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In this paper, we give a complete characterization of the existence of a galled-tree network
in the form of simple sufficient and necessary conditions. As a by-product we obtain
as simple algorithm for constructing galled-tree networks. We also introduce a new
necessary condition for the existence of a galled-tree network similar to bi-convexity.

1. Introduction

With the progress of human genome project”, large amount of genomic data is avail-
able. Analysis of this data requires new methods incorporating events such as recom-
bination, gene conversion, horizontal gene transfer and mobile genetic elements®?,
The traditional phylogenetic tree model is not sufficient enymore. In particular, re-
combination attracts much attention, because of its important role in locating genes
influencing complex genetic diseases. A fundamental model which incorporates re-
combinations, phylogenetic networks, was introduced by Wang et al.'®. With no
restrictions on location of recombinations, they showed that the problem of find-
ing a phylogenetic network with minimum number of recombinations is NP-hard.
They also proposed a constrained phylogenetic network model with vertex-disjoint
recombination cycles, called a galled-tree network.

Gusfield et al.% presented a polytime algorithm for constructing a galled-tree
network. The algorithm is based on a number of necessary conditions on the
existence of such networks. Some of these conditions are properties of so-called
“conflict graph”. More necessary conditions were given in the subsequent paper®.
Surprisingly, unlike in case of phylogenetic trees, no characterization is known for
galled-tree networks.

*Research supported in part by PIMS (Pacific Institute for Mathematical Sciences).

tResearch supported in part by NSERC (Natural Science and Engineering Research Council of
Canada) grant.

fResearch supported in part by NSERC (Natural Science and Engineering Research Council of
Canada) grant.



September 28, 2005 14:12 Proceedings Trim Size: 9.75in x 6.5in reconstruction05apbc-final

In this paper, we give a complete characterization for the existence of a galled-
tree network in the form of simple sufficient and necessary conditions. In particular,
we show that two necessary conditions observed by Gusfield et al.® are enough to
guarantee the existence of a galled-tree network. In our model we assumed that
the root of the galled-tree network is labeled by the all-0 sequence. Note that very
recently an algorithm for constructing a galled-tree network without any assumption
on the label of the root (root-unknown network) was presented®. As a by-product,
we obtained a simple algorithm for constructing galled-tree networks. Gusfield et
al.% introduced an interesting necessary condition, called bi-convexity, which they
used to design a fast algorithm for the site consistency problem for a matrix A if
there exists a galled-tree network explaining A. As another by-product, we present
a new necessary condition (bi-inclusiveness) which implies bi-convexity (but not
other way around). Gusfield et al.% conjectured that the minimum vertex cover of a
bi-convex graph can be found in linear time. We show that the cover of a bi-inclusive
graph can be found in linear time assuming we know the order of vertices sorted by
their degrees. Otherwise we need to add the sorting time to the complexity.

2. Preliminaries

The input to the problem is a haplotype n x m matrix A with values in {0,1}
(binary), where each row represents a haplotype sequence of an individual and each
column corresponds to a character (an SNP site in the DNA sequence). The set of
characters is assumed to be the set {1,...,m}. For every character ¢, the sequence
in a row contains in column c¢ the state of character ¢ for that individual. We use
the terms “column” and “character” interchangeably.

We will assume that the edges of structures used to explain the input matrix
(perfect phylogenies, galled-trees) are directed from the root to leaves. An edge
(u,v) is a directed edge from u to v, i.e., u is closer the root than v. We will also
assume that root is labeled with the all-0 sequence. We can also assume that no
column contains only O-states, as such columns do not affect solution to any of the
considered problems. In the following definition we describe two basic operations
on the matrices which we will use frequently.

Definition 2.1. Given an n X m binary matrix A. Let S be a subset of characters
of A. The matrix A[S] is the sub-matrix of A restricted to the columns in S. We
will assume that the names of columns in A[S] are the same as in the original matrix
A. Let z be a binary sequence of length |S|. By A[S]—z, we denote the sub-matrix
of A[S] from which we remove all rows whose strings are identical to z.

2.1. Perfect phylogeny

The main combinatorial tool used in evolutionary biology is the concept of perfect
phylogeny (phylogenetic tree). In our considerations phylogenetic trees appear in
several places (construction of galls, compressed trees for galled-tree networks).
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Definition 2.2. (Perfect phylogeny) Given an n x m binary matrix A. A phyloge-
netic tree on m characters is a rooted tree having each edge labeled with a unique
character in the set {1,...,m}, i.e., no two edges have the same label. Given a phy-
logenetic tree, we assign to each vertex a binary sequence of length m in top-down
fashion as follows: the root is labeled with the all-0 sequence; for every edge (u,v)
labeled with a character ¢, the label of v is obtained from the label of u by changing
0 at position ¢ to 1 (changing state of character ¢). We say that a phylogenetic tree
T ezplains A if each sequence of A (contained in a row) is a label of some vertex in
T. If there is such a tree, we sometimes say A has a perfect phylogeny.

Note that the usual definition of phylogenetic tree T requires the sequences of A
to be contained in the leaves of T. However, such a definition allows for unlabeled
edges along which labels of end vertices do not change. It is easy to convert our
phylogenetic tree to a standard phylogenetic tree. We prefer our definition, as our
phylogenetic trees are more compact.

The following is the classical characterization of the existence of the perfect
phylogenetic tree rediscovered in many papers. Before stating the result we need
the following definition.

Definition 2.3. (Conflicting characters) Given an n x m binary matrix A. Two
characters/columns ¢ and ¢’ conflict in A if Alc,c'] contains three rows with pairs
[0,1],[1,0] and [1,1]. A character is unconflicted if it does not conflict with any
other character.

Theorem 2.1. Given an n X m binary matriz A. There exists a phylogenetic tree
explaining A if and only if no two characters conflict in A.

Note that if we drop the requirement in the definition of phylogenetic trees
to have the root labeled with the all-0 sequence, the above theorem is still true,
although we have to redefine conflicts between characters: ¢ and ¢’ conflict in A if
Ale, ¢'] contains all 4-possible pairs (so-called four-gamete test).

Definition 2.4. Given a tree. If there is a directed path in the tree containing
edges e and €', we say that e and e’ are comparable. Take the shortest such a path.
If e is the first edge on the path, we say that e is an ancestor of €/, and €' is a
descendant of e, and write e < e’. If there is no such path, we say that e and €’ are
incomparable.

Given an n x m binary matrix M. Let T be a phylogenetic tree explaining M.
Define a map e: {1,...,m} = E(T) returning the edge with label ¢ as follows, for
every character ¢, let e(c) = e where e is the edge with the label ¢. Since we assume
that M has no all-0 columns, the map is defined for every character.
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2.2. Definitions of phylogenetic and galled-tree networks

Definition 2.5. A phylogenetic network N on m characters is a directed acyclic
graph containing exactly one vertex (the root) with no incoming edges. Each vertex
other than the root has either one or two incoming edges. If it has one incoming
edge, the edge is called a mutation edge, otherwise it is called a recombination edge.
A vertex z with two incoming edges is called a recombination vertex.

Each integer (character) from 1 to m is assigned to exactly one mutation edge in
N and each mutation edge is assigned one character. Each vertex in IV is labeled by
a binary sequence of length m, starting with the root vertex which is labeled with
the all-0 sequence. Since N is acyclic, the vertices in N can be topologically sorted
into a list, where every vertex occurs in the list only after its parent(s). Using that
list, we can define the labels of the non-root vertices, in order of their appearance
in the list, as follows:

(1) For a non-recombination vertex v, let e be the mutation edge labeled ¢
coming into v. The label of v is obtained from the label of v’s parent by
changing the value at position ¢ from 0 to 1.

(2) Each recombination vertex x is associated with an integer r, € {2,...,m},
called the recombination point for z. Label the two recombination edges
coming to z by P and S, respectively. Let P(z) (S(z)) be the sequence of
the parent of x on the edge labeled P (S). Then the label of z consists of
the first r, — 1 characters of P(x) , followed by the last m —r, + 1 characters
of S(z). Hence P(x) contributes a prefix and S(z) contributes a suffix to
z’s sequence.

Recall that, in this paper, the sequence at the root of the phylogenetic network
is always the all-0 sequence, and all results are relative to that assumption. More
general phylogenetic networks with unknown root were studied in a recent paper by
Gusfield®. Note also that there are slight differences in the definition of phylogenetic
networks from the original definition%'?. We assume that each mutation edge has
exactly one label. Every phylogenetic network without this assumption can be easily
transformed to our model by replacing every mutation edge with multiple labels by a
sequence of edges each having one of these labels, and contracting all mutation edges
without a label. Our assumption results in more compact phylogenetic networks,
however we cannot require that all sequences of an input matrix appear at the leaves
of the network.

Definition 2.6. Given an n x m binary matrix A, we say that a phylogenetic
network N with m characters explains A if each sequence of A is a label of some
vertex in N.

Definition 2.7. (Galled-tree network) In a phylogenetic network N, let v be a
vertex that has two paths out of it that meet at a recombination vertex z (v is
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the lowest common ancestor of the parents of ). The two paths together form a
recombination cycle (). The vertex v is called the coalescent vertex. We say that @
contains a character ¢, if ¢ labels one of the mutation edges of Q.

A phylogenetic network is called a galled-tree network if no two recombination
cycles share an edge. A recombination cycle of a galled-tree network is sometimes
referred to as a gall.

Note that in the original definition of galled-tree network®1? it is required that
recombination cycles do not share vertices. It is easy to see that our modification
is only a minor difference (one can be transformed to the other easily) introduced
for technical reasons.

3. Characterization of the existence of a galled-tree network

In this section we will give a complete characterization of the existence of a galled-
tree network explaining a given matrix A. We will show that two conditions
(Lemma 4 and Theorem 10) in Gusfield et al.%) are also sufficient.

Definition 3.1. Given an n X m binary matrix A. The conflict graph G s has the
vertex set {1,...,m} and for every two characters ¢ and ¢, (¢, ¢') is an (undirected)
edge of G4 if they conflict.

Our characterization of galled-tree networks is presented in the following theo-
rem.

Theorem 3.1. Given an n xm binary matriz A. There exists a galled-tree network
explaining A if and only if every nontrivial component (having at least two vertices)
K of the conflict graph G4 satisfies the following conditions:

(1) K is bipartite with partitions L and R such that all characters in L are
smaller than all characters in R; and

(2) there exists a sequence © # 05| such that A[K] — = has no conflicting
characters.

In the rest of this section we will prove several results which will imply the
theorem. Throughout the rest of the paper, let A be a given n x m binary matrix.
The following crucial result shows that if the condition (2) of Theorem 3.1 is
satisfied then A[K] — z can be explained by a tree with two edge-disjoint branches.

Lemma 3.1. If a component K of G 4 is bipartite with partitions L and R, and
A[K] — x has no conflicting characters for some x # 0Kl then any phylogenetic
tree T explaining A[K] — z has at most two branches. For i = 0,1, let L; (R;) be
the set of all ¢ € L (¢ € R) such that x[c] = i. One possible branch contains all
edges labeled with characters in Ly U Ry, and the other contains all edges labeled
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with characters in Ry U Ly. If T has two branches then they do not share any edge
(recall that we assume that a phylogenetic tree has all edges labeled by characters).®

In the following theorem we will show that if a component of the conflict graph
G 4 satisfies both conditions of Theorem 3.1 then there is a gall explaining A[K].

Theorem 3.2. If a component K of G 4 is bipartite with partitions L and R, A[K]—
x has no conflicting characters for some x # 0K and all vertices in L are smaller
than all vertices in R, then A[K] can be explained by a galled tree containing one
recombination cycle (gall) rooted in the node with label 05! and having = as a label
of the recombination vertez.

Proof. By Lemma 3.1, there is a phylogenetic tree T' explaining A[K] — z with at
most two branches. Let Bp be the branch containing edges labeled with characters
in L1 U Ry, and Bg the branch containing edges labeled with characters in R; U
Ly. If one of these two sets is empty then one of the branches is empty as well.
Furthermore, the vertex labeled 0/ is the only vertex shared by Bp and Bs. Now,
we will add a recombination vertex z into T'. Let yp (ys) be the last vertex on the
branch Bp (Bs). Add two recombination edges (yp, z) labeled P and (ys, z) labeled
S, cf. Figure 1. Set the recombination point r, to any character in {p+1,...,q},
where p is the maximum character in L and ¢ is the minimum character in R. We
will show that the label of recombination vertex z is z, i.e., the gall explains the
matrix A[K].

Figure 1. Construction of recombination cycle using two branches Bp and Bg of the phylogenetic
tree for A[K] — z.

The label of z is formed by concatenating the first r, — 1 characters of P(z)
(see Definition 2.5) with the last |K| — r, + 1 characters of S,. The label P(z)
(respectively, S(z)) has 0 (respectively, 1) in every position ¢ € R; U Ly and 1
(respectively, 0) in every position ¢ € L; U Ry. The label of z at position ¢ € Ly
comes from P(z), hence it has value 0. Similar arguments show that the label of z
agrees with z also on all remaining positions, as required. O

2Due to the space limitation the proof will appear in the journal version.
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In the following we define a compressed matrix which will be used to build
a phylogenetic network. Note that the compressed matrix is similar to the pass-
through matrix*. However, the pass-through matrix does not contain columns for
components of the conflict graph which are singletons.

Definition 3.2. Let Ki,...,K; be the components of the conflict graph G 4.
The compressed matriz C4 is the n x k binary matrix with columns labeled by
Ky,...,Ky. It has 1 inrow i € {1,...,n} and column Kj, j € {1,...,k}, if and
only if the row ¢ in A[Kj] contains at least one 1.

Lemma 3.2. The compressed matriz C 4 has no conflicting characters.”

It follows that the compressed matrix C'4 can be explained by a phylogenetic
tree. We will use this tree to construct the galled-tree network explaining A. Recall
that a phylogenetic tree with a fixed root is unique up to order of edges labeled
with characters having identical columns in the input matrix. From all phylogenetic
trees explaining C'4 we want to pick one satisfying the following condition:

Definition 3.3. A phylogenetic tree T' explaining C'4 is called sorted if for every
two identical columns K; and Kj such that component K; is a singleton and
component K has at least two vertices in the conflict graph, e(K;) < e(Kj).

Following lemma shows that sequences in rows of A behave nicely with respect
to edges in a sorted phylogenetic tree T explaining the compressed matrix C4.

Lemma 3.3. Let T be a sorted phylogenetic tree explaining the compressed matriz
Ca. Assume that e(K;) < e(Kj) in T for some components K; and Kj in G4.
Consider all rows containing a 1 in A[K;], i.e., having 1 in Ca[K;/]. Then all
sequences in these rows in A[K;] are identical and different from the all-0 sequence.

The following algorithm constructs a galled-tree network N4 from a sorted phy-
logenetic tree for C4.

Figure 2. Replacing an edge labeled K; with a gall Q;.

PDue to the space limitation the proofs will appear in the journal version.
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Algorithm 3.1.
Input: An n X m binary matrix A satisfying assumptions of Theorem 3.2.

(1) Construct a sorted phylogenetic tree T of C'4 and for every component K,
Jj€{1,...,k}, of G4, construct the gall @; explaining A[K}].

(2) In top-down fashion process every edge (u,v) labeled K;. If K; is a singleton,
ie., K; = {c}, replace the label of (u,v) by c. Otherwise, replace the edge
with a gall @; for K as follows (cf. Figure 2):

2.1 Remove edge (u,v).

2.2 Identify the coalescent node of the gall Q; with w.

2.3 For every edge (v, w) labeled K, consider any row r containing 1 in
Ca[Kj]. Let s be the sequence in A[Kj;] in row r. By Lemma 3.3,
s # 0/Kil. Since Q; explains A[K}], it contains a vertex v # u labeled
s. Remove the edge (v,w), add the edge (v',w) and label it K.

2.4 Remove vertex v.

(3) To obtain a proper labeling of vertices in N4, compute new labels of length
m using the procedure described in the definition of galled-trees.

The following lemma shows that the algorithm produces essentially unique an-
swer. More precisely,

Lemma 3.4. After constructing a sorted phylogenetic tree T of Ca and galls Q;’s
for every component K; of Ga in Step 1 of Algorithm 3.1, the remaining con-
struction of the algorithm produces unique result (the resulting galled-tree network
depends only on selection of T and Q;’s).

Proof. The only choice we have in the remaining steps of the algorithm is in
Step 2.3 when we can choose any row r containing 1 in C4[Kj/]. The selection of
vertex v’ to which we attach w depends on the sequence s in row r of the matrix
A[K,]. However, by Lemma 3.3, for every row 7' containing 1 in C4[Kj], the
sequence in row ' of the matrix A[K] is also s. O

The question of how many different galls are there for a matrix A[K;] was studied
by Gusfield et al.5. It was shown that there are at most three different galls, and if
there are enough characters in K;, there is only one gall explaining A[K;]. Also note
that the phylogenetic tree T is unique up to arrangement of characters with identical
columns on edges. For our purposes, the fact that Step 2.3 can be performed only
in one unique way is sufficient to show that N4 explains A.

Theorem 3.3. Assume that every non-trivial (with at least two vertices) component
K of G 4 is bipartite with partitions L and R, A[K]|—x has no conflicting characters
for some x # 0K and all vertices in L are smaller than all vertices in R. Then the
galled-tree network N constructed above explains A.

°Due to the space limitation the proof will appear in the journal version.
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It is known that the number of galls in any galled-tree network explaining A is
at least the number of non-trivial components in the conflict graph G 4°. Since the
galled-tree network constructed by Algorithm 3.1 has exactly this number of galls,
the constructed network is optimal.

Obviously, by Theorem 3.2, Algorithm 3.1 cannot fail to construct a galled-tree
network N 4, and by the above theorem, the constructed network explains A. Hence,
we have the following corollary.

Corollary 3.1. If every non-trivial component K of G 4 is bipartite with partitions
L and R, A[K]— z has no conflicting characters for some = # 015! and all vertices
in L are smaller than all vertices in R, then there exists a galled-tree network
explaining A.

Combining the above corollary with the results of Gusfield et al.®, Theorem 3.1
follows.

3.1. Bi-itnclusiveness

Gusfield et al.® introduced an interesting necessary condition for the existence of a
galled-tree network, called bi-convexity.

Definition 3.4. A bipartite graph K with partitions L and R is called convez for
R if the vertices in R can be ordered so that, for each vertex i € L, N (i) forms a
closed interval in R. That is, ¢ is adjacent to j and j' > j in R if and only if i is
adjacent to all vertices in the set {j,...,j'}. A bipartite graph is called bi-convex
if sets L and R can be ordered so that it is simultaneously convex for L and convex
for R.

They used bi-convexity to design a fast algorithm for the site consistency problem
for a matrix A if there is a galled-tree network explaining A. The site consistency
problem for a matrix A is to find a minimum number of columns whose removal from
A results in a perfect phylogeny. The problem was introduced and shown to be NP-
complete!. The problem reduces to finding a minimum vertex cover in the conflict
graph G 4. For bipartite graphs, the vertex cover can be found in polynomial time
and for bi-convex graphs in O(m?) time (recall that m is the number of vertices in
the conflict graph)?. It was conjectured by Gusfield et al.5 that to find a minimum
vertex cover of a bi-convex graph can be done in linear time. We present a new
necessary condition, bi-inclusiveness, which is stronger than bi-convexity (it implies
bi-convexity but not other way round) and observe that the minimum vertex cover
of a bi-inclusive graph can be found in linear time.

Definition 3.5. We say that a collection of sets forms a chain, if there is an order
St1,..., 8k of sets such that S; € So C --- C Si. A bipartite graph K with

3

partitions L and R is bi-inclusive if the sets N(i1),..., N (i) form a chain, where
N(z) denotes the neighborhood of z.
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Note that it is easy to check that the swapping of partitions does not change
the property whether K is bi-inclusive or not.

The next theorem shows that if a matrix A satisfies sufficient and necessary
conditions of Theorem 3.1, i.e., A can be explained by a galled-tree network, then
every component of the conflict graph G 4 is bi-inclusive.

Theorem 3.4. Given an n x m binary matriz A. If a component K of G4 is

bipartite and A[K] — x has no conflicting characters for some x # 0Kl then K is

bi-inclusive.d

Since bi-inclusive graphs are chordal bipartite graphs, a minimum vertex cover
of a bi-inclusive graph can be found in linear time given some additional information
on the graph?. Hence we have the following.

Observation 3.1. A minimum vertex cover in a bi-inclusive graph can be found
in O(mlogm) time and in linear time (O(m)) if the chain order of vertices in one
partition is given.
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