October 7, 2005 10:23 Proceedings Trim Size: 9.75in x 6.5in ILLsimpute

MICROARRAY MISSING VALUE IMPUTATION BY ITERATED LOCAL
LEAST SQUARES *

ZHIPENG CAI', MAYSAM HEYDARI fAND GUOHUI LIN ¥

Bioinformatics Research Group, Department of Computing Science, University of Alberta.
Edmonton, Alberta T6G 2E8, Canada.
Emails: zhipeng,maysam,ghlin@cs.ualberta.ca

Microarray gene expression data often contains missing values resulted from various reasons. How-
ever, most of the gene expression data analysis algorithms, such as clustering, classification and net-
work design, require complete information, that is, without any missing values. It is therefore very
important to accurately impute the missing values before applying the data analysis algorithms. In this
paper, arterated Local Least Squares Imputation mettftid simpute) is proposed to estimate the
missing values. In ILLsimpute, a similarity threshold is learned using known expression values and
at every iteration it is used to obtain a set of coherent genes for every target gene containing missing
values. The target gene is then represented as a linear combination of the coherent genes, using the
least squares. The algorithm terminates after certain iterations or when the imputation converges. The
experimental results on real microarray datasets show that ILLsimpute outperforms three most recent
methods on several commonly tested datasets.
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1. Introduction

DNA microarray experiments are extensively used to monitor the expression of a large
amount of genes under various conditions. Associated with mathematical analysis meth-
ods, DNA microarray has important applications in biological and clinical studies. The
data generated from a set of microarray experiments is usually expressed as a large matrix,
with the expression levels of genes in rows, and the experimental conditions ordered in
columns? In other words, leGG,, ., = (gi5)mxn be the expression matrix @ genes in

n experiments. Thep;; records the expression level of th¢h gene in thej-th experi-

ment. One frequent issue that affects microarray data analysis is the existence of missing
values, that is, matri%s,,, «», could contain many entries with unknown expression levels.

A number of reasons could lead to the missing data, including insufficient resolution, im-
age corruption, or even dust and scratches on the slidesthe other hand, most of the
microarray data analysis algorithms, such as gene clustering, disease (experiment) classi-
fication, and gene network design, require the complete information. In other words, they
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require matrixG,, «x, contains no missing values. It is therefore very important to accu-
rately estimate the missing values in mate¥y, .., if any, before we can apply the data
analysis algorithms. One straightforward solution is to repeat the experiments a sufficient
amount of time&? and use a combination of them to obtain a complete expression matrix.
It is easily seen that such an approach is very costly and inefficient. Moreover, a portion of
expression information would be wasted.

There are several proposals on effectively imputing the missing values, without extra
experiments, through taking advantage of modern mathematical and computational tech-
niques. To name a few, Troyanskagtial™ proposed aveighted K-nearest neighbor
method (KNNimpute) and singular value decompositianethod (SVDimpute) to impute
the missing values. In more details, KNNimpute method selects for every targetgene
nearest neighboring genes from the entire set of genes (one measure of distance will be de-
tailed in Sectiof 2). It then uses weighted linear combinations of these neighboring genes
to predict the missing values in the target gene. In SVDimpute method, from the expression
matrix G, xn, a set of mutually orthogonal expression patterns (callgdngenésis ob-
tained that can be linearly combined to approximate the expression levels of all the genes.
SubsequentlyK most significant eigengenes are selected to estimate the missing values.
It has been showithat KNNimpute works well on static microarray data and noisy time
series microarray data; SVDimpute performs better on time series microarray data with low
noise levels! In year 2003, Obat al? proposed a novel missing value estimation method
based oBayesian Principal Component Analy$&PCA), which estimates a probabilistic
model and latent variables within the framework of Bayesian inference. More recently,
Kim et al¥ successfully applietiocal Least Squares Imputati¢hL Simpute) method to
estimate the missing values. In LLSimpute, a target gene with missing values is modeled as
a linear combination of coherent genes that were found using nearest neighbor method,
whereK is learned using known expression values.

In this paper, we propose a novel iterated way of using local least squares to more accu-
rately impute the missing values Herated Local Least Square Imputati¢ihLsimpute).

Note that in most existing imputation methods, a constartoherent genes are selected

for a target gene. This constant is usually pre-specified, though in LLSimpute it is learned
out of the microarray dataset. But they select for every target geneherent genes. In

our ILLsimpute, we do not put a hard constraint on the numbers of coherent genes picked
for target genes, i.e., they may vary. In fact, the known expression values in the microarray
dataset are used to leartheiesholdof similarity to obtain a set of coherent genes for every
target gene. Subsequently, the target gene is represented by a linear combination of those
coherent genes using the local least squares, and the missing values are estimated as done
in LLSimpute method. The process is repeated for a number of iterations or terminates
when the imputed values converge. The detailed steps of operations in ILLsimpute will
be presented in Sectiph 2. We have compared the performance of ILLsimpute with three
other most recent methods, namely, BPCA and LLSimpute, and KNNimpute method on
six microarray datasets that we were able to obtain using a number of different percentages
of missing values. The detailed experimental results are summarized in $éction 3. Finally,
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we conclude the paper in Section 4 with some future works and discussions.

2. Iterated Local Least Squares Imputation — ILLsimpute

Again, letG,, «,, denote the gene expression matrix fergenes inn experiments. Note
that in general we haver > n. g;; denotes the expression level of théh gene in the
j-th experiment. Thdterated Local Least Squares Imputati¢ihLsimpute) method is
made up of two parts: In the first part, a similarityesholdis estimated using the known
expression values i@, x . In the second part, tharesholdis used in LLSimpute method
for several iterations to obtain the final estimated values for the missing entiG&s.in.
In what follows, we introduce how LLSimpute metiarorks and then how we estimate
the similaritythresholdfor finding a set of coherent genes for each target gene.

First of all, we introduce a distance measure between two genes, which is adopted
throughout the paper in finding coherent genes for a target genearglt gene is one
that contains missing values to be estimated. To determine its coherent genes, for every
other gene, the missing values are filled with the average of the known expression levels
of the gene, calledow average Then, ignoring those entries in the gene that correspond
to missing value columns in the target gene, as well as those missing value columns in the
target gene, we have two complete vectors of (known or row average) expression levels,
whose Euclidean distance is taken as the distance between the candidate gene and the tar-
get gene. For example, if the target gen¢lisl.5, U, 2.0, —0.5,U, 3.3), whereU stands
for unknown, then for genél.5,1.4,U,U, —0.5,—-3.9,3.5) in which the unknowns are
estimated to be (1.5 + 1.4 — 0.5 — 3.9 + 3.5) = 0.4, the distance to the target gene
is the Euclidean distance betwegin5, 2.0, —0.5,3.3) and(1.4,0.4,—0.5,3.5), which is
V2.61 ~ 1.61.

2.1. Local Least Squares Imputation — LLSimpute

Using LLSimpute method to estimate missing values in a target gene, one first chooses
K nearest neighboring genes using the distance measure defined in the Abtovdé
determined, Sectign 3.3). These genes are regarded as coherent genes to the target gene.
The missing values in these coherent genes are filled with their respective row averages.

To explain how local least squares imputation works, we assume without loss of gener-
ality that gend is the target gene and it has missing values at thefirst’ positions. That

iS, 911, 912, - - -, §1,n—n’ @re unknown. Suppose te nearest neighboring genes of gene
are genesy, ss, . . ., S . Denote the submatrix @, »,, containing rowd, s1, so, ..., Sk
asG’(KH)Xn. We rewrlteG’(KH)Xn as:

g1 gin --- 9gin-—n’ W1 ... Wy

sy (le(n_n,) wt ) Bii ... Bip—n A1 ... Al

: B BKX(n—n’) AKXn’ N : : : : : :

sy BKl s BK,n—n' AK,I R AK,n’

We then proceed to computefé-dimensional coefficient vectar such that the square
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|ATz —w]? = (ATz — w)T (ATz — w) is minimized, that is,
Hiln |AT 2 — w|?.
Let z* denote the vector such that the square is minimized, that is,
we~ ATx* = afay + whay + ..+ Ticak.
Therefore, we may take
i (nen’) = BTa* = 23By 4+ 23By + ...+ 23 Bx
as an estimation for the missing valugs; (,,—)-

2.2. Measures of Performance

The performance of an imputation method, or ifm@utation accuracyis generally mea-
sured by thenormalized root mean squared err@RMSE). LetS be the set of expres-

sion matrix entries containing missing values. Since these missing values were simulated
(see Section 3]1 for more details), every entfye S has its true expression valug.

The imputed value for this entry is;. The differencela; — a;| is the imputation er-

ror associated with this entry;. Let x denote the mean of all squares of errors, i.e.

uw = Té\ > s.es(a; —a;)?, ando denote the standard deviation of all the true expres-

sion values for these entries, i€.= \/‘1?| > e,es(ai —a)?, wherea = ﬁ D ow,cs @i IS
the mean of these true expression values. Then, NRMSE is defined to be

NRMSE = V#

g

Clearly, the lower NRMSE, the better performance the method has.
2.3. Nearest Neighboring Gene Determination

In LLSimpute method, there is a stage to determine the value for paraifietbefore
actually doing the imputation. For every target gene, it first replaces every missing value in
the other genes by its row average, as is done in the distance calculation. Then, for every
gene, a certain number of known expression levels are erased to create the skrcalied
missing valuesFor every value of< ranging from1 to the total number of genes in the
dataset, it runs LLSimpute once to estimate tHesmvn missing valueand calculates the
imputation accuracy, measured by NRMSE. The value that achieves the best imputation
accuracy is chosen fdt. It's worth mentioning that when there are at le&® complete
genes, only the complete genes are considered as candidate neighboring genes.

Note that onceK is determined, LLSimpute method finds exaclfycoherent genes
for every target gene, regardless however quality difference is for different target genes.
We have observed that some target genes seem to have closer coherent genes while for
the others the coherent genes are not necessarily similar. Therefore, it is more reasonable
to assume that different target genes have different numbers of coherent genes. We have
decided not to constrain the number of coherent genes, but to set up a disii@stw|d
to cut off dissimilar genes. That is, only those genes within disttmesholdto the target
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gene are selected as coherent genes. Weheetholdto mean x ratio, wheremean
is the average distance of all other genes to the target genecaitdis a constant to be
determined.

We have tried several ways to determingio. In one way, we followed the determi-
nation of K in LLSimpute method. That is, we filled in the original missing values by their
respective row averages, and then erased a certain number of known expression levels to
create th&known missing value®Ve then tried different values ferutio, ranging from0.5
to 1.5 with an increment 06.1, and picked the one that achieves the best imputation accu-
racy through running LLSimpute method once to be the valuedoio. In another way,
we tried a greedy fashion in whictutio was set initially tol.0, and then it was increased
or decreased b§.1 depending on the direction leading to better imputation accuracy. The
process was terminated when there was no better imputation accuracy could be achieved
and the finalratio could be considered as a local optimum. Note that in the second way,
we allowedratio to go beyond).5 and1.5.

In the third and the fourth ways efitio determination, we first calculated the percent-
age of missing values in the dataset, i.e. nthiesing rate then removed genes containing
missing values from the dataset to obtain a complete dataset, and created a same percentage
of known missing valuesThis new dataset, though smaller, was used to deternitie,
again by two approaches as in the last paragraph.

Among these four ways ofatio determination, we found out that the first way leads
to the best performance. The reported results in Selclion 3 were obtained wsingeter-
mined in the first way.

2.4. lterated Local Least Squares Imputation — ILLsimpute

Using the determinegdatio (or equivalently, similaritythreshold, in the first iteration, our
method ILLsimpute selects the coherent genes for every target gene and then runs LLSim-
pute to estimate the missing values. Afterwards, at each iteration, ILLsimpute uses the
imputed results from last iteration te-selecthe coherent genes for every target gene, us-
ing the same-atio. Note that the difference in the first iteration is that row averages were
used to select the coherent genes. ILLsimpute then applies again LLSimpute method once
to re-estimateeach of the missing values. ILLsimpute terminates after a pre-specified num-
ber of iterations or when the re-imputed values in the current iteration have no differences
to the imputed values in the preceding iteration, that is, the imputed values converge. In
our implementation, we found out that convergence usually took hundreds of iterations and
according to literature discussions we have decided to set the number of iterations to

3. Experimental Results

We compared the performance of our method ILLsimpute to three other most recent meth-
ods, namely, BPCA, LLSimpute, and KNNimpute method.

3.1. Datasets

We have obtained six microarray datasets for our comparison purpose. The first four
datasets are from Spellmanal.” which were used for identification of cell-cycle regulated
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genes in yeaspaccharomyces cerevisiathese datasets were obtained from the file ‘CD-
CDATA.txt’ following link |http://genome-www.stanford.edu/cellcycle/

data/rawdata/ | There are three parts in the file: Alpha-part, Cdc part and Elu part.
There are5178 genes in the original file. The first datasdpha-dataseand the second
elu-datasetare the Alpha-part and the Elu-part in the file, respectively, obtained by re-
moving genes with missing values in any part. Both datasets co#i3dih genes, with
alpha-dataset ih8 experiments and elu-datasetlihh experiments, respectively.

Again from the original file, consider only those C-genes (i.e., YAC, YBC, YPC
genes) in the lasit4 columns. Removing genes with missing values givesyasa-dataset
that contain2865 genes inl4 experiments. Another way is to remove genes as long as
they contain a missing value in any column in the original file. This gives a much smaller
datasetyc-b-datasethat contain®242 genes inl4 experiments.

The fifth dataset was from a study of response to environmental changes  aegist
can be retrieved through liriktp://www-genome.stanford.edu/Mec1l/data/

DNAcomplete _dataset/ | It contains6167 genes irb2 experiments. We first removed
experiments/columns that have more tR& missing values, and then removed genes still
containing missing values, to obta@mv-datasethat containss431 genes in13 experi-
ments.

The sixth dataset is the cDNA microarray data relevant to human colorectal cancer
(CRC) studied in Takemasat al.® calledta.crc-datasetand containing’58 genes in50
samples.

We note that alpha-dataset, elu-dataset, and ta.crc-dataset have been used in the studies
of BPCA* and LLsimpute?

3.2. Threshold Determination in ILLsimpute

As explained in Sectiop 2.3, we have trigdlifferent ways to determine the best value
for ratio and we have decided to go with the first way. Fidure 1 plots the NRMSE values
achieved by ILLsimpute using differentitio values on elu-dataset and cyc-b-dataset both
with 10% missing rate. We have tested alltio values fronD.5 to 1.5 with an increment of

0.1. We remark that the best value fattio is dataset dependent, for example, 0.6 and

0.9 for elu-dataset and cyc-b-dataset, respectively. (The greedy wayiofdetermination
gave bothl.0 for elu-dataset and cyc-b-dataset, and the subsequent NRMSE24ésnd
0.283, respectively.)

3.3. Number of Iterations Determination in ILLsimpute

Though we expect that the imputed missing values converge, we found out that ILLsimpute
method took a large number (in hundreds) of iterations when the maximum number of
iterations was not specified. We have also observed that sometimes even at convergence
point ILLsimpute method didn’t necessarily achieve the best NRMSE values. Figure 2 plots
the NRMSE values achieved by ILLsimpute method using different maximum numbers of
iterations, ranging from to 10, on elu-dataset witth0% missing rate andatio set t00.6

and cyc-b-dataset with0% missing rate and ratio set b9 — the best values foratio.

On both cases, the best NRMSE values were achievedénations. Therefore, according
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Figure 1. NRMSE values for ILLsimpute on elu-dataset and cyc-b-dataset botH @¥iftmissing rate, w.r.t.
differentratio values.

to these results and some discussions in the literature we have ¢hiteseions to be used
in the other experiments.
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Figure 2. NRMSE values for ILLsimpute on elu-dataset and cyc-b-dataset @fiftmissing rate, after different
numbers of iterations.
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3.4. Imputation Accuracy Comparison

The six datasets we have at hand were obtained through throwing away genes containing
missing values from the original files. That is, they no longer contain any missing values.
In the experiments, we randomly removed some percentage, i.e. missing rate, of expres-
sion levels to create missing values, then applied four imputation methods, KNNimpute,
ILLsimpute, BPCA, and LLSimpute, to estimate them. The performances of the methods
were measured by NRMSE values. Recall that for each dataset we needed to estimate the
value forratio in ILLsimpute (estimate the value fdk in LLSimpute as well), but the
number of iterations was fixed &t Table[l summarizes the best valuesifetio (and the
average number of coherent genes for all target genesfritaHiations) in ILLsimpute and

the best values foK in LLSimpute on cyc-b-dataset with different missing rates. We have
tried several different values fdf in KNNimpute, and found out thak” = 10 gave the

best accuracy. The reported results for KNNimpute method were obtainedAising0.

It is interesting to note that in ILLsimpute method the average numbers of coherent genes
for all target genes in each iteration only differ at mbgtesults not reported), though for
individual targets their numbers of coherent genes vary a lot. Also is interesting is that
these average numbers differ quite a lot from th&sealues in LLSimpute method, which

could contribute to the improved imputation accuracies of ILLsimpute.

Table 1. The bestvalues foutio in ILLsimpute and the resultant average numbgref coherent
genes for all target genes, the best valuesKom LLSimpute, and NRMSE values for all four
methods, on cyc-b-dataset with different missing rates. Accuracies in bold are the best ones among

all four (cf. Figurg 3(d)).

1% | 2% | 8% | 4% | 5% || 10% | 15% | 20%
ratio 09| 09| 12| oo| 13| o8| 14| 13

K 130 | 139| 181 139| 190 119| 197 | 190
ILLsimpute NRMSE || 0.118 | 0.098 | 0.123 | 0.135 | 0.139 || 0.281 | 0.318 | 0.356
BPCANRMSE || 0.086] 0.111 | 0.225 | 0.339 | 0.368 || 0.409 | 0.398 | 0.400
KNNimpute NRMSE || 0552 | 0534 | 0.516 | 0.511 | 0.519 || 0531 | 0.539 | 0.541
LLSimpute NRMSE [| 0.165 | 0.184 [ 0.225 | 0.238 [ 0.247 ]| 0.353 [ 0.373 | 0.393
K 140 | 140| 140| 140| 210 210] 210] 210

From the plots of NRMSE values (Figufé 3) achieved by all four methods on six
datasets, we can see that KNNimpute method always performs the worst. For all the other
three methods, they perform equally well on env-dataset and ta.crc-dataset. In fact, from
Figureq 3(g) anf 3(f), it is hard to tell which one of them performs better than the other
two except KNNimpute. All three methods again perform equally well on alpha-, elu-, and
cyc-a-datasets when the missing rate is small, i.e. lessittatcf. Figureq 3(@)] 3(h),
and[3(c)). However, their performances differ when the missing rate is large. Typically,
our method ILLsimpute performs very close to BPCA, though still a little better, and both
of them outperform LLSimpute. On cyc-b-dataset, excéptmissing rate, our method
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[ILsimpute outperforms BPCA, LLSimpute, and KNNimpute, and the difference is larger
at the practical cases where the missing rate-i9%.

From all these results, we might be able to claim that our method ILLsimpute performs
better than both BPCA and LLSimpute, the two most recent imputation methods, or at least
as well as they perform.

4. Conclusions

We have proposed a novel iterated version of Local Least Squares Imputation (ILLsimpute)
method to estimate the missing values in microarray data. In ILLsimpute, the number
of nearest neighbors for every target gene is automatically determined, rather than pre-
specified in most existing imputation methods. The experimental results on six real mi-
croarray datasets show that ILLsimpute outperforms three most recent imputation methods
BPCA, LLSimpute, and KNNimpute, or at least equally well, on all datasets with simulated
missing values.
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