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aIn this paper, we give a 
omplete 
hara
terization of the existen
e of a galled-tree networkin the form of simple suÆ
ient and ne
essary 
onditions. As a by-produ
t we obtainas simple algorithm for 
onstru
ting galled-tree networks. We also introdu
e a newne
essary 
ondition for the existen
e of a galled-tree network similar to bi-
onvexity.1. Introdu
tionWith the progress of human genome proje
t7, large amount of genomi
 data is avail-able. Analysis of this data requires new methods in
orporating events su
h as re
om-bination, gene 
onversion, horizontal gene transfer and mobile geneti
 elements8;9.The traditional phylogeneti
 tree model is not suÆ
ient enymore. In parti
ular, re-
ombination attra
ts mu
h attention, be
ause of its important role in lo
ating genesin
uen
ing 
omplex geneti
 diseases. A fundamental model whi
h in
orporates re-
ombinations, phylogeneti
 networks, was introdu
ed by Wang et al.10. With norestri
tions on lo
ation of re
ombinations, they showed that the problem of �nd-ing a phylogeneti
 network with minimum number of re
ombinations is NP-hard.They also proposed a 
onstrained phylogeneti
 network model with vertex-disjointre
ombination 
y
les, 
alled a galled-tree network.Gus�eld et al.6 presented a polytime algorithm for 
onstru
ting a galled-treenetwork. The algorithm is based on a number of ne
essary 
onditions on theexisten
e of su
h networks. Some of these 
onditions are properties of so-
alled\
on
i
t graph". More ne
essary 
onditions were given in the subsequent paper5.Surprisingly, unlike in 
ase of phylogeneti
 trees, no 
hara
terization is known forgalled-tree networks.�Resear
h supported in part by PIMS (Pa
i�
 Institute for Mathemati
al S
ien
es).yResear
h supported in part by NSERC (Natural S
ien
e and Engineering Resear
h Coun
il ofCanada) grant.zResear
h supported in part by NSERC (Natural S
ien
e and Engineering Resear
h Coun
il ofCanada) grant. 1
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2 In this paper, we give a 
omplete 
hara
terization for the existen
e of a galled-tree network in the form of simple suÆ
ient and ne
essary 
onditions. In parti
ular,we show that two ne
essary 
onditions observed by Gus�eld et al.6 are enough toguarantee the existen
e of a galled-tree network. In our model we assumed thatthe root of the galled-tree network is labeled by the all-0 sequen
e. Note that veryre
ently an algorithm for 
onstru
ting a galled-tree network without any assumptionon the label of the root (root-unknown network) was presented3. As a by-produ
t,we obtained a simple algorithm for 
onstru
ting galled-tree networks. Gus�eld etal.6 introdu
ed an interesting ne
essary 
ondition, 
alled bi-
onvexity, whi
h theyused to design a fast algorithm for the site 
onsisten
y problem for a matrix A ifthere exists a galled-tree network explaining A. As another by-produ
t, we presenta new ne
essary 
ondition (bi-in
lusiveness) whi
h implies bi-
onvexity (but notother way around). Gus�eld et al.6 
onje
tured that the minimum vertex 
over of abi-
onvex graph 
an be found in linear time. We show that the 
over of a bi-in
lusivegraph 
an be found in linear time assuming we know the order of verti
es sorted bytheir degrees. Otherwise we need to add the sorting time to the 
omplexity.2. PreliminariesThe input to the problem is a haplotype n � m matrix A with values in f0; 1g(binary), where ea
h row represents a haplotype sequen
e of an individual and ea
h
olumn 
orresponds to a 
hara
ter (an SNP site in the DNA sequen
e). The set of
hara
ters is assumed to be the set f1; : : : ;mg. For every 
hara
ter 
, the sequen
ein a row 
ontains in 
olumn 
 the state of 
hara
ter 
 for that individual. We usethe terms \
olumn" and \
hara
ter" inter
hangeably.We will assume that the edges of stru
tures used to explain the input matrix(perfe
t phylogenies, galled-trees) are dire
ted from the root to leaves. An edge(u; v) is a dire
ted edge from u to v, i.e., u is 
loser the root than v. We will alsoassume that root is labeled with the all-0 sequen
e. We 
an also assume that no
olumn 
ontains only 0-states, as su
h 
olumns do not a�e
t solution to any of the
onsidered problems. In the following de�nition we des
ribe two basi
 operationson the matri
es whi
h we will use frequently.De�nition 2.1. Given an n�m binary matrix A. Let S be a subset of 
hara
tersof A. The matrix A[S℄ is the sub-matrix of A restri
ted to the 
olumns in S. Wewill assume that the names of 
olumns in A[S℄ are the same as in the original matrixA. Let x be a binary sequen
e of length jSj. By A[S℄�x, we denote the sub-matrixof A[S℄ from whi
h we remove all rows whose strings are identi
al to x.2.1. Perfe
t phylogenyThe main 
ombinatorial tool used in evolutionary biology is the 
on
ept of perfe
tphylogeny (phylogeneti
 tree). In our 
onsiderations phylogeneti
 trees appear inseveral pla
es (
onstru
tion of galls, 
ompressed trees for galled-tree networks).
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3De�nition 2.2. (Perfe
t phylogeny) Given an n�m binary matrix A. A phyloge-neti
 tree on m 
hara
ters is a rooted tree having ea
h edge labeled with a unique
hara
ter in the set f1; : : : ;mg, i.e., no two edges have the same label. Given a phy-logeneti
 tree, we assign to ea
h vertex a binary sequen
e of length m in top-downfashion as follows: the root is labeled with the all-0 sequen
e; for every edge (u; v)labeled with a 
hara
ter 
, the label of v is obtained from the label of u by 
hanging0 at position 
 to 1 (
hanging state of 
hara
ter 
). We say that a phylogeneti
 treeT explains A if ea
h sequen
e of A (
ontained in a row) is a label of some vertex inT . If there is su
h a tree, we sometimes say A has a perfe
t phylogeny.Note that the usual de�nition of phylogeneti
 tree T requires the sequen
es of Ato be 
ontained in the leaves of T . However, su
h a de�nition allows for unlabelededges along whi
h labels of end verti
es do not 
hange. It is easy to 
onvert ourphylogeneti
 tree to a standard phylogeneti
 tree. We prefer our de�nition, as ourphylogeneti
 trees are more 
ompa
t.The following is the 
lassi
al 
hara
terization of the existen
e of the perfe
tphylogeneti
 tree redis
overed in many papers. Before stating the result we needthe following de�nition.De�nition 2.3. (Con
i
ting 
hara
ters) Given an n �m binary matrix A. Two
hara
ters/
olumns 
 and 
0 
on
i
t in A if A[
; 
0℄ 
ontains three rows with pairs[0; 1℄; [1; 0℄ and [1; 1℄. A 
hara
ter is un
on
i
ted if it does not 
on
i
t with anyother 
hara
ter.Theorem 2.1. Given an n�m binary matrix A. There exists a phylogeneti
 treeexplaining A if and only if no two 
hara
ters 
on
i
t in A.Note that if we drop the requirement in the de�nition of phylogeneti
 treesto have the root labeled with the all-0 sequen
e, the above theorem is still true,although we have to rede�ne 
on
i
ts between 
hara
ters: 
 and 
0 
on
i
t in A ifA[
; 
0℄ 
ontains all 4-possible pairs (so-
alled four-gamete test).De�nition 2.4. Given a tree. If there is a dire
ted path in the tree 
ontainingedges e and e0, we say that e and e0 are 
omparable. Take the shortest su
h a path.If e is the �rst edge on the path, we say that e is an an
estor of e0, and e0 is ades
endant of e, and write e � e0. If there is no su
h path, we say that e and e0 arein
omparable.Given an n�m binary matrix M . Let T be a phylogeneti
 tree explaining M .De�ne a map e : f1; : : : ;mg ! E(T ) returning the edge with label 
 as follows, forevery 
hara
ter 
, let e(
) = e where e is the edge with the label 
. Sin
e we assumethat M has no all-0 
olumns, the map is de�ned for every 
hara
ter.
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42.2. De�nitions of phylogeneti
 and galled-tree networksDe�nition 2.5. A phylogeneti
 network N on m 
hara
ters is a dire
ted a
y
li
graph 
ontaining exa
tly one vertex (the root) with no in
oming edges. Ea
h vertexother than the root has either one or two in
oming edges. If it has one in
omingedge, the edge is 
alled a mutation edge, otherwise it is 
alled a re
ombination edge.A vertex x with two in
oming edges is 
alled a re
ombination vertex.Ea
h integer (
hara
ter) from 1 to m is assigned to exa
tly one mutation edge inN and ea
h mutation edge is assigned one 
hara
ter. Ea
h vertex in N is labeled bya binary sequen
e of length m, starting with the root vertex whi
h is labeled withthe all-0 sequen
e. Sin
e N is a
y
li
, the verti
es in N 
an be topologi
ally sortedinto a list, where every vertex o

urs in the list only after its parent(s). Using thatlist, we 
an de�ne the labels of the non-root verti
es, in order of their appearan
ein the list, as follows:(1) For a non-re
ombination vertex v, let e be the mutation edge labeled 

oming into v. The label of v is obtained from the label of v's parent by
hanging the value at position 
 from 0 to 1.(2) Ea
h re
ombination vertex x is asso
iated with an integer rx 2 f2; : : : ;mg,
alled the re
ombination point for x. Label the two re
ombination edges
oming to x by P and S, respe
tively. Let P (x) (S(x)) be the sequen
e ofthe parent of x on the edge labeled P (S). Then the label of x 
onsists ofthe �rst rx�1 
hara
ters of P (x) , followed by the last m� rx+1 
hara
tersof S(x). Hen
e P (x) 
ontributes a pre�x and S(x) 
ontributes a suÆx tox's sequen
e.Re
all that, in this paper, the sequen
e at the root of the phylogeneti
 networkis always the all-0 sequen
e, and all results are relative to that assumption. Moregeneral phylogeneti
 networks with unknown root were studied in a re
ent paper byGus�eld3. Note also that there are slight di�eren
es in the de�nition of phylogeneti
networks from the original de�nition6;10. We assume that ea
h mutation edge hasexa
tly one label. Every phylogeneti
 network without this assumption 
an be easilytransformed to our model by repla
ing every mutation edge with multiple labels by asequen
e of edges ea
h having one of these labels, and 
ontra
ting all mutation edgeswithout a label. Our assumption results in more 
ompa
t phylogeneti
 networks,however we 
annot require that all sequen
es of an input matrix appear at the leavesof the network.De�nition 2.6. Given an n � m binary matrix A, we say that a phylogeneti
network N with m 
hara
ters explains A if ea
h sequen
e of A is a label of somevertex in N .De�nition 2.7. (Galled-tree network) In a phylogeneti
 network N , let v be avertex that has two paths out of it that meet at a re
ombination vertex x (v is
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5the lowest 
ommon an
estor of the parents of x). The two paths together form are
ombination 
y
le Q. The vertex v is 
alled the 
oales
ent vertex. We say that Q
ontains a 
hara
ter 
, if 
 labels one of the mutation edges of Q.A phylogeneti
 network is 
alled a galled-tree network if no two re
ombination
y
les share an edge. A re
ombination 
y
le of a galled-tree network is sometimesreferred to as a gall.Note that in the original de�nition of galled-tree network6;10 it is required thatre
ombination 
y
les do not share verti
es. It is easy to see that our modi�
ationis only a minor di�eren
e (one 
an be transformed to the other easily) introdu
edfor te
hni
al reasons.3. Chara
terization of the existen
e of a galled-tree networkIn this se
tion we will give a 
omplete 
hara
terization of the existen
e of a galled-tree network explaining a given matrix A. We will show that two 
onditions(Lemma 4 and Theorem 10) in Gus�eld et al.6) are also suÆ
ient.De�nition 3.1. Given an n�m binary matrix A. The 
on
i
t graph GA has thevertex set f1; : : : ;mg and for every two 
hara
ters 
 and 
0, (
; 
0) is an (undire
ted)edge of GA if they 
on
i
t.Our 
hara
terization of galled-tree networks is presented in the following theo-rem.Theorem 3.1. Given an n�m binary matrix A. There exists a galled-tree networkexplaining A if and only if every nontrivial 
omponent (having at least two verti
es)K of the 
on
i
t graph GA satis�es the following 
onditions:(1) K is bipartite with partitions L and R su
h that all 
hara
ters in L aresmaller than all 
hara
ters in R; and(2) there exists a sequen
e x 6= 0jKj su
h that A[K℄ � x has no 
on
i
ting
hara
ters.In the rest of this se
tion we will prove several results whi
h will imply thetheorem. Throughout the rest of the paper, let A be a given n�m binary matrix.The following 
ru
ial result shows that if the 
ondition (2) of Theorem 3.1 issatis�ed then A[K℄�x 
an be explained by a tree with two edge-disjoint bran
hes.Lemma 3.1. If a 
omponent K of GA is bipartite with partitions L and R, andA[K℄ � x has no 
on
i
ting 
hara
ters for some x 6= 0jKj, then any phylogeneti
tree T explaining A[K℄ � x has at most two bran
hes. For i = 0; 1, let Li (Ri) bethe set of all 
 2 L (
 2 R) su
h that x[
℄ = i. One possible bran
h 
ontains alledges labeled with 
hara
ters in L1 [ R0, and the other 
ontains all edges labeled



September 28, 2005 14:12 Pro
eedings Trim Size: 9.75in x 6.5in re
onstru
tion05apb
-�nal
6with 
hara
ters in R1 [ L0. If T has two bran
hes then they do not share any edge(re
all that we assume that a phylogeneti
 tree has all edges labeled by 
hara
ters).aIn the following theorem we will show that if a 
omponent of the 
on
i
t graphGA satis�es both 
onditions of Theorem 3.1 then there is a gall explaining A[K℄.Theorem 3.2. If a 
omponent K of GA is bipartite with partitions L and R, A[K℄�x has no 
on
i
ting 
hara
ters for some x 6= 0jKj and all verti
es in L are smallerthan all verti
es in R, then A[K℄ 
an be explained by a galled tree 
ontaining onere
ombination 
y
le (gall) rooted in the node with label 0jKj and having x as a labelof the re
ombination vertex.Proof. By Lemma 3.1, there is a phylogeneti
 tree T explaining A[K℄� x with atmost two bran
hes. Let BP be the bran
h 
ontaining edges labeled with 
hara
tersin L1 [ R0, and BS the bran
h 
ontaining edges labeled with 
hara
ters in R1 [L0. If one of these two sets is empty then one of the bran
hes is empty as well.Furthermore, the vertex labeled 0jKj is the only vertex shared by BP and BS . Now,we will add a re
ombination vertex z into T . Let yP (yS) be the last vertex on thebran
h BP (BS). Add two re
ombination edges (yP ; z) labeled P and (yS ; z) labeledS, 
f. Figure 1. Set the re
ombination point rz to any 
hara
ter in fp+ 1; : : : ; qg,where p is the maximum 
hara
ter in L and q is the minimum 
hara
ter in R. Wewill show that the label of re
ombination vertex z is x, i.e., the gall explains thematrix A[K℄.

0
|K|

yP yS

z

BP BSL
1
∪

R
0

R
1
∪

L
0

P SFigure 1. Constru
tion of re
ombination 
y
le using two bran
hes BP and BS of the phylogeneti
tree for A[K℄� x.The label of z is formed by 
on
atenating the �rst rz � 1 
hara
ters of P (z)(see De�nition 2.5) with the last jKj � rz + 1 
hara
ters of Sz. The label P (z)(respe
tively, S(z)) has 0 (respe
tively, 1) in every position 
 2 R1 [ L0 and 1(respe
tively, 0) in every position 
 2 L1 [ R0. The label of z at position 
 2 L0
omes from P (z), hen
e it has value 0. Similar arguments show that the label of zagrees with x also on all remaining positions, as required.aDue to the spa
e limitation the proof will appear in the journal version.
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7In the following we de�ne a 
ompressed matrix whi
h will be used to builda phylogeneti
 network. Note that the 
ompressed matrix is similar to the pass-through matrix4. However, the pass-through matrix does not 
ontain 
olumns for
omponents of the 
on
i
t graph whi
h are singletons.De�nition 3.2. Let K1; : : : ;Kk be the 
omponents of the 
on
i
t graph GA.The 
ompressed matrix CA is the n � k binary matrix with 
olumns labeled byK1; : : : ;Kk. It has 1 in row i 2 f1; : : : ; ng and 
olumn Kj , j 2 f1; : : : ; kg, if andonly if the row i in A[Kj ℄ 
ontains at least one 1.Lemma 3.2. The 
ompressed matrix CA has no 
on
i
ting 
hara
ters.bIt follows that the 
ompressed matrix CA 
an be explained by a phylogeneti
tree. We will use this tree to 
onstru
t the galled-tree network explaining A. Re
allthat a phylogeneti
 tree with a �xed root is unique up to order of edges labeledwith 
hara
ters having identi
al 
olumns in the input matrix. From all phylogeneti
trees explaining CA we want to pi
k one satisfying the following 
ondition:De�nition 3.3. A phylogeneti
 tree T explaining CA is 
alled sorted if for everytwo identi
al 
olumns Kj and Kj0 su
h that 
omponent Kj is a singleton and
omponent Kj0 has at least two verti
es in the 
on
i
t graph, e(Kj) � e(Kj0).Following lemma shows that sequen
es in rows of A behave ni
ely with respe
tto edges in a sorted phylogeneti
 tree T explaining the 
ompressed matrix CA.Lemma 3.3. Let T be a sorted phylogeneti
 tree explaining the 
ompressed matrixCA. Assume that e(Kj) � e(Kj0) in T for some 
omponents Kj and Kj0 in GA.Consider all rows 
ontaining a 1 in A[Kj0 ℄, i.e., having 1 in CA[Kj0 ℄. Then allsequen
es in these rows in A[Kj ℄ are identi
al and di�erent from the all-0 sequen
e.bThe following algorithm 
onstru
ts a galled-tree network NA from a sorted phy-logeneti
 tree for CA.

u

v
Kj

w1 w2 w3

Kj2
Kj1 Kj3

u

v2

v1 v3

w1

w2

w3

Qj
Kj1

Kj2

Kj3Figure 2. Repla
ing an edge labeled Kj with a gall Qj .bDue to the spa
e limitation the proofs will appear in the journal version.
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8Algorithm 3.1.Input: An n�m binary matrix A satisfying assumptions of Theorem 3.2.(1) Constru
t a sorted phylogeneti
 tree T of CA and for every 
omponent Kj ,j 2 f1; : : : ; kg, of GA, 
onstru
t the gall Qj explaining A[Kj ℄.(2) In top-down fashion pro
ess every edge (u; v) labeledKj . IfKj is a singleton,i.e., Kj = f
g, repla
e the label of (u; v) by 
. Otherwise, repla
e the edgewith a gall Qj for Kj as follows (
f. Figure 2):2.1 Remove edge (u; v).2.2 Identify the 
oales
ent node of the gall Qj with u.2.3 For every edge (v; w) labeled Kj0 , 
onsider any row r 
ontaining 1 inCA[Kj0 ℄. Let s be the sequen
e in A[Kj ℄ in row r. By Lemma 3.3,s 6= 0jKjj. Sin
e Qj explains A[Kj ℄, it 
ontains a vertex v0 6= u labeleds. Remove the edge (v; w), add the edge (v0; w) and label it Kj0 .2.4 Remove vertex v.(3) To obtain a proper labeling of verti
es in NA, 
ompute new labels of lengthm using the pro
edure des
ribed in the de�nition of galled-trees.The following lemma shows that the algorithm produ
es essentially unique an-swer. More pre
isely,Lemma 3.4. After 
onstru
ting a sorted phylogeneti
 tree T of CA and galls Qj 'sfor every 
omponent Kj of GA in Step 1 of Algorithm 3.1, the remaining 
on-stru
tion of the algorithm produ
es unique result (the resulting galled-tree networkdepends only on sele
tion of T and Qj's).Proof. The only 
hoi
e we have in the remaining steps of the algorithm is inStep 2.3 when we 
an 
hoose any row r 
ontaining 1 in CA[Kj0 ℄. The sele
tion ofvertex v0 to whi
h we atta
h w depends on the sequen
e s in row r of the matrixA[Kj ℄. However, by Lemma 3.3, for every row r0 
ontaining 1 in CA[Kj0 ℄, thesequen
e in row r0 of the matrix A[Kj ℄ is also s.The question of how many di�erent galls are there for a matrixA[Kj ℄ was studiedby Gus�eld et al.6. It was shown that there are at most three di�erent galls, and ifthere are enough 
hara
ters inKj , there is only one gall explaining A[Kj ℄. Also notethat the phylogeneti
 tree T is unique up to arrangement of 
hara
ters with identi
al
olumns on edges. For our purposes, the fa
t that Step 2.3 
an be performed onlyin one unique way is suÆ
ient to show that NA explains A.Theorem 3.3. Assume that every non-trivial (with at least two verti
es) 
omponentK of GA is bipartite with partitions L and R, A[K℄�x has no 
on
i
ting 
hara
tersfor some x 6= 0jKj and all verti
es in L are smaller than all verti
es in R. Then thegalled-tree network NA 
onstru
ted above explains A.

Due to the spa
e limitation the proof will appear in the journal version.
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9It is known that the number of galls in any galled-tree network explaining A isat least the number of non-trivial 
omponents in the 
on
i
t graph GA6. Sin
e thegalled-tree network 
onstru
ted by Algorithm 3.1 has exa
tly this number of galls,the 
onstru
ted network is optimal.Obviously, by Theorem 3.2, Algorithm 3.1 
annot fail to 
onstru
t a galled-treenetworkNA, and by the above theorem, the 
onstru
ted network explains A. Hen
e,we have the following 
orollary.Corollary 3.1. If every non-trivial 
omponent K of GA is bipartite with partitionsL and R, A[K℄�x has no 
on
i
ting 
hara
ters for some x 6= 0jKj and all verti
esin L are smaller than all verti
es in R, then there exists a galled-tree networkexplaining A.Combining the above 
orollary with the results of Gus�eld et al.6, Theorem 3.1follows.3.1. Bi-in
lusivenessGus�eld et al.6 introdu
ed an interesting ne
essary 
ondition for the existen
e of agalled-tree network, 
alled bi-
onvexity.De�nition 3.4. A bipartite graph K with partitions L and R is 
alled 
onvex forR if the verti
es in R 
an be ordered so that, for ea
h vertex i 2 L, N(i) forms a
losed interval in R. That is, i is adja
ent to j and j0 > j in R if and only if i isadja
ent to all verti
es in the set fj; : : : ; j0g. A bipartite graph is 
alled bi-
onvexif sets L and R 
an be ordered so that it is simultaneously 
onvex for L and 
onvexfor R.They used bi-
onvexity to design a fast algorithm for the site 
onsisten
y problemfor a matrix A if there is a galled-tree network explaining A. The site 
onsisten
yproblem for a matrix A is to �nd a minimum number of 
olumns whose removal fromA results in a perfe
t phylogeny. The problem was introdu
ed and shown to be NP-
omplete1. The problem redu
es to �nding a minimum vertex 
over in the 
on
i
tgraph GA. For bipartite graphs, the vertex 
over 
an be found in polynomial timeand for bi-
onvex graphs in O(m2) time (re
all that m is the number of verti
es inthe 
on
i
t graph)2. It was 
onje
tured by Gus�eld et al.6 that to �nd a minimumvertex 
over of a bi-
onvex graph 
an be done in linear time. We present a newne
essary 
ondition, bi-in
lusiveness, whi
h is stronger than bi-
onvexity (it impliesbi-
onvexity but not other way round) and observe that the minimum vertex 
overof a bi-in
lusive graph 
an be found in linear time.De�nition 3.5. We say that a 
olle
tion of sets forms a 
hain, if there is an orderS1; : : : ; Sk of sets su
h that S1 � S2 � � � � � Sk. A bipartite graph K withpartitions L and R is bi-in
lusive if the sets N(i1); : : : ; N(ik) form a 
hain, whereN(x) denotes the neighborhood of x.
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10 Note that it is easy to 
he
k that the swapping of partitions does not 
hangethe property whether K is bi-in
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