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In this paper, we present a new biclustering algorithm to provide the geometrical interpretation of 
similar microarray gene expression profiles. Different from standard clustering analyses, biclustering 
methodology can perform simultaneous classification on the row and column dimensions of a data 
matrix. The main object of the strategy is to reveal the submatrix, in which a subset of genes exhibits 
a consistent pattern over a subset of conditions. However, the search for such subsets is a 
computationally complex task. We propose a new algorithm, based on the Hough transform in the 
column-pair space to perform pattern identification. The algorithm is especially suitable for the 
biclustering analysis of large-scale microarray data. Our simulation studies show that the method is 
robust to noise and computationally efficient. Furthermore, we have applied it to a large database of 
gene expression profiles of multiple human organs and the resulting biclusters show clear biological 
meanings. 

1 Introduction 

DNA microarray technology is a high-throughput and parallel platform that can provide 
expression profiling of thousands of genes in different biological conditions, thereby 
enabling the rapid and quantitative analysis of gene expression patterns on a global scale. 
It aids the examination of the integration of gene expression and function at the cellular 
level, revealing how multiple gene products work together to produce physical and 
chemical responses to both static and changing cellular needs [14]. As an increasing 
number of large-scale microarray experiments are carried out, analysis of the expression 
data produced by these experiments remains a major challenge. A key step of the analysis 
is the identification of groups of genes that exhibit similar expression patterns. Therefore 
cluster analysis has emerged as one of the most valuable tools to elicit complex structures 
and gather information about how genes work in combination with microarray data. A 
large number of clustering methods have been proposed for the analysis of gene function 
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on a global scale [17]. Usually, gene expression data are arranged in a matrix, where each 
gene corresponds to one row and each condition to one column. Each element of the 
matrix represents the expression level of a gene under an experimental condition. Thus, 
clustering methods can be applied to group genes by comparing rows or conditions by 
comparing columns. However, conventional clustering methods have their limitations: 
they require that the related genes (conditions) behave similarly across all measured 
conditions (genes) in one cluster. In fact, many activation patterns are common to a 
group of genes only under specific experimental conditions. As such, an interesting 
cellular process may be involved in a subset of genes co-regulated or co-expressed only 
under a subset of conditions, but to behave almost independently under other conditions. 
Discovering such local expression patterns may be the key to uncovering many genetic 
pathways that are not apparent otherwise. Thus it is highly desirable to move beyond the 
clustering paradigm, and to develop approaches capable of discovering local patterns in 
microarray data.  

Beyond the traditional clustering method, the term ‘biclustering’, also called 
coclustering, bidimentional clustering, and subspace clustering, was first formulated by 
Hartigan [6]. It was first applied to expression matrices for simultaneous clustering of 
both genes and conditions by Cheng and Church [3]. Since then different kinds of 
algorithm are proposed [5, 9, 11, 12].  And biculster was recently summarized in two 
papers [10, 15]. The general strategy in these algorithms can be described as adding or 
deleting rows and/or columns in the data matrix in some optimal ways such that a merit 
function is improved by the action.  In contrast, a different viewpoint of the biclustering 
is in terms of the spatial geometrical distribution of points in data space [4]. The 
biclustering problem is tackled as the identification and division of coherent sub-matrices 
of data matrices into geometrical structures (lines or planes) in data space. This novel 
perspective opened a door to the performance of biclustering using the methodology of 
detecting the geometric lines or planes within a unified framework. In the framework, a 
series of the well-known Hough transforms are conducted to detect lines and planes. No 
explicit cost function is required to define the procedure. As such, the Hough transform 
is noted for its ability to detect lines and planes in noisy data [7]. Thus, it is especially 
suitable for biclustering analysis since noise is one of the major issues in microarray data. 
However, if the number of conditions is small, the speed of the geometric biclustering 
algorithm is acceptable. With the augmentation of the dimension, vote accumulators in 
the Hough transform use so much memory that the computation time is significantly 
increased and become ineffective. In order to overcome the difficulty, a novel strategy is 
proposed in this paper based on geometric biclustering. In our algorithm, the Hough 
transform is only performed in the column-pair space. Instead of computing all genes, 
only useful genes (features) are extracted for the combination of the following iterations.  

The paper is organized as follows. First, we demonstrate that all biclustering patterns 
of interest in data matrices can be formulated with the linear relation in column-pair 
space. Based on this premise, a visualization tool, the AMPP plot, is proposed to separate 
the genes into different groups of biclusters. Then, the complete algorithm is given on the 
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basis of the Hough transform and AMPP in Sec. 3. The characteristics of the algorithm 
are discussed in simulation study. Lastly, we apply the algorithm to bicluster the 
microarray expression matrix of multiple human organs. The genes in the different 
biclusters are further analyzed with the gene ontology (GO) tool to infer their biological 
process, molecular function and cellular component.  

2 Linear Pattern of Biclusters in Column-pair Space 

An interesting criterion to evaluate in a biclustering algorithm is the identification of type 
of biclusters. In this paper we focus on five major classes corresponding to significant 
gene expression. Table 1 shows five different types of biclusters that are of interest in 
microarray analysis. These biclusters are: (a) constant bicluster, (b) constant rows, (c) 
constant columns, (d) additive coherent values, where each row or column can be 
obtained by adding the constant to another row or column, (e) multiplicative coherent 
values, where each row or column can be obtained by multiplying another row or column 
by a constant value. In the case of gene expression data, constant biclusters reveal 
subsets of genes with similar expression values within a subset of conditions. A bicluster 
with constant values in the rows identifies a subset of genes with similar expression 
values across a subset of conditions, allowing the expression levels to differ from gene to 
gene. Similarly, a bicluster with constant columns identifies a subset of conditions within 
which a subset of genes present similar expression values assuming that the expression 
values may differ from condition to condition. However, one may be interested in 
identifying more complex relations between the genes and the conditions, such as 
coherent values on both rows and columns. In these cases, we can consider additive and 
multiplicative relations between rows or columns. 

Obviously, it is unnecessary to show the relation of all columns together within a 
bicluster. It is enough to describe a bicluster pattern using an equation of two variables, 
as shown in the bottom rows of Table 1. Furthermore, it is advantageous to bicluster 
microarray data matrices in a column-pair space. Firstly, it is obvious that the first three 
classes of biclusters are special cases of the additive and multiplicative models when bij = 
0 or aij = 1 in the column-pair space. Secondly, all five patterns in Table 1 can be 
generalized into the linear relation xj = aij xj + bij although they appear to be substantially 
different from each other. Little attention is paid to the equation with two parameters 
because there is no corresponding biological meaning in gene expression. As such, we 
are more interested in the additive and multiplicative patterns, which are described by xj 
= xj + bij and xj = aij xj, respectively. Thirdly, instead of the computation for all genes and 
conditions, the computation complexity and time are significantly decreased and become 
operable in the column-pair space. Of course, it is absolutely necessary to compare all 
pairs of conditions and combine the similar subblocks in order to identify biclusters. 
Compared to other methods, the geometric perspective we present here allows us to 
better detect linear relations that define various different bicluster patterns using a 
generic linear finding algorithm. The algorithm is provided in Sec. 3. 
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 Table 1. Classes of different biclusters: (a) Constant bicluster (b) 
Constant rows (c) Constant columns (d) Additive coherent values (e) 
Multiplicative coherent values. 

 Constant Rows 
x1 x2 x3 x4

10 10 10 10 
25 25 25 25 
35 35 35 35 
50 50 50 50 

xi=xj

Constant Columns 
x1 x2 x3 x4

10 25 35 50 
10 25 35 50 
10 25 35 50 
10 25 35 50 

xi=ai, xj=aj (ai≠ aj) 

                          
Constant 

x1 x2 x3 x4

50 50 50 50 
50 50 50 50 
50 50 50 50 
50 50 50 50 

xi=xj=a 

 
 
 
    
 Additive 

x1 x2 x3 x4

15 12 20 35
20 17 25 40
25 22 30 45
30 27 35 50

xj=xi+bij (bij≠ 0) 

Multiplicative 
x1 x2 x3 x4

2 6 4 12
5 15 10 30
6 18 12 36
8 24 16 48

xj= aijxi (aij≠ 1) 

 
 
 
 

3 Geometric Algorithm of Biclustering
Based on the linear structures discussed above, we propose a new biclustering algorithm. 
First we identify genes of interest with linear structures discussed above and divide them 
into different patterns using the additive and multiplicative pattern plot (AMPP) 
described below in the column-pair space. Then these genes in the same patterns are 
combined step by step to form new biclusters. A robust method of line detection in the 
column-pair space is a key step in the proposed framework. The Hough transform (HT) 
is an effective, powerful, and robust technique widely used for line detection in 2-D 
images [1]. In this section, we first introduce the HT and then propose the AMPP as a 
visualization tool to separate the genes into corresponding additive and multiplicative 
patterns.  The biclustering algorithm will then be developed based on the HT and AMPP. 

3.1 Hough Transform and Line Detection  

The Hough transform is a methodology that detects analytic lines and curves in images 
through a voting process in parameter space [1]. A line in x-y data space is defined by 

y kx b= +                                                           (1)           
Note that a line in x-y space as defined by Eq. (1) corresponds to point (k,b) in k-b 
parameter space. Conversely, the line in Eq. (1) in k-b space corresponds to point (x,y) in 
x-y space. If n points {(xi,yi):i=1,…,n} on a line in the x-y space are known, the line 
obtained from each such point should pass through the same point in k-b space, which is 
the point defining the line in x-y space. Therefore, to determine lines from points, we can 
initialize all entries of k-b space to 0 and increment an entry by 1 when the line 
representing a point in x-y space passes through it, and then find the entry in k-b space 
that has the highest count. If more than one line is to be detected, entries with local peak 
counts in k-b space are located and their coordinates are used as the slopes and y-
intercepts of the line. The accumulator array in parameter space may be very large 
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because the range of the slope is large, especially for vertical lines. Alternatively, the 
polar form can be used to describe a line: 
                                                 cos siny x yθ θ= +                                                   (2) 
where ρ  is the distance of a line to the original point and θ  is the angle of the normal 
to the line with the x axis. Since ρ  is limited from 2 2x y− +  to 2 2x y+ and θ  is 
limited from / 2π−  to / 2π , the dynamic ranges of the parameters are compressed and 
a small accumulator array is sufficient to find all lines. Note that if the polar equation of a 
line is used, for each point in x-y space, a sinusoidal curve rather than a line can be 
drawn in the accumulator array. Again, array entries with local peak counts should be 
identified and used to detect the lines [7, 18]. 

3.2  Additive and Multiplicative Pattern Plot (AMPP) 

Given points on a line in column-pair data space, we need to classify their corresponding 
genes into the additive or multiplicative patterns. We develop a visualization tool, named 
the AMPP for this task. As discussed in Sec. 2, only the additive and multiplicative 
patterns are of our interest in microarray analysis, so the difference in the patterns of 
gene expression is of concern. For example, given {(xi,yi):i=1,…,k} which are the 
expressions of k genes under two conditions, we assume that the k points are on a line 
detected using the HT. Now we try to cluster them into two types of expression patterns. 
We employ di=xi-yi and ri=arctan(xi/yi) to show the difference in the additive and 
multiplicative models. Again, we use ri=arctan(xi/yi) instead of the direct ratio xi/yi to 
reduce the dynamics range of the ratio. We plot di against ri (i=1,…,k) in the AMPP. In 
the plot, the horizontal axis represents the change of additive patterns, and the vertical 
axis the multiplicative patterns. Based on the AMPP, we employ the boxplots to obtain 
the points in the additive and multiplicative models. The Boxplot, also called box-and-
winker plot, was first proposed by John Tukey, as simple graphical summaries of the 
distribution of variables [2]. In a boxplot, the middle line represents the median, and the 
lower and upper sides of the rectangle show the medians of the lower and upper halves of 
the data. Along the horizontal boxplot, the points in the box are considered to be shifted 
with their median in the additive model and the points in box of the vertical boxplot are 
considered to be multiplied by their median in multiplicative model. The points in their 
intersect set are considered as the overlapped genes in the two patterns. The method is 
used in the following algorithm to recognize patterns after line detection with HF in 
column-pair space.  

3.3  Biclustering Algorithm  

Given expression data matrix N nD ×  with  genes and n  experimental conditions, we 
denote the index of rows (genes) with 

N

{ }1, , Ng g= LG  and the index of columns 

(conditions) with { }1, , nc c=C L .  We denote the expression matrix with the row and 
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column index as ( ),=D G C , then the bicluster is defined as ( ),=B I J , where 

{ }1
, ,

si ig g=I L  is a subset of G  and { }1
, ,

tj jc c=J L  is a subset of . Based on the 

line detection with the HF and AMPP in the column-pair space, we propose the 
following algorithm to identify a set of biclusters 

C

( ){ }: ,k k k k=B B I J .  

Parameters to be predetermined: 

• Resolutions: quantization step size for voting in parameter space; 
δ• Minimum number of rows  (genes to form one bicluster); 

• Minimum number of columns ζ   (conditions to form one bicluster) ; 

1. Select any two columns from C  as { }1 2,s s sc c=J , where 1, ,
2

s M
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

C
L , 

where ||C|| denotes the number of elements in the set C, and transform each of  
( ){ }: ,s s s=B B G J  in the column-pair space to the polar parameter space. 

2. Given sJ  in ( , )s s=B G J , there are G  sinusoidal curves corresponding to sB  

in the parameter space. Then perform a voting count in the quantized parameter 
space to find the accumulator array sp . Similar procedures are applied  M  times to 

sJ . Denote the series of the curves passing sp  as sG , their corresponding 

accumulated count as sG  and { }arg : 1, ,s
s

s Mδℜ = ≥ =G L , we set the 

corresponding bicluster as ( ), (r r r r )= ∈ℜB G J  in the column-pair space.  

3. With the help of AMPP in the column-pair space, we separate the genes in  into 

three parts of the additive set , multiplicative 
rG

A
rI M

rI  and their overlap .  

Therefore, three patterns are obtained, denoted as 

AM
rI

( ),A A A
r r r=B I J , ( ),M M M

r r r=B I J , 

and ( ),AM AM AM
r r r=B I J  where A M AM

r r r r= = =J J J J ( )r ∈ℜ .  

4. First we consider the combination steps for the additive pattern. Set 1i =  and begin 
with the set of ( ){ }, : ,A A A A A A A

i i i i r i= =B I J I I J Jr=  including ℜ  subclusters. 

5. We unite any two elements ( ),A A A
iu iu iu=B I J  and ( ),A A A

iv iv iv=B I J  of  every time. We 

consider their intersection of rows and union of columns as a new subcluster. Denote 
the biculsters 

A
iB

( ){ }1 1 1 1 1, : ,A A A A A A A A
i i i i iu iv i iu iv+ + + + += = =B I J I I I J J JI U A .  

6. Repeat Step (5) until there is no new combined subcluster and ,A A
i iδ ζ≥ ≥I J . 

From ( ){ }, : , , , 1, , 1A A A A A A A
k k iδ ζ= ≥ ≥ ∈ = −B I J I J B B L  we consider the 

biclusters obtained from the last step as the largest one.  
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7. As to the other two cases, { }:M
r r∈ℜB  and { }:AM

r r∈ℜB , the combination steps are 

similar.  

4 Simulation Study 

Gene expression data from microarray experiments are often degraded by noise. 
Furthermore, it is important to find the multiple biclusters with overlapping patterns. 
Therefore, in the simulation study, the following two questions were investigated: 
robustness to noise and ability to identify the multiple overlapping biclusters. 

4.1. Synthetic Data with Noisy Biclusters 

Here we investigate the performance of our algorithm on noisy data. We use an additive 
pattern as an example. We embed an additive bicluster pattern of 20 rows by 8 columns 
into a dataset of size 100 by 30. One column of the additive pattern is generated from U(-
5, 5) and the additive factors of other columns are randomly obtained from U(-5, 5). The 
background is also generated from the uniform distribution U(-5, 5). Gaussian noise with 
variance from 0.3 to 0.9 is generated to degrade additive patterns in the bicluster. We 
apply the new algorithm to the simulated data with parameters 15δ =  and 5ζ = . It is 
anticipated that our algorithm is robust to noise. In fact, in HT the accumulator arrays are 
used instead of a point, which accommodates the noise in the data, and thus all genes of 
interest are already included in the biclusters in the column-pair space. With the 
combination of clusters step by step, the exact 20x8 additive biclusters are identified after 
six iterations. Besides the additive bicluster one multiplicative bicluster is also 
discovered with our methodology, however, it is completely overlapped by the additive 
bicluster. Thus, more patterns may be discovered with our algorithm. 

4.2. Synthetic Data with Multiple Overlapping Biclusters  

To show that our algorithm can successfully detect biclusters of different types, we have 
generated biclusters with additive, multiplicative and their overlapping patterns. 
Furthermore, we have also examined the ability of our algorithm to simultaneously 
identify multiple biclusters, especially when the overlap is present. We embed two 
overlapped biclusters into noisy background generated by the uniform distribution U(-5, 
5). Gaussian noise with variance from 0.3 to 0.9 is generated to degrade the bicluster data. 
The dataset has 100 rows by 30 columns, and two embedded biclusters have the 
following sizes: 30x6 Bicluster 1 of additive pattern, 25x8 Bicluster 2 of multiplicative 
and their overlap is a 10x3 submatrix. The random row and column permutations are 
then performed to obtain the final testing dataset. In this experiment, Bicluster 1 is found 
with all six conditions and 27 rows. Bicluster 2 is found with eight conditions and 24 
rows. The overlap part is identified with all three columns and 10 rows.  
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5 Applications 

We apply our algorithm to the gene expression database of multiple human organs [13]. 
The database captures 18,927 unique genes for 19 different organs from 158 normal 
human tissues from 30 donors. In fact, there are several replicated tissues for every organ 
and they are considered as the replicated samples of the same organ. So in every organ 
we take the median of the replicated measurements of every gene for further analysis. We 
also filter the genes with low variance and entropy methods and have obtained one 
5298x19 expression matrix of 5298 genes under 19 experimental conditions for the 
following bicluster analysis. In the first step, 19x18/2=171 subclusters can be obtained in 
the column-pair space. In all these subclusters, the number of columns is two and that of 
rows is the largest number of lines passing one accumulator array after HT in the 
corresponding parameter space. We demonstrate all subclusters in Fig. 1. The indexes of 
rows and columns in the square show 19 different organs. The values of the cross points 
are the number of genes in every bicluster in the column-pair space. We set the diagonal 
value to zero. Obviously, the square matrix is symmetric. We use different gray scales to 
represent different count values. The darker the color is, the larger the value is. For 
example, the largest value in the square matrix is 468 between the comparison of colon 
and ileum, that is, their gene expression patterns are very similar, which are in logical 
agreement with known organ functions. 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Heat map of the symmetric square matrix of highest count in the column-pair space. The rows and 
columns represent 19 organs.  

In the following steps, we combine the small subclusters in the column-pair space 
into larger biclusters. We discover that the results of the procedures coincide with the 
corresponding organ function. For example, we combine colon, ileum, bladder and 
stomach into one significant bicluster with the largest number of common genes in some 
iteration. In the combination steps, the number of conditions is increased and the number 
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of genes is decreased until the stop criteria. At last, one additive and six multiplicative 
biclusters are recorded with the parameters 25δ =  and 5ζ = . The largest additive and 
one multiplicative biclusters are shown in Fig. 2 

 

Given the biclusters, we try to test the results and infer their organ functions. Gene 
Ontology (GO) has become a well accepted standard in organizing gene function 
categories [16]. Thus GO provides us with a systematic tool to determine the functional 
and biological significance of genes and gene products in our results. GO describes the 
attributes of genes in three key domains, molecular function, biological process and 
cellular component. We calculate p-values of each gene in the biclusters with the 
hypergeometric probability distribution. In one additive bicluster of six organs, bladder, 
colon, ileum, stomach, ureter, and uterus, the smallest p-value is 0.0004 corresponding to 
the GO term 0004479, which is related to methionyl-tRNA formyltransferase activity in 
molecular function. In one multiplicative bicluster of 11 organs, bladder, colon, heart, 
ileum, heart, lung, ovary, prostate, stomach, ureter and uterus, the smallest p-value is 
0.0003 corresponding to GO term 0030145, which is related to cell differentiation in 
biological process. We discovered that significant genes in the bicluster patterns are 
mostly related to molecular function rather than biological process analyzed in [13]. 

 
 

 

 

1 2 5 6 7 10 11 13 16 18 19

28

-2

-1

0

1

2

3

4

5

                                                
 
 
 
 
 
 
 
 
 
 

2 5 7 16 18 19

40

 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Bicluster analysis of 5298x19 gene expression data matrix of multiple human organs. The original 
data matrix is left one; Two bicluster patterns after permutation of genes and conditions in right: one 
multiplicative bicluster 28x11 in the upper-left corner and the other additive 40x6 one in the left bottom part. 
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