherent genes for all target genes in all5 iterations) in ILLsimpute and
the best values forK in LLSimpute on cyc-b-dataset with different missing rates. We have
tried several different values forK in KNNimpute, and found out thatK = 10 gave the
best accuracy. The reported results for KNNimpute method were obtained usingK = 10.
It is interesting to note that in ILLsimpute method the average numbers of coherent genes
for all target genes in each iteration only differ at most1 (results not reported), though for
individual targets their numbers of coherent genes vary a lot. Also is interesting is that
these average numbers differ quite a lot from thoseK values in LLSimpute method, which
could contribute to the improved imputation accuracies of ILLsimpute.

Table 1. The best values forratio in ILLsimpute and the resultant average numbersK of coherent
genes for all target genes, the best values forK in LLSimpute, and NRMSE values for all four
methods, on cyc-b-dataset with different missing rates. Accuracies in bold are the best ones among
all four (cf. Figure 3(d)).

1% 2% 3% 4% 5% 10% 15% 20%

ratio 0.9 0.9 1.2 0.9 1.3 0.8 1.4 1.3

K 139 139 181 139 190 119 197 190

ILLsimpute NRMSE 0.118 0.098 0.123 0.135 0.139 0.281 0.318 0.356

BPCA NRMSE 0.086 0.111 0.225 0.339 0.368 0.409 0.398 0.400

KNNimpute NRMSE 0.552 0.534 0.516 0.511 0.519 0.531 0.539 0.541

LLSimpute NRMSE 0.165 0.184 0.225 0.238 0.247 0.353 0.373 0.393

K 140 140 140 140 210 210 210 210

From the plots of NRMSE values (Figure 3) achieved by all four methods on six
datasets, we can see that KNNimpute method always performs the worst. For all the other
three methods, they perform equally well on env-dataset and ta.crc-dataset. In fact, from
Figures 3(e) and 3(f), it is hard to tell which one of them performs better than the other
two except KNNimpute. All three methods again perform equally well on alpha-, elu-, and
cyc-a-datasets when the missing rate is small, i.e. less than5% (cf. Figures 3(a), 3(b),
and 3(c)). However, their performances differ when the missing rate is large. Typically,
our method ILLsimpute performs very close to BPCA, though still a little better, and both
of them outperform LLSimpute. On cyc-b-dataset, except1% missing rate, our method
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IILsimpute outperforms BPCA, LLSimpute, and KNNimpute, and the difference is larger
at the practical cases where the missing rate is5–10%.

From all these results, we might be able to claim that our method ILLsimpute performs
better than both BPCA and LLSimpute, the two most recent imputation methods, or at least
as well as they perform.

4. Conclusions

We have proposed a novel iterated version of Local Least Squares Imputation (ILLsimpute)
method to estimate the missing values in microarray data. In ILLsimpute, the number
of nearest neighbors for every target gene is automatically determined, rather than pre-
specified in most existing imputation methods. The experimental results on six real mi-
croarray datasets show that ILLsimpute outperforms three most recent imputation methods
BPCA, LLSimpute, and KNNimpute, or at least equally well, on all datasets with simulated
missing values.
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(d) cyc-b-dataset.
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(e) env-dataset.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

1% 2% 3% 4% 5% 10% 15% 20%

N
R
M
S
E

Missing rate

ILLsimpute
LLSimpute

BPCA
KNNimpute

(f) ta.crc-dataset.

Figure 3. NRMSE comparisons for ILLsimpute, BPCA, LLSimpute, and KNNimpute on six datasets with vari-
ous percent of missing values.


