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This paper proposes a novel clustering method for analyzing biological networks. In this method,
each biological network is treated as an undirected graph and edges are weighted based on similarities
of nodes. Then, maximal components, which are defined based on edge connectivity, are computed
and the nodes are partitioned into clusters by selecting disjoint maximal components. The proposed
method was applied to clustering of protein sequences and was compared with conventional clustering
methods. The obtained clusters were evaluated usingP-values for GO (GeneOntology) terms. The
averageP-values for the proposed method were better than those for other methods.

1. Introduction

Clustering is one of fundamental techniques in bioinformatics. Indeed, many clustering
methods have been developed and/or applied for analyzing various kinds of biological data.
Among them, such hierarchical clustering methods as the single-linkage, complete-linkage
and average-linkage methods have been widely used3,9. However, these clustering meth-
ods are based on similarities between two elements or two clusters, and relations with other
elements or clusters are not so much taken into account.

Relations between biological entities are often represented as networks or (almost
equivalently) graphs. For example, nodes are proteins in a protein-protein interaction net-
work, and two nodes are connected by an edge if the corresponding proteins interact with
each other. For another example, nodes are again proteins in a sequence similarity network
of proteins, and two nodes are connected by an edge if the corresponding protein sequences
are similar to each other. Moreover, in this case, similarity scores are assigned as weights
of edges. Since these networks are considered to have much information, clustering based
on network structures might be useful. Of course, conventional clustering methods can be
applied to clustering of nodes in these networks3,9. But, information on network structure
is not so much taken into account by these methods. For an extreme example, suppose
that the network is a complete graph and all edges have the same weight. Then, all the
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nodes should be put into one cluster and sub-clusters should not be created. However, con-
ventional clustering methods create many sub-clusters. Therefore, clustering methods that
utilize structural information on a network should be developed. Though clustering meth-
ods utilizing structural information have been developed7,12, many of these are heuristic
and/or recursive and thus it is unclear which properties are satisfied for the final clusters.

On the other hand, in graph theory and graph algorithms, the Gomory-Hu tree is well-
known 5 where it is defined for an undirected network with weighted edges. This tree
essentially contains all information on minimum cuts for all pairs of nodes. It is known
that a Gomory-Hu tree can be computed efficiently using a maximum flow algorithm. Fur-
thermore, maximal components can be efficiently computed from a Gomory-Hu tree11,
where a maximal component is a set of nodes with high connectivity (the precise definition
is given in Sec. 2). It is known that a set of maximal components constitutes a laminar
structure, which is essentially a hierarchical structure.

Based on the above facts, we develop a novel clustering method for an undirected net-
work. In this method, nodes are partitioned into clusters by selecting disjoint maximal
components. The method works inO(n2m log(n2/m)) time, wheren andm are the num-
bers of nodes and edges, respectively. The Gomory-Hu tree was already applied to analysis
of protein folding pathways8,10,13. However, to our knowledge, it was not applied to anal-
ysis of large scale protein sequence networks. Moreover, as to be shown in Sec. 3, our
method employs additional ideas to effectively utilize the Gomory-Hu tree.

In this paper, we apply the proposed method to clustering of protein sequences and com-
pare with the single-linkage, complete-linkage and average-linkage methods. We evaluate
the computed clusters usingP-values for GO (GeneOntology) terms. The results suggest
the effectiveness of the proposed method.

The organization of the paper is as follows. In Sec. 2, we briefly review maximal
components of undirected graphs and conventional clustering methods. In Sec. 3, we
present our clustering method based on maximal components. In Sec. 4, we show the
results on computational experiment. Finally, we conclude with future work.

2. Preliminaries

In this section, we review edge-connectivity and maximal components11. We also review
three conventional hierarchical clustering methods: single-linkage, average-linkage and
complete-linkage clustering methods.

2.1. Edge-connectivity

Let G = (V,E) be an undirected edge-weighted graph with a vertex setV and an edge
setE, where each edgee is weighted by a nonnegative realcG(e) ∈ <+. We define the
edge-connectivityλG(u, v) between two nodesu andv as follows:

λG(u, v) = min
{X⊆V |u∈X,v∈V −X}

∑

p∈X,q∈V −X

cG(p, q). (1)

A subsetX of V is called(u, v)-cut if u ∈ X andv ∈ V − X, or u ∈ V − X and
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v ∈ X. Among them, a(u, v)-cutX which gives a minimumλG(u, v) is called a minimum
(u, v)-cut.

2.2. Maximal Components

Definition 1. A subsetX of V is called amaximal componentif it satisfies the following
conditions,

∀u, v ∈ X λG(u, v) ≥ l, (2)

∀u ∈ X,∀v ∈ V − X λG(u, v) < l, (3)

wherel = minu,v∈X λG(u, v). Such a subsetX is also called anl-edge-connected com-
ponent.
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Figure 1. Illustration for maximal components of a graphG = (V, E)

with V = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s} andE, where each number denotes the weight of
the edge, and edges without numbers are weighted by1. Each set of nodes surrounded with a dashed line is a
maximal component ofG. For example, the setX = {a, b, c, d} is a maximal component becauseλG(u, v) ≥ 5
for anyu, v ∈ X , λG(u, v) < 5 for anyu ∈ X andv ∈ V − X, andminu,v∈X λG(u, v) = 5. It is also
called a5-edge-connected component.

Figure 1 shows an example of maximal components. Definition 1 means that the inter-
nal nodes of a maximal component are connected with each other more strongly than with
any other external nodes. Moreover, nodes of internal maximal components are connected
with each other more strongly than (and equally to) those of external maximal components
which include the internal maximal components.

Definition 2. A family χ ⊆ 2V is calledlaminar if X ∩ Y = ∅, X ⊆ Y , or Y ⊂ X for
any setsX,Y ∈ χ.

A laminar familyχ is represented by a rooted treeτ = (ν, ε). The node setν is defined by
ν = χ ∪ {V }, whereV corresponds to the root ofτ . Let tX denote a node corresponding
to a setX ∈ ν. For two nodestX andtY in τ , tX is a child oftY if and only if X ⊂ Y

holds andχ contains no setZ with X ⊂ Z ⊂ Y .
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Figure 2. The rooted tree representation of maximal componentsχ(G) of the graphG in Fig. 1. The six sets of
nodes surrounded by dashed lines are the resulting clusters provided by the procedure SelectLaminar.

Theorem 1. Let χ(G) denote the set of all maximal components ofG. Then,χ(G) is a
laminar family.

Proof. We assume that there exist three nodesx, y andz so thatx ∈ X−Y , y ∈ Y −X, and
z ∈ X ∩ Y for two maximal componentsX, Y ∈ χ(G), whereX is anl-edge-connected
component andY is an h-edge connected component. We can assume without loss of
generality thatl ≥ h. Fromx, z ∈ X and Eq. 2 of the definition of maximal components
for X, we haveλG(x, z) ≥ l ≥ h. On the other hand, fromx /∈ Y, z ∈ Y and
Inequality (3) forY , we haveλG(x, z) < h. It contradicts our assumption. ¤

2.3. Linkage methods

We briefly review three linkage clustering methods: single linkage (or nearest neighbor
method), complete linkage (or farthest neighbor method), and average linkage. Each
method starts with a set of clusters, where each cluster consists of a single distinct node.
Then, two clusters having the minimum distance are merged into one cluster. This proce-
dure is repeated until there is only one cluster. The distanceD(X, Y ) between two clusters
X andY is defined in a different way depending on a clustering method:

D(X,Y ) =





min
x∈X,y∈Y

d(x, y) (for single linkage)

max
x∈X,y∈Y

d(x, y) (for complete linkage)

1
|X||Y |

∑

x∈X,y∈Y

d(x, y) (for average linkage)
, (4)

whered(x, y) denotes the distance between two nodesx andy.
It should be noted that the distance between two nodes should be small if the similarity

between these nodes is high, whereas the weight of the edge between these two nodes
should be large. Since we are going to use the similarity score (which is high for similar
nodes), we use modified versions of these clustering algorithms. In the modified versions,
the clusters with the maximum score are merged, instead of the clusters with the minimum
distance. Moreover, ‘min’ and ‘max’ in Eq. 4 are exchanged.
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3. Selection of Disjoint Clusters from Hierarchical Structure

The set of all maximal componentsχ(G) of a graphG provides a hierarchical structure
which can be represented as a rooted treeτ (G) because the setχ(G) is a laminar family.
This structure gives a kind of hierarchical clustering. However, what we need is a set
of disjoint clusters because we are interested in classification of protein sequences. That
is, input nodes should be partitioned into disjoint clusters. Thus, we propose a method
to find disjoint clusters fromχ(G). In our method, a set of maximal componentsχ(G)
of the graphG is first computed using a Gomory-Hu tree. And then, disjoint maximal
components are selected in a bottom-up manner, based on the tree structureτ (G). The
detailed procedure is given below.

ProcedureSelectLaminar
Input : a laminar familyχ
Output : a set of clustersχc ⊆ χ

Begin
τ := the rooted tree made fromχ
χc := ∅
repeat

Xp := a parent node of not marked deepest leaves ofτ

repeat
Xs := Xp

Xp := the parent node ofXs

until Xp has a childXt exceptXs such that|Xt| ≥ 2
Add all the child nodes ofXp to χc

Mark all the descendant leaves ofXp in τ

until all the leaves ofτ are marked
returnχc

End

It should be noted that|Xt| denotes the number of nodes inG that are contained in
Xt. This procedure outputs a subsetχc = {X1, . . . , Xm} from the laminar familyχ(G)
of all maximal components of a graphG such thatXi ∩ Xj = ∅ holds for any two sets
Xi 6= Xj ∈ χc, and

⋃m
i=1 Xi = V holds. Figure 2 shows an example. This procedure

provides the clusters according to the hierarchical structure.

4. Experimental Results

4.1. Data and Implementation

In order to evaluate the proposed clustering method, we applied clustering methods to
classification of protein sequences based on the pairwise similarity. We used 5888 pro-
tein sequences (The file name is “orftrans.20040827.fasta”) from Saccharomyces Genome
Database (SGD)6. This file contains the translations of all systematically named ORFs ex-
cept dubious ORFs and pseudo-genes. We calculated the similarities between all pairs of
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the proteins using a BLAST search1 with anE-value threshold of 0.1. An edge between
two nodes exists only when theE-value between the proteins is less than or equal to 0.1.
All isolated nodes (i.e., nodes with degree 0) are removed. As a result, 32484 pairwise
similarities and 4533 nodes were detected.

As an edge-weight, we used the integer part of−3000 log10 h for the E-valueh of
10−

1000
3 < h ≤ 0.1, and106 for 0 ≤ h ≤ 10−

1000
3 . This mapping was injective for all

the E-values of the data. It should be noted that the similarity between proteins is large
when theE-value is small, and comparison operations of floating point numbers can cause
incorrect results.

We solved maximum flow problems with HIPR (version 3.5)15 which is an implemen-
tation of the algorithm developed by Goldberg and Tarjan4, and constructed a Gomory-Hu
tree5 for an edge-weighted graphG to obtain all the maximal components ofG from the
tree.

4.2. Results

To evaluate the performance of our clustering method, we used GO-TermFinder (version
0.7)2. To find the most suitable GO term for a specified list (cluster) of genes, this software
calculates aP-value using the hypergeometric distribution as follows:

P = 1 −
k−1∑

i=0

(
M

i

)(
N − M

n − i

)

(
N

n

) =
n∑

i=k

(
M

i

)(
N − M

n − i

)

(
N

n

) (5)

whereN is the total number of genes,M is the total number of genes annotated by the
specific GO term,n is the number of genes in the cluster, andk is the number of genes
annotated by the specific GO term in the cluster.P-value means the probability of seeingk

or more genes with an annotation by a GO term amongn genes in the list, given thatM in
the population ofN have that annotation. For example,P = 1 holds if none of the genes
in the specified list are annotated by the GO term. On the other hand, if all the genes are
annotated,P = M(M−1)···(M−n+1)

N(N−1)···(N−n+1) is very small becauseM is usually much smaller than
N .

In order to avoid that a lot of false positive GO terms are chosen, GO-TermFinder
can use correctedP-values. We employed these correctedP-values to evaluate clustering
results.

We used three types of ontologies on biological processes, cellular compo-
nents, and molecular functions (Their file names are “process.ontology.2005-08-
01”,“component.ontology.2005-08-01”, and “function.ontology.2005-08-01”). We ob-
tained these files also from SGD6.

We compared the proposed method with other clustering methods using single linkage,
complete linkage, and average linkage. These clustering methods usually produce a hier-
archical clustering. In order to obtain non-hierarchical clustering results, we applied our
proposed procedure in the previous section, SelectLaminar, to their results.
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Table 1 shows the averages of logarithms of correctedP-values over all 4533 proteins.
Among these proteins, there were some proteins which could not be annotated by GO-
TermFinder. Therefore, we regarded a correctedP-value as1 for such proteins, and cal-
culated the averages. We see from the table that our clustering method using maximal
components outperformed other methods. For every ontology, the average of our method
was lower than that of others. It means that our method classified protein sequences into
protein functions better than others.

Table 1. Results for three ontologies on biological processes, cellular compo-
nents, and molecular functions, by four clustering methods using maximal com-
ponents, single linkage, complete linkage, and average linkage. Left column: the
average of logarithm of correctedP-values. Right: the number of annotated pro-
teins.

Method Process Component Function

Maximal component -8.9462 2618 -5.9189 2641 -10.657 2624

Single linkage -5.2346 2947 -4.5076 2970 -4.7721 2903

Complete linkage -3.0674 3258 -2.3149 3391 -3.8539 3050

Average linkage -3.2556 3692 -2.4423 3761 -4.1007 3508

Figures 3, 4 and 5 show logarithms of correctedP-values on 800 lowest proteins for
the ontologies on biological processes, cellular components, and molecular functions, re-
spectively. For every ontology, correctedP-values of our method were lower than others.
The distributions of complete linkage and average linkage had similar behavior. For the
ontologies on biological processes and cellular components, correctedP-values of single
linkage were close to those of our method. In particular, our method provided good results
for molecular functions.

Table 2 shows GO terms with lowest 8 correctedP-value for the ontology of biological
processes in resulting clusters of clustering methods using maximal components, single
linkage, complete linkage, and average linkage. In both complete linkage and average
linkage, the same GO term (GO:0006319 Ty element transposition) was annotated to the
first and second lowest clusters. It means that a cluster having the GO term was divided
into two or more clusters by the methods.

As for CPU time, the proposed method is reasonably fast. Though the worst case time
complexity of the proposed method isO(n2m log(n2/m)), it is expected to work faster in
practice. Indeed, the proposed method took 6.3 sec. for clustering of a graph with 4533
nodes on a Linux PC with Xeon 3.6GHz CPU and 4GB memory. Though the single-linkage
clustering took only 0.024 sec., our proposed method produced better results.

5. Conclusion

We developed a clustering method using maximal components, where a maximal compo-
nent can be characterized as a subgraph having maximal edge connectivity. We compared
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Figure 3. Logarithms of correctedP-values on 800
lowest proteins for ontology on biological processes.
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Figure 4. Logarithms of correctedP-values on 800
lowest proteins for ontology on cellular components.
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Figure 5. Logarithms of correctedP-values on 800
lowest proteins for ontology on molecular functions.

the proposed method with the single linkage, complete linkage, and average linkage cluster-
ing methods using protein sequence data. Our proposed method outperformed these three
methods in terms of the correctedP-values provided by GO-TermFinder, and classified
protein sequences into protein functions better than the three methods.

Although we did not compare clustering methods other than the linkage methods with
our method in this study, many clustering methods have been proposed. For example,
the k-means method14 is well known as a non-hierarchical clustering method. However,
it cannot be directly applied to edge-weighted graphs because it is difficult to define the
center of a cluster and the distance between the center and any node in the graph.

There are several future works. We usedlog of E-values as edge-weights. However,
this weighting method is not necessarily the best. Thus, finding better weighting method is
important future work. We developed a simple method in order to select disjoint clusters
from a set of maximal components. However, better results may be obtained by using a
more elaborated method. Thus, improvement of selection of disjoint clusters should be
done. We have applied the proposed clustering method to clustering of protein sequences.
However, our method is not limited to analysis of protein sequences. For example, cluster-
ing of gene expression data is one of extensively studied problems. Therefore, application
to analysis of gene expression data is also important future work.
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Table 2. GO terms with lowest 8 correctedP-value for the ontology of biological pro-
cesses in resulting clusters of clustering methods using maximal components, single
linkage, complete linkage, and average linkage.

Rank Maximal component

1 GO:0006319 (Ty element transposition) 2.7522e-190

2 GO:0006468 (protein amino acid phosphorylation) 2.4181e-113

3 GO:0008643 (carbohydrate transport) 1.2509e-43

4 GO:0006865 (amino acid transport) 1.0052e-37

5 GO:0006511 (ubiquitin-dependent protein catabolism) 9.4800e-24

6 GO:0006810 (transport) 1.2224e-21

7 GO:0006081 (aldehyde metabolism) 8.1134e-21

8 GO:0016567 (protein ubiquitination) 1.1405e-19

Rank Single linkage

1 GO:0006319 (Ty element transposition) 3.0396e-176

2 GO:0006081 (aldehyde metabolism) 4.0950e-19

3 GO:0006530 (asparagine catabolism) 3.5363e-16

4 GO:0006166 (purine ribonucleoside salvage) 5.0151e-15

5 GO:0045039 (mitochondrial inner membrane protein import) 3.1055e-14

6 GO:0046839 (phospholipid dephosphorylation) 7.8293e-14

7 GO:0005992 (trehalose biosynthesis) 3.4570e-13

8 GO:0006913 (nucleocytoplasmic transport) 4.4109e-13

Rank Complete linkage

1 GO:0006319 (Ty element transposition) 3.7058e-81

2 GO:0006319 (Ty element transposition) 9.1783e-55

3 GO:0008645 (hexose transport) 1.1156e-20

4 GO:0006319 (Ty element transposition) 4.1098e-18

5 GO:0000209 (protein polyubiquitination) 5.7229e-17

6 GO:0006530 (asparagine catabolism) 3.5363e-16

7 GO:0006081 (aldehyde metabolism) 2.1634e-15

8 GO:0006166 (purine ribonucleoside salvage) 5.0151e-15

Rank Average linkage

1 GO:0006319 (Ty element transposition) 4.4023e-79

2 GO:0006319 (Ty element transposition) 9.1783e-55

3 GO:0008645 (hexose transport) 1.1156e-20

4 GO:0006081 (aldehyde metabolism) 4.0950e-19

5 GO:0006319 (Ty element transposition) 4.1098e-18

6 GO:0006530 (asparagine catabolism) 3.5363e-16

7 GO:0006166 (purine ribonucleoside salvage) 5.0151e-15

8 GO:0045039 (mitochondrial inner membrane protein import) 3.1055e-14


