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We address the problem of detecting consensus motifs, that occur with subtle variations, across multi-
ple sequences. These are usually functional domains in DNA sequences such as transcriptional binding
factors or other regulatory sites. The problem in its generality has been considered difficult and vari-
ous benchmark data serve as the litmus test for different computational methods. We present a method
centered around unsupervised combinatorial pattern discovery. The parameters are chosen using a
careful statistical analysis of consensus motifs. This method works well on the benchmark data and is
general enough to be extended to a scenario where the variation in the consensus motif includes indels
(along with mutations). We also present some results on detection of transcription binding factors in
human DNA sequences.
Availability: The system will be made available at www.research.ibm.com/computationalgenomics.
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1. Introduction

The problem of detecting common motifs across DNA sequences for locating regulatory sites, tran-
scription binding factors or even drug target binding sites is of prime importance. The main difficulty
is that these motifs have subtle variations at each occurrence. This problem has been of interest to
both biologists and computer scientists. A satisfactory practical solution has been elusive although
the problem is defined very precisely:

Problem 1. (The Consensus Motif Problem): Given t sequence si on an alphabet Σ, a length l > 0
and a distance d ≥ 0, the task is to find all patterns p, of length l that occur in each si such that each
occurrence p′i on si has at most d mismatches with p.

The problem in this form made its first appearance in 1984 16. In this discussion, the alphabet Σ is
{A, C, G, T} and the problem is made difficult by the fact that each occurrence of the pattern p may
differ in some d positions and the occurrence of the consensus pattern p may not have d = 0 in any
of the sequences. In the seminal paper 16, Waterman and coauthors provide exact solutions to this
problem by enumerating neighborhood patterns, i.e., patterns that are at most d Hamming distance
from a candidate pattern. Sagot gives a good summary of the (computational) efforts in 14 and
offers a solution that improves the time complexity of the earlier algorithms by the use of generalized
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suffix trees. These clever enumeration schemes, though exact, have a drawback that they run in time
exponential in the pattern length.

This problem of detecting common subtle patterns across sequences is nevertheless of great in-
terest and various statistical and machine learning approaches, which are inexact but more efficient,
have been proposed 9,10,3,6. One of the questions that can be asked to compare and test the efficacy
of such methods of consensus motif detection systems is: Given a set of sequences that harbor (with
mutations) k motifs , what percentage of the k motifs does the system recover? When k is large, all
of the above approaches give good average-case performance under this criterion.

Yet another question to ask is : Given a set of sequences that harbor (with mutations) ONE
motif p , does the system recover p? This is a rather difficult criterion to meet since these algorithms
use some form of local search based on Gibbs sampling or expectation maximization or even clever
heuristics. Hence it is not surprising that they may miss p. However, a question of this form is a
biological reality. Consider the following, somewhat contrived, variation of Problem 1 which is an
attempt at simplifying the computational problem.

Problem 2. (The Planted (l, d)-motif problem): Given t sequence s′i on Σ, a pattern p of length l
is embedded in s′i, with exactly d errors (mutations), to obtain the sequence si of length n, for each
1 ≤ i ≤ t. The task is to recover p, given si, 1 ≤ i ≤ t and the two numbers l and d.

Pevzner and Sze tantalized the community with the challenge problem, which was Problem 2 with
parameters n = 600, t = 20, l = 15 and d = 4 11. A thrust of this paper also was the need for
the deployment of combinatorial approaches to tackle this thorny problem. One of the algorithms
they presented was an exact algorithm where the challenge problem was reduced to finding a t-sized
clique in a t-partite graph with at most n − l + 1 vertices in each partition. Even the best known
heuristics for clique finding problem failed to detect the clique corresponding to the signal. The
second algorithm was based on enumerating possible patterns and checking their candidacy for being
the subtle pattern using clever heuristics and an exhaustive search in a reduced space. A similar
algorithm, with different heuristics was presented in 12,7.

One of the most effective algorithms, we found, was the one discussed by Buhler and Tompa 4.
The probabilistic algorithm uses a random projection h and hashes each input l-mer x into bucket
h(x). Any hash bucket with sufficiently many entries is explored as a potential embedded motif. This
approach solved the challenge problem and some more. There has been a flurry of activity around this
problem of subtle motifs 5,7,8. See also 13 for some practical implementations of exact approaches.

Overview of our approach. We first clarify the different “motifs” used in this paper: Our central
goal is to detect the consensus or the embedded or the planted motif in the given data sets which is
also sometimes referred to as the signal in the data or the subtle signal. When a motif is not qualified
with these terms, it refers to a substring that appears in multiple sequences, with possible wild cards.

We propose an approach that uses unsupervised motif discovery to solve Problem 2. We show
that this method works well for the more general Problem 1 as well. Recall that the signal (”subtle
motifs”) is embedded in t random sequences. The problem is compounded by the fact that although
the consensus motif is solid (i.e., an l-mer without wild cards or dont-care characters), it is not
necessarily contained in any of the t sequences. However, if we can obtain a correct alignment of the
m sequences, then it is relatively easy to extract the consensus motif satisfying the (l, d) constraint.
In other words, one of the difficulties of the problem is that the sequences are unaligned. The extent
of similarity across the sequences is so little that any global alignment scheme cannot be employed.
So we tackle this problem in two steps: First, we identify potential signal (PS) segments of interest
in the input sequences. This is done by using the imprints of the discovered motifs on the input.
Second, amongst these segments, we carry out an exhaustive comparison and alignment to extract
the consensus motif. This delineation into two steps helps us also address a more realistic version of
the problem that includes insertion and deletion in the consensus motif:
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Problem 3. (The Indel Consensus Motif Problem): Given t sequence si on an alphabet Σ, a length
l > 0 and a distance d ≥ 0, the task is to find all patterns p, of length l that occur in each si such that
each occurrence p′i on si is at an edit distance (mutation, insertion, deletion) at most d from p.

The main focus of our method is in obtaining good quality PS segments and restricting the num-
ber of such segments to keep the problem tractable. The Type I error or false negative errors, in
detecting PS segments, are reduced by using appropriate parameters for the discovery process based
on a careful statistical analysis of consensus motifs which is discussed in Section 2. The Type II error
or false positive errors are reduced by using irredundant motifs 2 and their statistical significance
measures 1 discussed in Section 3.1. Loosely speaking, irredundancy helps to control the extent
of over-counting of patterns and the pattern-statistics helps filter the true signal from the signal-
like-background. In the scenario where indels (insertions and/or deletes) are permitted along with
mutations, the unsupervised discovery process detects extensible motifs (instead of rigid motifs that
have a fixed imprint length in all the occurrences). Also, the second step uses gapped alignments.

2. Statistics of consensus motifs

Here we make some calculations, under simplifying assumptions, to justify our unsupervised motif
discovery approach to the problem. We consider the most general version of the problem which is
formally stated as Problem 3 in the last section. Recall that this setting permits insertion and deletion
as well as mutation in the embedded motif.

Given t sequences of length l each, a pattern satisfies quorum K if it occurs in K′ ≥ K of the
given t sequences. Further it is of maximal size h, if in each of the K′ occurrences, the size cannot
be increased without decreasing the number of occurrences K′ (see 1 for a more rigorous definition).

For simplicity, the sequences are the same length l as the consensus motif and all the t se-
quences are aligned and we will further assume that a pattern occurs at most once in each se-
quence. Let q be the probability of any position in the input data to be contained in a pattern and
let Pmaximal(K, H, q) be the probability that a pattern with maximal H solid characters and quo-
rum K occurs in the input data. Then a

Pmaximal(K, H, q) =

t∑

k=K

(
t

k

) (
1− qH

)t−k
qH k(1− qk)l−H (1)

Let ZK,q be a random variable denoting the number of maximal motifs with quorum K and q as
defined above, and, E(ZK,q) denotes the expectation of ZK,q . Note that for maximal motifs, it is
the case that the occurrences of two distinct motifs are independent events. Further, using linearity
of expectations, we obtain (for a fixed t and l),

E(ZK,q) =

l∑

h=1

(
l

h

)
Pmaximal(K, h, q) (2)

Computing q. Consider the case where the embedded motif is constructed with some d edit opera-
tions. Let the edit operations be (1) mutation, (2) deletion and (3) insertion. Let qM be the probability
of mutation, qX the probability of deletion and qI the probability of insertion with qM +qX +qI = 1.

Note that for simplicity we have assumed that the t sequences are aligned. For example, the table
on the left below shows exactly one edit applied to the signal motif and the table on the right shows

aNote that if the motifs are not maximal then P (K, H, q) =
∑t

k=K

(t
k

) (
1− qH

)t−k
qH k . Also if motif m1

is a maximal version of motif m2 then the occurrences of m1 and m2 are not independent.
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(a) (b)

Figure 1. For t = 20, l = 20, the expected number of maximal motifs E(ZK,q), is plotted against (a) quorum
K shown along the X-axis (for different values of q), and, (b) against q shown along the X-axis (for different
values of quorum K).

the alignment of the embedded motifs.
Edits signal = ACGTAC

M A C G T C C
X A G T A C
I A C G A T A C

M A C C T A C
M G C G T A C

Alignment
A C G - T c C
A - G - T A C
A C G a T A C
A C c - T A C
g C G - T A C

Assume that d out of the l positions are picked at random on the embedded motif for exactly one
of the edit operations, insertion, deletion or mutation. Then it is easy to see that probability q of a
position to be contained in a motif is:

q = 1− d

l
(qM + qX) (3)

Now, it is straightforward to compute the value of q, to estimate E(ZK,q) of Equation (2), given
different scenarios. For example, consider the following cases.

(1) Exactly d mutations qM = 1 q = 1− d/l
(2) Exactly d edits qM = qX = qI = 1/3 q = 1− 2d/3l

Also note that when no more than d′ edit operations are carried out on the embedded motif, it is
usually interpreted as each collection of 0, 1, 2, . . . , d′ positions being picked with equal probability,
and thus d = d′/2 for Equation (3).

2.1. Rationale for using unsupervised motif discovery

A motif of length l that occurs across t′ ≤ t sequences provides a local alignment of length l for
the t′ sequences which, in a sense, justifies the simplified scenario of the last section. The best
case scenario, for our problem, is when the embedded motif m is identical in all t sequences and the
discovery process detects this single maximal motif with quorum t. So the scenarios closer to the best
case should have fewer (but important) maximal motifs. Figure 1(a) shows the expected number of
motifs with different values of q and quorum K. Notice that the expected number of motifs saturates
for small values of K and falls dramatically as K increases. The saturation at lower values occurs
since we are seeking maximal motifs. Thus as q increases the saturation occurs at a higher value
of K. Figure 1(b) shows the variation of the expected number of maximal motifs with q which is
unimodal, for different values of K. The value of q is determined by the given problem scenario and
thus a large value of K is a good handle on controlling the number and “quality” of maximal motifs.
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Figure 2. For t = 20, l = 20, the expected number of maximal motifs E(ZK,q), is plotted against quorum K
shown along the X-axis, for different values of q, in a logarithmic scale. Notice that when q = 1, the curve is a
horizontal line at y = 1. Note that for DNA sequences, q = 0.25 corresponds to the random input case.

The signal is embedded in the background and it is important to exploit the characteristics that
distinguishes one from the other. In our case, we assume that the background is random, in other
words it is assumed to be randomly generated using an i.i.d process. Under this condition, it is easy
to see that q = 1/4. Thus we need to compare E(ZK,q) with E(ZK,1/4), the expectation for the
random case. To compare these expectation curves, particulary around small values (close to 1 in the
Y-axis), we study the plots of log(E(ZK,q)) against quorum K in Figure 2.

For example, consider the case when q = 0.75; this is the value of q for the challenge problem
of Section 1. In Figure 2, this is shown by the red curve and for large K, say K ≥ 16, the expected
number of motifs is small. Also, the corresponding expected numbers for the random case is ex-
tremely low, thus providing a strong contrast in the number of expected motifs. Hence the reasonable
choice for the quorum parameter K is 16 or more, in the unsupervised discovery process.

Before we conclude this section, we must point out that in the case where the embedded motif
is changed with insertions and/or deletions (indels), the q value is computed appropriately using
Equation (3) and the corresponding expectation curve in Figure 2 is studied. However, the burden
is heavier for the unsupervised discovery process and we use the extensible (or, variable-sized gaps)
motif discovery capability in Varun 1.

3. Subtle Motif Finder: Our Approach

Here we present our approach, SubtleMotif, which detects the consensus motifs in two steps. We
first locate regions in the sequence called potential signal (PS) segments. The statistical analysis of
the previous section suggests that the detection of PS segments via unsupervised motif discovery is
indeed possible. The two important parameters in the combinatorial discovery process are K and D:
K is the quorum or the minimum number of sequences where the pattern must occur and D is the
size of the gap between any two solid characters in the pattern. In the second step we carry out a local
alignment of these short segments and extract the consensus motif.

3.1. (Step 1) Detecting PS segments

As seen in the last section, we expect to see more maximal patterns in the signal region than the
background in an appropriate range of quorum K. We extract all common motifs across sequences
using an unsupervised combinatorial motif discovery process. We use the system Varun 1 for this
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purpose. This allows us to discover motifs with “dont-cares” or wild-cards. The number of such
characters is controlled by the parameter D in Varun, which is a bound on the number of “dont-
cares” between any two solid characters in a pattern. Next, we simply count the number of motifs
that cover a position i on the input. The first prediction of the PS segments are the positions (i’s) with
high counts.

This elementary rule works well for simple cases like Problem 2 with n = 600, t = 20, l ≤ 10
and d = 2. Here the PS segments are predicted accurately. However, for d > 2 we found it is difficult
to distinguish the true from the false PS segments using this simple approach. To weed out these
wrong PS segments, we explored other means of pruning the motifs using some combinatorial and
statistical approaches. Firstly, we use the idea of irredundant or basis motifs 2, to avoid overcounting
of patterns that cover the same region multiple times on the sequence. Secondly, we consider only
those motifs that have a significant z-score and also, biased the motif count at a position i on the input
with the probability of the occurrence of that motif. Due to space constraints, we omit the discussion
on irredundant motifs and their statistical significance evaluations and instead direct the reader to 2,1.
We use Varun to discover irredundant motifs in the input data. In the
right, the motif discovery parameters are K and D and l = 15, d = 4,
t = 20, n = 600 and the value of q is 11/15 ≈ 0.73, using Equation (3).
Column I shows the number of correct PS segments predicted using all
motifs and column II shows the same using only irredundant motifs. In
all the cases, there is an increase in the number of correctly detected
positions for the latter.

K D I II
20 2 2 3
19 2 0 1
20 3 3 4
19 3 1 2
20 4 2 5

We compute the z-score of each irredundant motif using our previous result (Equation (5) in 1)
and filter these motifs based on a cut-off threshold z-score. We further use a weighted count for each
input position in the imprint of the motif m, where the weight is (1/pm) and pm is computed as in
Equation (4) in 1. Figure 3 shows the results for a variety of settings comparing the use of statistical
methods (both z-score and weighted counting), called Method II, with the one that does not use them,
called Method I.

Notice that using Method II, we can restore all 10 positions of the n = 200, t = 20, l = 10
and d = 2 of Problem 2. In the experiments for l = 15 and d = 4, we can recover 4 positions
correctly out of 20. We find that only in two cases Method I recovers more PS segment positions
than Method II. However, in all the remaining 22 cases, Method II outperforms Method I.

Since it is very difficult to detect 100% of the PS segments correctly in this step alone, we use
these partial PS segments in the next step to reconstruct the true signal.

3.2. (Step 2) Processing PS Segments

In the previous step we identified the potential signal (PS) segments in the input. Next, we merge the
information form each sequence by combining different PS segments. Assuming that the PS segment
is predicted correctly, the planted motif is embedded in this segment. If the length of the consensus
motif is known, say l, then the PS segment is constrained to be substring of length 2× l. Thus given
a candidate position i in sequence s, the signal is contained in the interval s[i− l, i + l].

We next pick one PS segment from each sequence to “locally align” the segments across some C
sequences. We enumerate all the

( t
C

)
configurations here. Let the C PS segments, each from a dis-

tinct sequence, be given as (si1 [bi1 , ei1 ], si2 [bi2 , ei2 ], ..., siC
[biC

, eiC
]). We make the assumption

that the starting position xij
of the consensus motif in sequence sij

lies in the substring sij
[bij

, eij
],

i.e., bij
≤ xij

≤ eij
. We are seeking all possible alignments of length l using these PS segments.

We use the following measure to evaluate an alignment. The majority string sm, of length l, is simply
the string obtained by using the majority base at each aligned position (column). The score f is the
sum total of the aligned positions in all the C segments that agree with sm. For example, consider
the aligned segments here below where l = 8, d = 3, C = 5, and f = 27.
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(1) —-A C T G C T C C—-
(2) —-A G G G T T G A—-
(3) —-C C G G T T G A—-
(4) —-C C T C T A C A—-
(5) —-A C G G T − C A—-

sm = A C G G T T C A

Since our first step is very tightly controlled, we found in practice that there are only a few
candidate PS segments. Also, in the model that uses insertion and deletion (i.e., the length of the
imprint of the occurrence of the consensus motif in each sequence is not necessarily l), we use the
same score by keeping track of the alignment columns: deletions and insertions result in gaps in some
sequences in the alignment (see sequence 5 in the above example). We consider all those alignments,
whose score f exceeds a fixed threshold TC . In all our experiments we have used C = 3 and the
values of TC are reported in the experiments.
Extracting the consensus motif across t sequences. At the previous step, we have multiple align-
ments, where each alignment is across some C(≤ t) sequences. From these we need to extract the
consensus motif across all the t sequences. For each alignment, we designate the majority substring
sm (see last section) as the putative consensus motif. Then we scan all the t input strings for the
occurrence of sm with at most d errors which can be done in linear time. For each sequence, we pick
the best occurrence, i.e., the one with the minimum edit distance from sm. In practice, this step very
quickly discards the erroneous consensus motifs and quickly converges to the one(s) satisfying the
distance constraint of d.

l = 10, d = 2

Motif params Methods
K D M I II
10 2 95 8 7
9 2 236 8 10
8 2 434 7 8

Motif params Methods
K D M I II
20 2 281 10 10
19 2 459 12 13
18 2 588 18 18

(a) n = 100, t = 10 (b) n = 200, t = 20

t = 20, l = 15, d = 4

Motif params Methods
K D M I II
20 2 539 2 4
19 2 647 6 7
18 2 837 12 12
20 3 952 5 6
19 3 1164 11 10
18 3 1582 13 13
20 4 1454 8 9
19 4 1832 9 10
18 4 2577 11 11

Motif params Methods
K D M I II
20 2 1588 2 2
19 2 3526 1 1
18 2 5456 1 1
16 2 7316 1 2
20 3 3348 4 4
19 3 7885 2 2
18 3 12444 1 1
17 3 15318 2 3
16 3 17017 0 1

(c) n = 300 (d) n = 400

Figure 3. Number of PS segment positions predicted correctly using Methods I and II for different parameters.
The motif discovery parameters are K and D and M is the total number of irredundant motifs discovered in the
input. The values of q, obtained using Equation 3, are as follows: (a) & (b) q = 0.8, (c) & (d) q = 0.73.
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4. Results

Let P be the set of all positions covered by the prediction and S be the same set for the embedded
motif. The score of the prediction P , with respect to the embedded motif, can be given as (see 15):
score =

|P∩S|
|P∪S| . The score is 1 if the prediction is 100% correct. However, even for values much

smaller than 1, the embedded motif may be computed correctly. This measure is rather stringent
and so we use yet another measure, the solution coverage (SC) score. This is defined as the number
of sequences that contains at least one occurrence of the predicted motif whose distance from the
prediction is within the problem constraint i.e., bounded by d. Again if the coverage is equal to the
total number of sequences t, then the prediction can be considered 100% correct.
Results on benchmark synthetic data. We report our results in terms of these two measures in
Figure 4 averaged over eight random experiments. Each experiment is defined by the four param-
eters n, t, l and d. In the unsupervised motif discovery process of the first step we use parameters
K = t = 20 and 0 < D < 4. The high K value was suggested by the statistical analysis in Section 2
and confirmed by our experiments in Section 3.1. In the second step we use C = 3 based on our
experiments reported in Figure 3. In Figure 4(a),(b) and (c), we show the performance measures for
various instances of Problem 2. We compare our results with what we found as the best performing
algorithm, PROJECTION 4. In all cases our best results are similar, or slightly better, than PRO-
JECTION as shown in Figure 4. We observe that as we increase the number of gaps D, the score
improves. In particular if D = 0 (i.e., solid motifs), the chances of success drops dramatically. We
observe a similar tendency in Problem 3 as shown in Figure 4(d) and (e). Although this version of
the problem, with indels, should be harder, we find that the method gives surprisingly good results.

K D N Score SC
20 1 2 0.066 10
20 2 2 0.415 12
20 3 4 0.95 20
20 4 3 0.94 20

K D N Score SC
20 0 0 0.02 10
20 1 1 0.49 11
20 2 1 0.8 20
20 3 1 0.93 20
20 4 2 0.91 20

K D N Score SC
20 1 2 0.75 11
20 2 2 0.95 20
20 3 4 0.95 20

(a) l = 15, d = 4 (b) l = 17, d = 5 (c) l = 19, d = 6
ScorePRJ = 0.93 ScorePRJ = 0.93 ScorePRJ = 0.96

K D N Score SC
20 0 1 0.05 5
20 1 3 0.75 20
20 2 3 0.81 20

K D N Score SC
20 0 1 0.09 8
20 1 3 0.68 20
20 2 4 0.78 20

(d) l = 15, 3 mutations & 1 indel (e) l = 15, 2 mutations & 2 indels
Figure 4. In all cases, t = 20, n = 600. The motif discovery parameters are K and D and we use C = 3 and
the values of TC are as follows: (a) 32 (b) 36 (c) 40 (d) & (e) 30. The results are are averaged over 8 random
problem instances. N is the total number of PS segments predicted correctly. See text for definitions of Score
and SC. ScorePRJ is the score for the PROJECTION algorithm by Tompa et al.

Results on Human hm01r data. We have tested the system on various real data sets and we give
details of one such case- that of detecting transcription binding factors on human DNA sequences on
the data set suggested by Tompa 15. The details are as follows:
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No pos Predictions M I

0 −101 T G A C G T C A − 1
1 −299 T G C − G T C A 1 −
2 −71 T G A C A T C A 1 1
3 −69 A T G A − G T C A G − 2
4 −527 T G C G A T G A 2 1
6 −173 T G A − C T A A 2 −
7 −1595 T G A − A T G A 2 −
8 −221 T G G − G T C T 2 −
9 −69 T G A − C T G C 3 −

10 −105 T G A − A T C A 1 −
12 −780 T G C − G T C A 1 −
14 −1654 A T G A − A T C A 1 1
15 −69 A T G A − G T C A A − 2
16 −97 T G A − G T A A 1 −
17 −1936 A T G A − A T C A 1 1

signal T G A G T C A

The parameters for this data set are n = 2000, t = 18. Note that we had to estimate l and d through
a series of trials. l was estimated to be 7 and d to be 3. We use parameters K = 18 and D = 1
in the motif discovery process in Step 1 and use C = 3 and TC = 12 in Step 2. We identify the
signal in 15 of the 18 sequences at positions given in the pos column. We miss the signal in only
one sequence (sequence no 5) and the signal is absent in two other sequences (no 11 and 13). We
reconstruct the consensus sequence as TGAGTCA which is at most 3 edit distance away from the
“embedded” signals. In the table M denotes number of mutations and I the number of insertions; no
deletions were found.

5. Concluding Remarks

The problem of detecting subtle consensus motifs is tricky and a purely combinatorial or a purely
statistical approach has been unsatisfactory (see Section 1). It appears it requires a delicate combina-
tion of the two methods. We have presented a method that uses unsupervised combinatorial pattern
discovery, followed by a careful statistical refinement and processing. Since we use tried-and-tested
tools such as pattern discovery, in the first step, and local alignment, in the second step, we have
focussed more on choosing and combining appropriate parameters. Also, extension of the method
to handling a more general scenario such as inclusion of indels (insertion and/or deletion) in the em-
bedded motif has been relatively straightforward. We achieved this by using extensible motifs in the
pattern discovery process of the first step and gapped alignment in the second step. The results on
benchmark data and some real DNA sequences have been very encouraging. We are looking at the yet
harder instance of the problem which is the task of finding subtle motifs within the same sequence.
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