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The analysis of time series data is of capital importance for pharmacogenomics since

the experimental evaluations are usually based on observations of time dependent re-
actions or behaviors of organisms. Thus, data mining in time series databases is an
important instrument towards understanding the effects of drugs on individuals. How-

ever, the complex nature of time series poses a big challenge for effective and efficient
data mining. In this paper, we focus on the detection of temporal dependencies between
different time series: we introduce the novel analysis concept of threshold queries and

its semi-supervised extension which supports the parameter setting by applying training
datasets. Basically, threshold queries report those time series exceeding an user-defined
query threshold at certain time frames. For semi-supervised threshold queries the cor-
responding threshold is automatically adjusted to the characteristics of the data set,
the training dataset, respectively. In order to support threshold queries efficiently, we

present a new efficient access method which uses the fact that only partial information
of the time series is required at query time. In an extensive experimental evaluation we
demonstrate the performance of our solution and show that semi-supervised threshold

queries applied to gene expression data are very worthwhile.

1. Introduction

Data mining in time series data is a key step within the study of drugs and their
impact on living systems, including the discovery, design, usage, modes of action, and
metabolism of chemically defined therapeutics and toxic agents. In particular, the
analysis of time series data is of great practical importance for pharmacogenomics.

Classical time series analysis is based on techniques for forecasting or for identifying
patterns (e.g. trend analysis or seasonality). The similarity between time series, e.g.
similar movements of time series, plays a key role for the analysis. In this paper, we
introduce a novel but very important similarity query type which we call threshold
query. Given a time series database DB, a query time series Q, and a query threshold
τ , a threshold query TSQDB(Q, τ) returns those time series X ∈ DB having the most
similar sequence of time intervals in which the time series values are above τ . In other
words, we assume that each time series X ∈ DB ∪ {Q} is transformed into a sequence
of disjoint time intervals covering only those values of X that are (strictly) above the
threshold τ . Then, a threshold query returns for a given query object Q that object
X ∈ DB having the most similar sequence of time intervals. Let us note that the exact
values of the time series are not considered, rather we are only interested in whether
the time series is above or below a given threshold τ . In other words, the concept of
threshold queries enables us to focus only on the duration of certain events indicated by
increased time series amplitudes, while the degree of the corresponding amplitudes are
ignored. This advantage is very beneficial, in particular, if we want to compare time
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Figure 1. Illustration of transformation of time series into sequences of time intervals.

series reacting on certain stimulations with different sensitivity. The transformation of
the time series into interval sequences is visualized in Figure 1. Two time series A and
B are each transformed into a sequence of time intervals where the values are above a
given threshold τ .

This new query type is very useful for several pharmacogenomics applications. The
most straightforward application of threshold queries is the search for similar time
series. For example, a common task in pharmacogenomics is the identification of indi-
vidual drug response or the analysis of the impact of certain environmental influences
on gene expression levels or blood values. For this task, the concentration of agents
that are suspected to trigger the relevant biochemical reactions is measured over some
period of time. Using threshold queries, one is able to efficiently retrieve time series,
that are similar to the stimulus time series in terms of threshold crossing events. Note
that our technique is able to cope with different thresholds for the stimulus time se-
ries and the reacting time series. This is important since usually values of different
domains (e.g. chemical concentrations versus gene expression levels) are compared.
Another important example where the identification of similar time series is crucial,
is the search for similar gene expression patterns. In a time series of gene expression
values one can retrieve genes with similar expression levels in order to find genes that
are coregulated or showing an interesting response to an external stimulus. In addition,
threshold queries can be performed on mixed-type data. Thus, we can correlate data
on specific agents such as blood parameter concentrations with gene expression data.
Taking an agent time sequence as query object, we can identify genes that are affected
by this agent.

In this paper, we propose techniques in order to support these important applica-
tions. In particular, we introduce the novel concept of threshold similarity and thresh-
old queries. We propose a suitable data representation method to efficiently support
threshold queries. In addition, we present a semi-supervised version of threshold queries
which beneficially supports the parameter setting by applying training datasets. Semi-
supervised threshold queries automatically detect the best parameter setting for the
query process based on a labeled training dataset.

2. Related Work

In general, a time series of length d can be viewed as feature vector in a d-dimensional
space, where the similarity between two time series corresponds to their distance in
the feature space. Since d is usually large, the analysis of time series data based on
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the entire time series information is usually very limited. Due to the so-called curse of
dimensionality, the efficiency and the effectiveness of data analysis methods decrease
rapidly with increasing data dimensionality. Thus, it is mandatory to find more suitable
representations of time series data for analysis purposes, e.g. by reducing the dimen-
sionality. In the different communities, several solutions have been proposed. Most
of them are based on the following indexing approach: extract a few key features for
each time series and map each time sequence X to a point f(X) in a lower dimensional
feature space, such that the (dis)similarity between X and any other time series Y is
approximately equal to the Euclidean distance between the two points f(X) and f(Y ).
For an efficient access any well known spatial access method can be used to index the
feature space.

The proposed methods mainly differ in the representation of the time series: for
details see the database-oriented survey11 and the bioinformatics-oriented survey.3

The database and the bioinformatics communities have successfully applied stan-
dard techniques for dimension reduction to similarity search and data mining in
time series databases, including Discrete Fourier Transformation1 and extensions,13

Discrete Wavelet Transformation,6 Piecewise Aggregate Approximation,14 Singular
Value Decomposition,12,2 Adaptive Piecewise Constant Approximation,11 Chebyshev
Polynomials,5 cubic splines.4

However, all techniques which are based on dimension reduction cannot be applied
to threshold similarity queries because necessary temporal information is lost. Usually,
in a reduced feature space, the original intervals indicating that the time series is above
a given threshold cannot be generated. In addition, the approximation generated by
dimensionality reduction techniques cannot be used for our purposes directly because
they still represent the exact course of the time series rather than intervals of values
above a threshold.

The most important issue for any data analysis purposes is the definition of sim-
ilarity. The most common way to model (dis-)similarity of feature vectors is to mea-
sure their Euclidean distance. For many applications, the Euclidean distance may be
too sensitive to minor distortions in the time axis. It has been shown that Dynamic
Time Warping (DTW), which is conceptually similar to sequence alignment, can fix
this problem.11 Other common distance functions are Pearson’s correlation coefficient
which measures the global correlation between two time series, or angular separation,
also known as cosine distance, which defines the distance in terms of the angle between
two feature vectors. All these distance measures are not directly applicable to thresh-
old similarity queries because all of them consider the absolute values of the time series
rather than the intervals of values above a given threshold.

3. Threshold Queries

In this section, we introduce the novel concept of threshold queries based on a similarity
model which is very promising for the analysis of pharmacogenomics time series data.
Furthermore, we present techniques allowing an efficient query processing.

We define a time series X as a sequence of pairs (xi, ti) ∈ R × T : (i = 1..N),
where T denotes the domain of time and xi denotes the measurement corresponding to
time ti. Furthermore, we assume that the time series entities are given in such a way
that ∀i ∈ 1, .., N − 1 : ti < ti+1. In most cases, when measuring continuously varying
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attributes at discrete time points, the missing values between two observations are
estimated by means of interpolation.3 In the rest of this paper, if not stated otherwise,
x(t) ∈ R denotes the (interpolated) time series value of time series X at time t ∈ T .

3.1. Threshold-Crossing Time-Intervals

Instead of using time series for the description of the time dependent behavior of
pharmacogenomics data, we use sequences of time intervals which are related to a
specific user-defined threshold, i.e. for a given threshold τ , the pharmacogenomics
data is described by means of disjoint time intervals expressing the points of time
when the data values are above τ . We call this description of the time dependent
behavior threshold-crossing time-intervals.

Definition 3.1. Let X = 〈(xi, ti) ∈ R × T : i = 1..N〉 be a time series with N

measurements and τ ∈ R be a threshold. Then the threshold-crossing time interval
sequence of X with respect to τ is a sequence TCTτ (X) = 〈(lj , uj) ∈ T × T : j ∈
{1, ..,M},M ≤ N〉 of time intervals, such that

∀t ∈ T : (∃j ∈ {1, ..,M} : lj < t < uj) ⇔ x(t) > τ.

An interval tctτ,j = (lj , uj) of TCTτ (X) is called threshold-crossing time interval.

The description of the time dependent behavior of some attribute by means of
threshold-crossing time-intervals is a simple method, but generally very promising for
the analysis of pharmacological data, in particular for the analysis of pharmacogenomics
data. The advantages compared to common methods which consider the entire time
series are as follows: time-interval sequences are easy to handle and can be processed
and stored very efficiently. Furthermore, threshold-crossing time-interval sequences
express the temporal behavior w.r.t. a certain threshold, i.e. the intervals denote the
time points when the attribute is above or below a specific threshold value.

The latter advantage is most decisive because threshold-crossing time-interval se-
quences allow us to infer a causality from the temporal behavior for relevant threshold
levels instead of considering the entire time series curve. Let us assume that we have
to analyze the temporal behavior of gene expression values by means of fluorescence
intensity measurements. Measurable fluorescence intensities are supposed to be proper
expression values plus noises. One can imagine that the measurements in the medial
florescence spectrum are more precisely compared to the measurements in the extreme
spectral areas, because the sensor data from the extreme spectral areas have more noise
than the data from the medial spectrum. Traditional analyzing approaches which con-
sider the entire expression level range can lead to incorrect results due to noise.

3.2. Similarity Model

Intuitively, two time intervals are defined to be similar if they have ”similar” starting
and end points, i.e. they are starting at similar times and ending at similar times.

Definition 3.2. Let t1 = (t1l, t1u) ∈ T × T and t2 = (t2l, t2u) ∈ T × T be two time
intervals. Then the distance function dint : (T × T )× (T × T ) → R between two time
intervals is defined as:

dint(t1, t2) =
√

(t1l − t2l)2 + (t1u − t2u)2
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Since for a certain threshold τ a time series object is represented by a sequence
or a set of time intervals, we need a distance/similarity measure for sets of intervals.
Several distance measures for set based objects have been introduced in the literature.7

The Sum of Minimum Distances (SMD) most adequately reflects the intuitive notion
of similarity between two threshold-crossing time interval sequences. According to the
SMD we define the threshold-distance dTS as follows:

Definition 3.3. Let X and Y be two time series and SX = TCTτ (X) and SY =
TCTτ (Y ) be the corresponding threshold-crossing time interval sequences.

dTS(SX , SY ) =
1

|SX |
·

∑
s∈SX

min
t∈SY

dint(s, t) +
1

|SY |
·

∑
t∈SY

min
s∈SX

dint(t, s),

The idea of this distance function is to map every interval from one sequence to
the closest (most similar) interval of the other sequence and vice versa. Let us note
that the threshold-distance between two time series according to a certain threshold τ

is also called τ -similarity.
We are now able to define the threshold query which reports the k most τ -similar

time series of a database DB for a given query time series Q.

Definition 3.4. Let DB be the domain of time series objects. The threshold query
consists of a query time series Q ∈ DB and a query threshold τ ∈ R. The threshold
query reports the smallest set TSQk(Q, τ) ⊆ DB of time series objects that contains
at least k objects from DB such that

∀X ∈ TSQk(Q, τ),∀Y ∈ DB − TSQk(Q, τ) :

dTS(TCTτ (X), TCTτ (Q)) < dTS(TCTτ (Y ), TCTτ (Q)).

3.3. Threshold Invariant Data Representation

In this section, we introduce a novel data representation of the time series objects.
Although the time series objects may be very complex, i.e. contain lots of measured
values, we need a data representation of the time series objects which allows us to
process the threshold queries very efficiently.

The basic idea of our proposed time series representation is that we do not need to
access the complete time-series data at query time. Instead, only partial information
of the time-series objects which can be efficiently accessed might suffice to report the
results. In order to achieve these requirements, the threshold-crossing time-interval-
sequences of all possible thresholds must be pre-computed and materialized which is
fulfilled by our novel data representation. The key for the novel time series representa-
tion is a decomposition of a time series into a set of trapezoids, as depicted in Figure
2. The upper and lower edge of each trapezoid is parallel to the time axis, the left
side is bounded by an increasing time series segment and the right side is bounded
by a decreasing segment. Each trapezoid represents a set of threshold-crossing time
intervals which correspond to a certain range of threshold values. The complete set
of required threshold-crossing time intervals w.r.t. an arbitrary threshold τ can be
easily computed by all trapezoids crossing τ . We have developed an algorithm which
decomposes time series into corresponding trapezoids in linear time w.r.t. the length
of the time series, due to the natural ordering of the time series values.
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Figure 3. Interval Ranges in Parameter Space

For the management of the trapezoids we transform the trapezoids into a three
dimensional space (start ∈ T, end ∈ T, τ ∈ R), where start denotes the start time
and end denotes the end time for all threshold-crossing time-intervals and τ denotes
the corresponding threshold. In the following, we will call this space parameter space.
A 2-dimensional plane along the threshold axis parallel to the (start,end)-plane at a
certain threshold τ in the parameter space is called time-interval plane of threshold τ .
The time-interval plane has some advantages for the efficient management of intervals.
First, the time distances between intervals are preserved. Second, the position of large
intervals, which are located within the upper-left region, substantially differs from the
position of small intervals. However, the most important advantage is that in this
space the Euclidean distance correspond to the (dis-)similarity of intervals according
to Definition 3.2.

For the efficient management of the trapezoids we use the following observa-
tion: all threshold-crossing time-intervals tctτi,j(X) which start at segment sl and
end on segment su lie in the parameter space on the three-dimensional straight line:
gP : −→x = −→p1 + 4t · (−→p2 − −→p1), where −→p1 = (tctτ1,1(X).start, tctτ1,1(X).end, τ1)T and
−→p2 = (tctτ2,2(X).start, tctτ2,2(X).end, τ2)T . An example is depicted in Figure 3. At
query time, the time-interval plane coordinates of the threshold-crossing time-intervals
which correspond to the query threshold τq can be easily determined by computing the
intersection of all segments of the parameter space with the time-interval plane P at
threshold τq.

3.4. Indexing Segments of the Parameter Space

We apply the R*-tree for the efficient management of the three-dimensional segments
representing the time-series objects in the parameter space. As the R*-tree index
can only manage rectangles, we represent the 3-dimensional segments by rectangles.
The R*-tree efficiently support nearest-neighbor queries9 which build the basis of the
computation of the similarity between two time series objects.

4. Semi-Supervised Threshold Queries

In the previous section (Section 3.3) we proposed a threshold invariant data represen-
tation which allows to perform efficient threshold queries where the threshold can be
chosen at query time. The question is now, which threshold should be chosen for any
analyzing task?

The answer to that question not only depends on the specific characteristics of
the data at hand. Quite often the user expects a certain query to yield certain results.
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Figure 4. Determination of the threshold dependent class separation score.

Then the first interesting task is to determine a threshold value that yields good results.
Furthermore our experimental studies revealed that a shift in the user’s expectation
frequently makes it necessary to readjust the threshold value the similarity measure is
based on.

In the following, we assume that the user’s expectation is modeled by means of a
small training data set. Results for a given query are considered good, if a lot of results
are marked with the same class label as the query time series. The general idea of our
technique is to search for threshold values that promise high similarity scores between
objects with similar behavior and low scores between objects with different behavior.
In the next sections we will explain how we derive quality values for different thresholds
and how we use this information to obtain global high quality values.

4.1. Threshold Value Quality for One Class

In this section we will outline how we detect suitable threshold values for a fixed
class. Let us assume we are given a training data set CM which consists of k classes,
CM = C1, ..., Ck. For a fixed class Ci, we need to determine these threshold values
which yield a good separability of Ci from the remaining classes. To evaluate the score
of a query for a fixed class Ci and a fixed threshold τ , we pairwise compute the silhouette
width10 of Ci and all other classes Cj , j 6= i, in CM . The minimal silhouette width of
all pairs is used as separation score of a threshold τ . Calculating the separation score
for any existing threshold results in a quality measure which estimates the separability
score for a training data set CM , a class Ci ∈ CM and a given threshold τ .

4.2. Derivation of a Global Suitable Threshold Value

In the last section, we have developed a quality measure which computes the separation
score for each class Ci of our training data set CM . Now, we need a suitable combination
of all k separation score functions. For our approach, we chose the sum of all score
functions, i.e. compute the silhouette coefficient10 for CM . The global separation
score function now reflects the overall separability score of our training data set for an
arbitrary threshold τ . Based on the idea of semi-supervised learning, the global score
function gives the user hints to chose the most promising threshold ranges. The example
depicted in Figure 4 points up one step of this procedure for a certain threshold.
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Figure 5. Efficiency Evaluation.

5. Evaluation

In this section we will present the results of our experiments with respect to efficiency
and effectiveness.

5.1. Efficiency

In this section, we present the results of a large number of experiments performed on
a selection of different time series datasets. In particular, we compared the efficiency
of our proposed approach (in the following denoted by ‘RPar’) for answering threshold
queries using one of the following techniques. The first competing approach works
on native time series. At query time for each database time series the corresponding
threshold-crossing time intervals (TCT) are computed for the query threshold and
afterwards the distance between the query time series and the corresponding database
object are derived. In the following this method will be denoted by ‘SeqNat’ as it
corresponds to a sequential processing of the entire set of the native data. The second
competitor works on the parameter space rather than on the native data. It stores all
TCTs without using any index structures. As this storage leads to a sequential scan
over the corresponding elements of the parameter space at query time, we will refer to
this technique as the ‘SeqPar’ method.

All experiments were performed on a workstation featuring a 1.8 GHz Opteron
CPU and 8GB RAM. We used a disk with a transfer rate of 100 MB/s, a seek time
of 3 ms and a latency delay of 2 ms. Performance is presented in terms of the elapsed
time including I/O and CPU-time. At first we performed threshold similarity queries
against databases of different sizes to measure the influence of the database size. The
elements of the databases are time series of fixed length l. Figure 5(a) exhibits the
results for each database size averaged over several thresholds and several randomly
chosen queries. Second, we explored the impact of the length of the time series to be
compared. The results depicted in Figure 5(b) show that our approach significantly
outperforms its competitors and is scalable w.r.t. the number and the length of the
time series objects.

5.2. Effectiveness

At first, we exemplarily show how threshold queries can be beneficially used for phar-
macogenomics in practice. An important application of threshold queries is finding
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Figure 6. Illustration of sample threshold query results (best seen in color).

genes of similar function or of similar drug response in gene expression data. We used
the yeast gene expression time course data sets from Gene Expression Omnibusa with
accession numbers “GDS30” and “GDS38” and launched for each gene of each data
set a threshold query against the rest of the genes. For each gene, we thus computed
its three most similar genes based on threshold similarity on each data set. We evalu-
ated the gene functions using Gene Ontology (GO).b The results of two sample queries
are depicted in Figure 6 (absolute query threshold τ = 0). On the left side of the
figure, the 3 most similar genes to ORF “YKL130C” are depicted. All three reported
ORFs “YGL232W”, “YHR015W”, and “YER007C-A” code for proteins with RNA-
binding activity. On the right hand side of Figure 6 the 3 most similar genes to ORF
“YDL108W” are depicted. All three reported ORFs “YDR421W”, “YER045C”, and
“YGL162W” code for proteins with RNA polymerase II transcription factor activity.

In the example above no information about the dataset characteristics was used to
select the threshold value. Different settings of the threshold value can lead to different
qualities of the results. In the next experiment, we investigate the effectiveness of
semi-supervised threshold queries which are used to find the optimal threshold value
by means of a training dataset. At first, we are interested in how the optimal threshold
values change when the expected results change, i.e. when the focus of the query
changes. The following experiments were performed on the data sets “GDS30” and
“GDS38” from Gene Expression Omnibus (GO).c For the first experiment we used the
GO functional classes on level 4. Afterwards we changed the focus of our queries to the
GO level 5. As expected, we obtained different optimal threshold values (cf. Figure 7).

These results gave raise to the question whether the computed optimal threshold
values do indeed yield good results on the whole data set. To evaluate this, we clus-
tered the time series for varying threshold values and determined the rand index.8 For
example, the threshold value 0.73 which corresponds to a high separation score on the
GDS30 data set for GO level 4 resulted in a rand index equal to 0.94. Contrary, when
using a threshold value of 0.2 the rand index decreased to 0.86. Similar results were
observed for other levels, for other threshold values, and on other datasets.

6. Conclusions

In this paper, we proposed the novel concept of semi-supervised threshold queries
which are suitable to analyze time series data in the area of life science. In addition,

ahttp://www.ncbi.nlm.nih.gov/geo/
bhttp://www.geneontology.org/
chttp://www.ncbi.nlm.nih.gov/geo/
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Figure 7. Different Optimal Threshold Values for Different GO Levels.

we presented a data representation method that supports threshold queries efficiently.
In our experimental evaluation, we have shown that our proposed data representation
accelerates threshold queries drastically. Furthermore, the results of our experimental
evaluations have shown that the proposed semi-supervised threshold queries are very
effective and are very useful in particular for the analysis of pharmacogenomics time
series databases. For future work, we plan to extend our approaches to data mining
tasks, such as similarity join and clustering.
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