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METAGENOME ANALYSIS USING MEGAN
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QI JI and STEPHAN C. SCHUSTER

310 Wartik Laboratories, PennState University, Center forComparative Genomics, Center for
Infectious Disease Dynamics, University Park, PA 1803, USA

In metagenomics, the goal is to analyze the genomic content of a sample of organisms collected from
a common habitat. One approach is to apply large-scale random shotgun sequencing techniques to
obtain a collection of DNA reads from the sample. This data isthen compared against databases of
known sequences such as NCBI-nr or NCBI-nt, in an attempt to identify the taxonomical content of
the sample. We introduce a new software called MEGAN (Meta Genome ANalyzer) that generates
species profiles from such sequencing data by assigning reads to taxa of the NCBI taxonomy using
a straight-forward assignment algorithm. The approach is illustrated by application to a number of
datasets obtained using both sequencing-by-synthesis andSanger sequencing technology, including
metagenomic data from a mammoth bone, a portion of the Sargasso sea data set, and several complete
microbial test genomes used for validation proposes.

1. Introduction

Genomicsis the study of the genome sequence of individual organisms.Most genome
sequences available in databases today were obtained by “Sanger sequencing”, using a
shotgun approach that involves cloning small inserts of DNAand then determining their
sequence using fluorescent dideoxynucleotides for termination and electrophoresis for
measurement7. The NCBI website (www.ncbi.nlm.nih.gov) lists hundreds of bac-
terial, tens of archaeal and about one hundred eukaryotic genomes as being completely
sequenced, or in the process of being sequenced.

Metagenomicshas been defined as “the genomic analysis of microorganisms by direct
extraction and cloning of DNA from an assemblage of microorganisms”5, and its impor-
tance stems from the fact that99% or more of all microbes are deemed unculturable. If we
take a genome to be the entire genetic information of a singleorganism, then ametagenome
can be defined as the entire genetic information of an ensemble of organisms, living in a
common habitat. The aim of metagenomics is to understand thegenetic diversity of a
metagenome, ideally, by identifying the (relative abundances of) species present. Metage-
nomics promises to lead to the discovery of new genes that have useful applications in
biotechnology and medicine10.

One main technique in metagenomics is to apply large-scale random shotgun sequenc-
ing. A number of recent projects use Sanger sequencing to create datasets in this way, for
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example, from an acid mine biofilm12, sea-water samples13, deep sea sediment4, or soil
and whale falls11. Recently, a new sequencing approach “sequencing-by-synthesis” was
published that uses emulsion-based PCR application of a large number of DNA fragments
and high-throughput parallel pyro-sequencing6. A single instrument is able to sequence
25 million bases within four hours, at a lower price, per base, than Sanger-based methods.
Current drawbacks of the method are short read lengths of≈ 100bp, in contrast to≈ 800bp
using Sanger sequencing, and a higher error rate. Moreover,sequencing of pair-ended reads
is not yet possible.

Given present-day technology, obtaining the complete sequences of all genomes present
in a metagenome is not feasible, even using Sanger sequencing and paired-end reads, as the
amount of data required is too large and the assembly problemtoo difficult. More realistic
goals are to determine the presence or absence of specific species of interest, or to obtain a
rough overview of the taxa represented in a given metagenome.

In this paper we present a straight-forward approach to the latter problem. We describe
a strategy for processing DNA reads collected within the frame-work of a metagenomics
project and provide a new program calledMEGAN(MEtaGenome ANalyser) that can be
used to explore a metagenomics data set in a taxonomical context. The program employs
a combinatorial algorithm, which we call “LCA-assignment”, to estimate the taxonomical
content of a metagenome, based on sequence comparisons.

We first illustrate this approach by application to a set of302, 692 reads obtained from a
sample of mammoth bone8, using the sequencing-by-synthesis approach. We then address
the question whether species can be identified with confidence from short reads of length
100. Finally, to demonstrate the applicability of the approachto data sets obtained using
other sequencing approaches, we apply it to a subset of the Sargasso sea data13.

Ease-of-use is a main design criterion of MEGAN. An analysisis initiated by simply
opening a BlastX, BlastN or BlastZ file and is then performed interactively. For maximum
portability, the program is written in Java and installers for Linux/Unix, MacOS and Win-
dows are freely available for academic use from:
http://www-ab.informatik.uni-tuebingen.de/software/megan.

2. Processing metagenomic data

The following simple approach to metagenome analysis is a typical starting point for more
sophisticated strategies (see Figure 1): First, randomly sequence a collection of DNA reads
from the given sample. Second, perform Blast1 comparisons of the reads against one or
more reference databases, such as NCBI-nr, NCBI-nt, NCBI-env-nr, NCBI-env-nt2, and
additional genome specific databases, when appropriate. (Sequence comparison is the
main computational bottle neck, which will grow more serve as the sizes of datasets and
databases continue to grow.) Third, analyze the output of these comparisons and then
assign individual reads to taxa, including higher-order taxa. Finally, for each taxon impli-
cated, evaluate the provided evidence for its presence in the sample.
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Figure 1. For a given sample of organisms, a randomly selected collection of DNA fragments is sequenced. The
resulting reads are then compared with one or more referencedatabases using an appropriate sequence comparison
program such as Blast. The resulting data is processed by MEGAN to produce an interactive analysis of the
taxonomical content of the sample.

2.1. Analysis of the Mammoth dataset

As an example, we recently8 used a metagenomics approach to analyze the DNA present in
a sample of one gram of bone taken from a mammoth that was preserved in permafrost for
27,000 years. The project proceeded in the following steps.First, we used the Roche GS20
sequencing technology to randomly collect DNA from the sample, obtaining302, 692 reads
of mean length95 base pairs (bp). We will refer to this as theMammoth dataset.

To identify those reads that come from the mammoth genome, weperformed BlastZ9

comparisons of genome sequences for elephant, human and dog, downloaded from
www.genome.ucsc.edu. As a result of this computation, in the mentioned paper8

we estimate that at least45.4% of the reads represent mammoth DNA.
We were interested in determining the possible sources of the remaining reads, as they

probably represent micro-organisms that were present at, or immediately after, the time of
the mammoth’s death. To this end, we first used BlastX to compare all reads against the
NCBI-nr (“non-redundant”) protein database2. This resulted in a file of size1.4GB con-
taining2, 911, 587 local alignments of reads to sequences in the database. Of the302, 692

reads, only52, 179 have one or more alignments. We then loaded the results of theBlastX
search into a preliminary version of MEGAN (then called GenomeTaxonomyBrowser8)
and applied the LCA-assignment algorithm to compute an assignment of reads to taxa,
thus obtaining an estimation of the taxonomical content of the sample.

Here we repeat this analysis, but are slightly more conservative and now employ a
threshold of30 for the bit score of matches, and will discard any isolated assignments,
that is, any taxon that has only one read assigned to it. (We remove isolated assignments
to avoid false positive identification of taxa due to sequencing errors or chance matches.)
The LCA-assignment algorithm assigns50, 093 reads to taxa and2, 086 remain unassigned
either because the bit score of their matches fall below the threshold or because they give
rise to an isolated match.

A total of 19, 841 reads are assigned to Eukaryota, of which7, 969 are assigned to
Gnathostomata (jawed vertebrates) and thus presumably come from mammoth genes. Fur-
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ther, a total of16, 972 reads are assigned to Bacteria,761 to Archea and152 to viruses, re-
spectively. These numbers are slightly lower than previously reported8 due to our slightly
more conservative settings. MEGAN can be used to summarize the results at different
levels of the NCBI taxonomy, see Figures 2 and 3.

Figure 2. High-level summary of a MEGAN analysis of the mammoth dataset, based on a BlastX comparison
of the 302, 692 reads against the NCBI-nr database. In all figures, each circle represents a taxon in the NCBI
taxonomy and is labeled by its name and the number of reads that are assigned either directly to the taxon, or
indirectly via one of its sub-taxa. The size of the circle is scaled logarithmically to represent the number of reads
assigned directly to the taxon.

Figure 3. A more detailed MEGAN analysis of the mammoth dataset.
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2.2. Identifiability of species from short reads

The average read length currently obtainable using Roche GS20 sequencing technology
is ≈ 100bp. The question arises whether this sequence length is longenough to provide
meaningful information on the taxonomical content of a metagenome. This can be ad-
dressed by collecting a set of reads from a known genome and then processing the data as
a metagenome dataset.

In a first experiment, we considered2000 reads sequenced fromE. coli K12, using
Roche GS20 sequencing technology. AsE. coli is widely used in laboratories, this dataset
may potentially give rise to many false positive identifications, as parts of its sequence
occur by error in a number of different genome sequences.

In Figure 4 we show the resulting MEGAN analysis, based on a BlastX comparison of
the reads against the NCBI-nr database, using a bit score threshold of35 and discarding any
isolated assignments. Of the2000 reads, approximately25% (448) have no hits and116

reads are not assigned. Of the remaining1436 reads, approximately50% (699) are assigned
to Enterobacteriaceae, thus making a correct assignment up to the family level. Allother
reads, except two, are assigned to super taxa, thus producing correct, if increasingly weak,
predictions.

The two false positive assignments toHaemophilus somnusappear to be due to false
entries in the NCBI-nr database: one of the assigned reads has a perfect BlastN match
to 16S rRNA sequence inE. coli and the other has a perfect BlastN match to 23S rRNA
sequence inE. coli. On the other hand, the matched sequences representingHaemophilus
somnusin NCBI-nr are both labeled “hypothetical” proteins.

Figure 4. MEGAN analysis of2000 reads collected fromE. coli K12using Roche GS20 sequencing, based on
a BlastX comparison with the NCBI-nr database.

In a second experiment, we considered2000 reads sequenced fromBdellovibrio bac-
teriovorus HD100using Roche GS20 sequencing technology. In Figure 5(a) we show the
resulting MEGAN analysis, based on a BlastX comparison of the reads against the NCBI-
nr database, using a bit score threshold of35 and discarding any isolated assignments. Of
the2000 reads, approximately20% (397) have no hits and5% (105) are not assigned. Of
the remaining1498 reads, approximately70% (1062) are assigned toBdellovibrio bac-
teriovorus HD100. All other reads are assigned to super taxa, thus producing correct, if
increasingly weak, predictions. There are no false positive predictions.

In Figure 5(b) we show the MEGAN analysis obtained when usinga copy of the NCBI-
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nr database from which all sequences representingBdellovibrio bacteriovorus HD100have
been removed. This mimics the case in which reads are obtained from a genome that is not
represented in the database. Of the2000 reads, approximately65% (1361) have no hits and
approximately15% (272) are not assigned. A small number of false positives occur upto
the level of bacteria.

(a)

(b)

Figure 5. MEGAN analysis of2000 reads collected fromBdellovibrio bacteriovorus HD100using Roche GS20
sequencing technology. (a) Analysis based on a BlastX comparison with NCBI-nr. (b) Similar analysis, but with
all hits to database sequences representingBdellovibrio bacteriovorus HD100removed, mimicking the situation
in which the reads originate from a genome that is not represented in NCBI-nr.

These two experiments show that the LCA-assignment algorithm is quite conservative,
avoiding false positive assignments at the price of producing quite large numbers of inspe-
cific assignments. Further, they also indicate that the performance of this type of approach
depends heavily on the set of sequences represented in the reference database. In particular,
if close relatives are missing in the database, then reads from an unknown organism will
give rise to many unassigned reads and possibly some false positive assignments, as well.

2.3. Analysis of the Sargasso Sea data set

In the Sargasso sea project13, samples of sea water were collected and organisms of size
0.1 − 3.0 µm were extracted to produce a metagenome dataset. In4 separate experiments,
approximately1.9 million reads of average length818 bp were collected using Sanger
sequencing.

To explore the application of MEGAN to such data, we downloaded the first10, 000

reads fromhttps://research.venterinstitute.org/sargasso/ and ran
BlastX to compare the data against the NCBI-NR database. Only 1% (13) of the reads
had no hits. A MEGAN analysis of the data using a bit score threshold of100 and dis-
carding all isolated assignments, assigned approximately90% (8, 977) to taxa, a majority
of which (6811) were assigned to bacteria. The results are summarized in Figure 6. In-
terestingly, this analysis of a small portion of the Sargasso sea dataset is compatible with
the analysis reported by Venteret al.13, (althoughFirmicutesare missing, probably due to
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the small size of the sub-sample), and also confirms findings that parts of the data set is
contaminated withShewanellaandBurkholderia3.

Figure 6. MEGAN analysis of10, 000 reads of Sargasso sea data.

3. Analysis using MEGAN

At startup, MEGAN loads the complete NCBI taxonomy, currently containing over
280, 000 taxa, which can then be interactively explored, using customized tree-navigation
features. However, the main application of MEGAN is to process results files generated by
a comparison of sequencing reads with a database of annotated sequences. The program
parse files generated by BlastX, BlastN or BlastZ, and saves the results as a series of read-
taxon matches in a program-specific format. (Additional parsers may be added to process
the results generated by other sequence comparison methods.)

The program assigns reads to taxa using the LCA-assignment algorithm (described in
detail below) and then displays the induced taxonomy. Nodesin the taxonomy can be col-
lapsed or expanded to produce summaries at different levelsof the taxonomy. Additionally,
the program provides a Find tool to search for specific taxa and an Inspector tool to view
individual Blast matches (see Figure 7).

The approach uses a number of thresholds. First, amin-scorethreshold defines the
minimum bit score that must be attained by a Blast alignment so that a readr is considered
to matcha given taxont. Second, themin-supportthreshold specifies how many reads must
be assigned to a specific taxon, or any taxon below it in the taxonomy, so that the taxon is
identified as present.

The result of the LCA-assignment algorithm is presented to the user as the partial tax-
onomyT that is induced by the set of taxa that have been identified (see Figure 2). The
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(a) (b) (c)

Figure 7. (a) MEGAN provides a Find tool to search for specifictaxa of interest. (b) The result of a search is
highlighted in a detailed summary of the analysis. (c) MEGANprovides an Inspector tool to view the individual
sequence comparisons upon which the assignment of a particular read to a particular taxon is based.

program allows the user to explore the results both at a high level, and also a very detailed
level, by providing methods for collapsing and expanding different parts ofT . Each node
in T represents a taxont and can be queried to determine which reads have been assigned
directly tot, and how many have been assigned to taxa belowt. Additionally, the program
allows the user to view the Blast alignments upon which a specific assignments is based
(see Figure 7(3)).

4. Assignment of reads to taxa

MEGAN currently uses a simple combinatorial algorithm, which we call “LCA-
assignment”, in association with a number of different thresholds, to assign each read to a
taxon at some level of the NCBI taxonomy.

The LCA-assignmentalgorithm operates as follows. Consider a readr and assume
that the Blast computation has established matches to sequences representing a set of taxa
t(r) = {t1, t2, . . . , tk}. We assign the readr to the lowest common ancestor (LCA)of
t(r) in the NCBI taxonomy. For example, ifr matchesCampylobacter lari, Helicobacter
hepaticusandWolinella, thenr is assigned to the taxonCampylobacterales. If r does not
match any sequence in the given reference database, that is,if t(r) = ∅, thenr is assigned
to the special taxonno hits. If r cannot be assigned to a taxon for other reasons, e.g. the
read only matches sequences for which the taxon is unknown, thenr is assigned to another
special taxonNot assigned.

In this way, each readr in the dataset is assigned to one or more NCBI taxa, or to one
of either special taxa. If the Blast matches computed forr involve only one or a few closely
related species, thenr will be assigned to a taxon near the tips of the taxonomy. If, on the
other hand,r matches a wider range of taxa, thenr will be assigned to a higher-level taxon.
The read may even be assigned to the root of the taxonomy, if the sequence is completely
unspecific.

To implement the LCA-assignment algorithm, we assign a binary addressa(t) to each
everyt in such away that if taxons is an ancestor of taxont, then the addressa(s) is a
prefix of the addressa(t). Using this scheme, we can easily determine the lowest common
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ancestor of a set ofn taxa{t1, . . . , tn} by determining the longest common prefix of the
corresponding set of addresses{a(t1), . . . , a(tn)}, in O(n × log K) steps, whereK is the
maximum depth of the taxonomy.

4.1. Under- and over prediction

We say that a read gives rise to anunder prediction, if it is assigned to a taxon that lies
above the true taxon in the taxonomy. Under prediction happens when a read comes from
a gene that is widely conserved. We say that a read gives rise to a false prediction, if it
is assigned to a taxon that is not the true taxon, nor one of itsancestors in the taxonomy.
W say that a false prediction is anover prediction, if it is caused by the fact that the true
sequence is not represented in the employed databases.

For example, all reads analyzed in Figure 5(a)-(b) come fromthe genome ofBdellovib-
rio bacteriovorus HD100. However, there is a substantial amount of under predictionboth
in (a) and (b), in particular of the taxonBacteria, and a number of cases of over predic-
tion in (b), ranging fromAnaeromyxobacter dehalogenansandGammaproteobacteriato
Leptospira interrogans.

As a simple combinatorial method, the LCA-assignment algorithm is susceptible to
both types of errors. We hope to develop a more sophisticatedapproach that will not only
take the presence or absence of matches into account, but also will make use of the quality
of the matches and the levels of similarly that are typical for given genes in given clades of
sequences.

5. Summary

A metagenomics project aims at understanding the taxonomical content of an ensemble
of organisms. The approach described in this paper is to use sequencing techniques to
produce DNA reads, to perform similarity searches in databases of known sequences and
then to analyze and explore the resulting comparison data using software such as MEGAN.

MEGAN is based on a robust algorithm for assigning reads to taxa and is designed as
an easy-to-use exploration tool that quickly produces summaries of the data at different
taxonomical levels. It offers tools to search for specific taxa in the data and to inspect
the evidence supporting the presence of any given taxon. This software provides a solid
starting point for producing a first analysis of a metagenomic dataset.
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