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ALGORITHMIC APPROACHES TO SELECTING CONTROL CLONES
IN DNA ARRAY HYBRIDIZATION EXPERIMENTS∗

Q. FU†, E. BENT‡, J. BORNEMAN ‡, M. CHROBAK† and N. YOUNG†

We study the problem of selecting control clones in DNA array hybridization experiments. The prob-
lem arises in the OFRG method for analyzing microbial communities. The OFRG method performs
classification of rRNA gene clones using binary fingerprints created from a series of hybridization
experiments, where each experiment consists of hybridizing a collection of arrayed clones with a sin-
gle oligonucleotide probe. This experiment produces analog signals, one for each clone, which then
need to be classified, that is, converted into binary values 1 and 0 that represent hybridization and
non-hybridization events. Besides the sample clones, the array contains a number of control clones
needed to calibrate the classification procedure of the hybridization signals. These control clones must
be selected with care to optimize the classification process. We formulate this as a combinatorial op-
timization problem called Balanced Covering. We prove that the problem is NP-hard and we show
some results on hardness of approximation. We propose an approximation algorithm based on ran-
domized rounding and we show that, with high probability, it approximates well the optimum. The
experimental results confirm that the algorithm finds high quality control clones. The algorithm has
been implemented and is publicly available as part of the software package called CloneTools.

1. Introduction

Background. We study the problem of selecting control clones for DNA array hybridiza-
tion experiments. The specific version of the problem that we address arises in the context
of the OFRG (Oligonucleotide Fingerprinting of Ribosomal RNA Genes) method. OFRG
(8, 9, 10) is a technique for analyzing microbial communities that classifies rRNA gene
clones into taxonomic clusters based on binary fingerprints created from hybridizations
with a collection of oligonucleotide probes. More specifically, in OFRG, clone libraries
from a sample under study (e.g., fungi or bacteria from an environmental sample) are con-
structed using PCR primers. These cloned rRNA gene fragments are immobilized on nylon
membranes and then subjected to a series of hybridization experiments, with each exper-
iment using a single radiolabeled DNA oligonucleotide probe. This experiment produces
analog signals, one for each clone, which then need to be classified, that is, converted into
binary values 1 and 0 that represent hybridization and non-hybridization events. Overall,
this process creates a hybridization fingerprint for each clone, which is a vector of binary
values indicating which probes bind with this clone and which don’t. The clones are then
identified by clustering their hybridization fingerprints with those of known sequences and
by nucleotide sequence analysis of representative clones within a cluster.
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Besides the sample clones, the array contains a number of control clones, with known
nucleotide sequences, used to calibrate the classification of hybridization signals. For each
probe, two distributions of signal intensities are obtained: one from control clones that
match the probe (e.g., they contain its complement and thus should hybridize with it) and
the other from clones that don’t. This information is then used to determine the signal in-
tensity threshold for clone-probe hybridization: signals above this threshold are interpreted
as clone-probe hybridization events, while those below correspond to non-hybridizations.

The quality of information obtained from hybridizations depends critically on the ac-
curacy of the signal classification process. Ideally, each probe should match (bind with)
roughly half of the control clones. In prior OFRG work, control clones were selected ar-
bitrarily, often producing control clones with skewed distribution of binding/non-binding
with some probes. As an example, from a set of 100 control clones, only two might bind
with a specific probe. The signal classification for this probe would be very unreliable, as
it would be based on signal intensities from hybridization with only two control clones.
Problem formulation. Our control-clone selection problem can be then formulated as a
combinatorial optimization problem called Balanced Covering a. The instance is given
as a pair 〈G, s〉, where G = (C, P, E) is a bipartite graph and s ≤ |C| is an integer. C

represents the candidate control clone set, P is the probe set, and the edges in E repre-
sent potential hybridizations between clones and probes, that is, (c, p) ∈ E iff p should
hybridize with c. For p ∈ P and D ⊆ C, let degD(p) be the number of neighbors of p in
D (that is, the number of clones in D that hybridize with p). Throughout the paper, unless
stated otherwise, by m and n we will denote the cardinality of C and P , respectively.

Generally, as indicated earlier, our goal is to find a set D ⊆ C of cardinal-
ity s such that, for each p ∈ P , degD(p) is close to s/2. Several objective func-
tions can be studied. To measure the deviation from the perfectly balanced cover, for
a given probe p, we can compute either min {degD(p), s − degD(p)} or | degD(p) −
s/2|. The objective function can be obtained by considering the sum of these val-
ues or the worst case over all probes. This gives rise to four objective functions: (1)
maximize Cmin(D) = minp∈P min {degD(p), s − degD(p)}; (2) maximize Csum(D) =
∑

p∈P min {degD(p), s − degD(p)}; (3) minimize Dmax(D) = maxp∈P | degD(p)− s/2|;
(4) minimize Dsum(D) =

∑

p∈P | degD(p) − s/2|, where each function needs to be opti-
mized over all choices of D. By BCP Cmin, etc., we denote the four optimization problems
corresponding to these functions. We focus on BCP Cmin and BCP Dsum.
Results. In this paper we show several analytical and experimental results on Balanced
Covering. In Section 2 we prove that all versions of Balanced Covering are NP-hard. In
particular, it is NP-complete to decide whether there is a perfectly balanced cover with s

clones. This immediately implies that (unless P=NP), there is no polynomial-time approx-
imation algorithm for BCP Dmax and BCP Dsum. For BCP Dsum, we further show that even
if we allow an additional additive term O((nm)ε) and randomization, approximating the

aThere have been some discussions on the Balanced Set Cover (see 1, 6) problem, however, they are not directly
related to Balanced Covering problem discussed in this paper.
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optimum is still hard. For BCP Cmin, we prove that it cannot be approximated efficiently
within the bound OPTmin(G, s) − 1

2 (1 − ε) ln n, unless NP has slightly superpolynomial
time algorithms.

Then, in Section 3, we propose a polynomial-time randomized rounding algorithm
RRBC for BCP Cmin. The algorithm solves the linear relaxation of the integer program
for BCP Cmin, and then uses the solution to randomly pick an approximately balanced
cover. We show that, with probability at least 1

2 , RRBC’s solution deviates by no more
than O(

√
z∗ ln n +

√
s) from the optimal solution z∗ of the linear program.

In Section 5, we present an experimental study of RRBC’s performance which shows
that its solutions are close to the optimum. More specifically, in 92.8% cases of real data
sets, RRBC found solutions at least as large as 97% of the linear relaxation’s optimum.
The implementation of RRBC is publicly available at the OFRG website as part of the
CloneTools software package, see http://algorithms.cs.ucr.edu/OFRG/.

Algorithm RRBC performs well for input instances where the optimum is relatively
large, but the performance bound given in Section 4 is not quite satisfactory when z∗ is
small compared to s, say for z∗ = o(

√
s). In Section 6, we present another algorithm

called RRBC2 which, with probability at least 1
2 , computes a solution that deviates by no

more than O(
√

z∗ ln n) from the optimum.
Relation to other work. Note that OFRG differs from other array-based analysis ap-
proaches that, typically, involve a single microarray experiment where one clone of interest
is hybridized against a collection of arrayed probes, each targeting a specific sequence.
These experiments include control clones as well, but these control clones are used to test
whether they bind as predicted to particular microarray probes (see 7, for example). In
contrast, OFRG uses a small set of probes (roughly 30-50) to coordinately distinguish a
much larger set of sequences (e.g., all bacterial rRNA genes). Each probe is used in one
hybridization experiment, and the unknown DNA clones are immobilized on the array.

2. Hardness Results
In this section we prove several hardness results for Balanced Covering. We will first show
that all versions of Balanced Covering are NP-hard.
NP-hardness. Given a bipartite graph G = (C, P, E) and an even integer s, define a
perfectly balanced cover in G to be a subset D ⊆ C with |D| = s such that degD(p) = s/2

for each p ∈ P .

Theorem 2.1. The following decision problem is NP-complete: given a bipartite graph
G = (C, P, E) and an even integer s, is there a perfectly balanced cover in G? Conse-
quently, Balanced Covering is NP-hard for all objective functions Cmin, Csum, Dmax and Dsum.

Proof. The proof is by a reduction from X3C (Exact Cover by 3-Sets) 5, which is known
to be NP-complete. The instance of X3C consists of a finite set X of 3m items, and a
collection T of n 3-element subsets of X that we refer to as triples. We assume n ≥ m ≥ 2.
The objective is to determine whether T contains an exact cover of X , i.e., a sub-collection
T ′ ⊆ T such that every element of X occurs in exactly one triple in T ′.
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The reduction is defined as follows. Given an instance 〈X, T 〉 of X3C above, we con-
struct an instance 〈G = (T ∪ W, X, E), s〉 of Balanced Covering, where W is a set that
contains m − 2 new vertices. For t ∈ T and x ∈ X , we create an edge (t, x) ∈ E if x ∈ t.
Further, we create all edges (w, x) ∈ E for x ∈ X and w ∈ W . We let s = 2m − 2.

It remains to show that this construction is correct, namely that 〈X, T 〉 has an exact
cover iff 〈G, s〉 has a perfectly balanced cover.

(⇒) If 〈X, T 〉 has an exact cover T ′, we claim that D = T ′∪W is a perfectly balanced
cover for 〈G, s〉. To justify this, note first that |T ′| = m and |W | = m − 2, and thus
|D| = 2m − 2 = s. Further, each vertex x ∈ X has exactly one neighbor in T ′ and m − 2

neighbors in W , so x has m − 1 = s/2 neighbors in D, as required.
(⇐) Suppose that 〈G, s〉 has a perfectly balanced cover D ⊆ T ∪ W . Denoting W ′ =

D ∩ W , k = |W ′|, and T ′ = D ∩ T . We first show that D must contain all vertices in W .
We count the edges between D and X . There are 3km edges between W ′ and X , since

each vertex in W ′ is connected to all 3m vertices in X . There are 3(s − k) edges between
T ′ and X , since each vertex in T has degree 3. On the other hand, there must be 3m(m−1)

edges between X and D, since each vertex in X must be connected to exactly s/2 = m−1

vertices in D. Together, this yields 3(2m − 2 − k) + 3km = 3m(m − 1). Solving this
equation, we get k = m−2, which means that W ′ = W . So T ′ contains exactly s−k = m

vertices, as claimed. Each vertex x ∈ X is adjacent to all vertices in W , so it has exactly
s/2− (m − 2) = 1 neighbor in T ′. This means that T ′ is an exact cover of X .

Approximation of BCP Dsum. Theorem 2.1 immediately implies that BCP Dsum (as well
as BCP Dmax) cannot be approximated with any finite ratio. We show that even if we allow
an additive term in the approximation bound, achieving such bound is still NP-hard.

Given an algorithm A for BCP Dsum, denote by DA
sum(G, s) the value of the objective

function computed by A on instance 〈G, s〉, that is, DA
sum(G, s) =

∑

p∈P | degD(p)−s/2|,
where D is the set computed by A. By D∗

sum(G, s) we denote the optimal value. Recall that
m = |C| and n = |P |.

Theorem 2.2. Assuming P 6= NP, there is no polynomial-time algorithm A for BCP Dsum

that for any instance 〈G, s〉 satisfies DA
sum(G, s) ≤ α·D∗

sum(G, s)+β(mn)ε, for any α, β > 0

and 0 < ε < 1.

Proof. Suppose, towards contradiction, that for some α, β and ε there is a polynomial-
time algorithm A satisfying the theorem. We show that this would imply the existence of
a polynomial-time algorithm that decides if there is a perfectly balanced covering, contra-
dicting Theorem 2.1.

Given an instance 〈G, s〉 of BCP Dsum, where G = (C, P, E), convert it into another
instance 〈Gr, s〉 of BCP Dsum, where Gr = (C, P ′, E′) is obtained by creating r identical
copies of each probe p ∈ P (that is, with the same neighbors in C). Thus |P ′| = rn.
Without loss of generality, assume β > 1 and mn ≥ 2. We choose r = d(mn)δe + 1, for
δ = (ε + log β)/(1 − ε). For this r, we have r > β(mnr)ε. Therefore 〈Gr, s〉 satisfies:
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• If 〈G, s〉 has a perfectly balanced cover (that is, D∗
sum(G, s) = 0) then D∗

sum(G
r , s) = 0

as well, and thus DA
sum(G

r , s) ≤ β(mnr)ε < r.
• If 〈G, s〉 does not have a perfectly balanced cover (that is, D∗

sum(G, s) ≥ 1) then
DA

sum(G
r, s) ≥ D∗

sum(G
r , s) = r · D∗

sum(G, s) ≥ r.
So we get DA

sum(G
r , s) < r if and only if D∗

sum(G, s) = 0. Since Gr can be obtained
from G in polynomial time, this would yield a polynomial-time algorithm that determines
the existence of a perfectly balanced cover, contradicting Theorem 2.1.

Next, we show that approximating BCP Dsum is hard even with randomization. Recall
that class RP (randomized polynomial time) is the complexity class of decision problems
P which have polynomial-time probabilistic Turing machines M such that, for each input
I , (i) if I ∈ P then M accepts I with probability at least 1

2 , and (ii) if I /∈ P then M rejects
I with probability 1. It is still open whether RP = NP.

Theorem 2.3. Assuming RP 6= NP, there is no randomized polynomial-time algorithm
A for BCP Dsum that for any instance 〈G, s〉 satisfies Exp[DA

sum(G, s)] ≤ α · D∗
sum(G, s) +

β(mn)ε, for any α, β > 0 and 0 < ε < 1.

Proof. Suppose, towards contradiction, that there exists a randomized polynomial-time
algorithm A that satisfies the theorem. Given an instance 〈G, s〉 of BCP Dsum, we again
convert it into an instance 〈Gr, s〉 of BCP Dsum, as in the proof of Theorem 2.2. Without
loss of generality, assume β > 1 and mn ≥ 2. We choose r = d(mn)δe + 1, for δ =

(ε+log β+1)/(1−ε). Note that r > 2β(mnr)ε. We now make the following observations.
• If 〈G, s〉 has a perfectly balanced cover (that is, D∗

sum(G, s) = 0) then D∗
sum(G

r, s) = 0,
and therefore 2Exp[DA

sum(G
r, s)] ≤ 2β(mnr)ε < r. Using Markov’s inequality, this implies

that Pr[DA
sum(G

r , s) < r] ≥ 1
2 .

• If 〈G, s〉 does not have a perfectly balanced cover (that is, D∗
sum(G, s) ≥ 1) then

DA
sum(G

r, s) ≥ D∗
sum(G

r , s) ≥ r · D∗
sum(G, s) ≥ r, with probability 1.

Thus from A we could obtain a randomized polynomial-time algorithm that determines
the existence of a perfectly balanced cover, contradicting Theorem 2.1.

Approximation of BCP Cmin. Next we show that BCP Cmin cannot be approximated ef-
ficiently with the bound C∗

min(G, s) − 1−ε
2 ln n, unless NP has slightly superpolynomial

time algorithms. Recall that C∗
min(G, s) is the optimal value of Cmin on an instance 〈G, s〉 of

BCP Cmin. CA
min(G, s) is the value of the objective function computed by an algorithm A.

Theorem 2.4. Unless problems in NP have nO(log log n)-time deterministic algorithms,
there is no polynomial-time algorithm A for BCP Cmin that, for some 0 < ε < 1, for
any instance 〈G, s〉, satisfies CA

min(G, s) ≥ C∗
min(G, s) − 1−ε

2 ln n.

Proof. Suppose, towards contradiction, that there exits a polynomial-time algorithmA that
satisfies the theorem. We show that this would imply the existence of a polynomial-time
((1 − O(1)) ln n)-approximation algorithm B for the Set Cover problem, which would
imply in turn that problems in NP have nO(log log n)-time deterministic algorithms 4.
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Given an instance 〈Q, X〉 of set cover, where Q is a collection of sets over universe
X = {1, 2, . . . , n}, the algorithm B first reduces it to an instance 〈G, s〉 of BCP Cmin, then
calls algorithm A on input 〈G, s〉, and finally converts the solution of A to a set cover of
X . We claim that this cover will be of size at most (1−Ω(ε)) ln(n)b, where b is the size of
the minimum set cover of X . Below we assume that, without loss of generality, algorithm
B knows the optimal value b of 〈Q, X〉. Otherwise, B can simply try each b ∈ {1, 2, ..., n},
and choose the smallest set cover.

B reduces 〈Q, X〉 to an instance 〈G = (T ∪ W, P, E), s〉 of BCP Cmin, where P =

X ∪ {0}, T contains k vertices q1, q2, ..., qk for each set q ∈ Q and k = d lnn
2 e, and W

is a set containing k new vertices. For each q ∈ Q and i = 1, 2, ..., k, we create an edge
(qi, 0) ∈ E and edges (qi, x) ∈ E if x ∈ q. We let s = kb + k.

We claim that C∗
min(G, s) ≥ k if 〈Q, X〉 has a set cover Q′ of size b. To justify this, from

Q′, we build the following balanced cover D: add k vertices q1, q2, ..., qk to D if q ∈ Q′,
and all vertices in W to D; thus |D| = kb + k = s. For each x ∈ X , the k copies of Q′

ensure that degD(x) ≥ k, while the k vertices in W ensure that degD(x) ≤ s − k.
If 〈Q, X〉 has a set cover of size b, then algorithm A on input 〈G, s〉 will return a

balanced cover D with objective function value at least C∗
min(G, s) − 1−ε

2 ln n ≥ k − (1 −
ε)k = εk. We have |D ∩ W | ≥ εk, because 0 ∈ X is adjacent to every vertex in T and D

has at least εk vertices not adjacent to 0. Therefore |D ∩ T | ≤ s − εk = kb + (1 − ε)k.
Thus, since each x ∈ P is adjacent to at least one vertex in D (in fact, at least εk), the
collection of sets {q : (∃i)qi ∈ D} forms a set cover of X of size at most kb + (1− ε)k ≤
(2 − ε)kb ≤ (1 − ε/2)(ln(n) + O(1))b ≤ (1 − Ω(ε)) ln(n)b, as claimed.

The algorithm B clearly runs in polynomial time, and is a ((1 − O(1)) ln n)-
approximation algorithm for the Set Cover problem. Thus the theorem follows.

3. A Randomized Rounding Algorithm
In this section we present our randomized algorithm RRBC for BCP Cmin. Given G =

(C, P, E), let A be the m × n adjacency matrix of G, that is aij = 1 iff (ci, pj) ∈ E;
otherwise aij = 0. Then BCP Cmin is equivalent to the integer linear program MinIP:

maximize: z

subject to: z ≤
∑m

i=1 aijxi ∀j = 1, ..., n

z ≤ ∑m
i=1(1 − aij)xi ∀j = 1, ..., n

∑m
i=1 xi ≤ s

xi ∈ {0, 1} ∀i = 1, ..., m

RRBC first relaxes the last constraint to 0 ≤ xi ≤ 1 to obtain the linear program
MinLP, and then computes an optimal solution x∗

i , i = 1, 2, ..., m, of MinLP. Next, apply-
ing randomized rounding, RRBC computes an integral solution X1, ..., Xm by choosing
Xi = 1 with probability x∗

i and 0 otherwise. Note that this solution may not be feasible
since

∑m
i=1 Xi may exceed s. Let L =

∑m
i=1 Xi−s. If L > 0, RRBC changes L arbitrary

variables Xi = 1 to 0, obtaining a feasible solution X̃1, ...X̃m.
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4. Analysis of RRBC for BCP Cmin

We denote by CRRBC
min (G, s) the value of the objective function computed by RRBC, that is

CRRBC
min (G, s) = Z̃ = minn

j=1{
∑m

i=1 aijX̃i,
∑m

i=1(1 − aij)X̃i}.

Lemma 4.1. For any instance 〈G, s〉 of BCP Cmin, with probability at least 1
2 ,

CRRBC
min (G, s) ≥ C∗

min(G, s) − O
(

√

C∗
min(G, s) ln n +

√
s
)

.

Proof. Let z∗ = minn
j=1{

∑m
i=1 aijx

∗
i ,

∑m
i=1(1 − aij)x

∗
i } be the optimum solution of

MinLP. Let also Z = minn
j=1{

∑m
i=1 aijXi,

∑m
i=1(1 − aij)Xi}.

The {Xi} are independent random variables with Exp[Xi] = x∗
i so, for each j,

Exp[
∑m

i=1 aijXi] =
∑m

i=1 aijx
∗
i ≥ z∗. By a standard Chernoff bound, we get

Pr[
∑m

i=1 aijXi ≤ (1 − λ)z∗] ≤ e−λ2z∗/2, where 0 < λ ≤ 1. Similarly, for all
j, Pr[

∑m
i=1(1 − aij)Xi ≤ (1 − λ)z∗] ≤ e−λ2z∗/2. By the naive union bound,

Pr[Z ≤ (1 − λ)z∗] ≤ 2ne−λ2z∗/2.

Likewise, Exp[
∑m

i=1 Xi] =
∑m

i=1 x∗
i ≤ s. Thus, by the Chernoff bound,

Pr[
∑m

i=1 Xi ≥ (1 + ε)s] ≤ e−ε2s/4, where 0 < ε ≤ 2e− 1. Letting L =
∑m

i=1 Xi − s, we
have Pr[L ≥ δ

√
s] ≤ e−δ2/4, where 0 < δ ≤ (2e− 1)

√
s.

Since Z̃ ≥ Z − L, and using the above estimates, we get Pr[Z̃ ≤ (1 − λ)z∗ − δ
√

s] ≤
Pr[Z ≤ (1 − λ)z∗] + Pr[L ≥ δ

√
s] ≤ 2ne−λ2z∗/2 + e−δ2/4.

Choosing λ =
√

2 ln(8n)/z∗ and δ =
√

4 ln 4, we get that Z̃ ≥ z∗ −
√

2 ln(8n)z∗ −
√

4 ln(4)s with probability at least 1
2 , as long as when z∗ ≥ 2 ln(8n). This inequality is

also trivially true for z∗ < 2 ln(8n). This, together with the bound C∗
min(G, s) ≤ z∗, imply

the lemma.

5. Experimental Analysis
We implemented Algorithm RRBC using LP SOLVE solver 2, and tested its performance
on both synthetic and real data sets.
Synthetic data. We used random data sets composed of four adjacency matrices of sizes
(m, n) = (100, 30), (100, 100), (200, 60), (200, 200), respectively, where each element of
the matrix is chosen to be 1 or 0 with probability 1

2 . We ran RRBC for s = 20, 21, ..., 90,
and compared its solution to the optimal solution of the linear program MinLP.

Table 1. Performance of RRBC on synthetic data with m = 100 and n = 30.

s 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

MinLP 10 12.5 15 17.5 20 22.5 25 27.5 29.82 31.89 33.88 35.76 37.54 39.11 40
RRBC 7 10 13 15 18 19 23 25 28 30 32 34 35 38 40

Table 1 shows some results on the comparison of RRBC’s solution and the MinLP
solution from the experiment in which m = 100 and n = 30. This table presents only the
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performance of a single run of RRBC, so the results are likely to be even better if we run
RRBC several times and choose the best solution.

We also repeated our simulation test 10 times for each of the above settings and took
the average of them. Figure 1 illustrates results of these experiments.
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Figure 1. RRBC’s performance on synthetic data for four matrices: (a) (m, n) = (100, 30); (b) (m, n) =

(100, 100); (c) (m, n) = (200, 60); (d) (m, n) = (200, 200).

Note that (on average) RRBC was always able to find the solution close to that of
MinLP. Furthermore, the true optimum (integral solution) could be smaller than the MinLP
solution, so our approximation could be even closer to the true optimum than it appears.
Real data. To test the performance of RRBC with real data, we used four clone-probe ad-
jacency matrices. The first two matrices were obtained from 500 bacterial clones extracted
from rRNA genes analyzed in [10], along with two sets of 30 and 40 probes designed using
the algorithm in [3], respectively. The other two matrices have similar settings, but used
fungal clones of rRNA genes studied in [9]. For each of these four data sets we tested
RRBC for s = 200, 210, ..., 400, running it 10 times and taking the average. We observe
that in 92.8% cases, RRBC found a solution at least as large as 97% of MinLP’s optimum.
The results are shown in Figure 2.

Figure 2 shows that solutions found by RRBC are even closer to MinLP solution than
those for synthetic data, for both bacterial and fungal data sets, sometimes even coinciding
with MinLP solutions, i.e., RRBC achieved the optimum in some cases.

Our experiments were performed on a machine with Intel Pentium 4 2.4GHz CPU and
1GB RAM. The total running time for each single run of RRBC on these synthetic and real
data sets was in the range of 20− 80 seconds, which is practically acceptable.

6. An Alternative Algorithm
The performance bound given for RRBC is not quite satisfactory for instances where the
optimum is small compared to s. We now provide an alternative algorithm RRBC2, which
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Figure 2. RRBC’s performance for real data: (a) 500 bacterial clones and 30 probes; (b) 500 bacterial clones
and 40 probes; (c) 500 fungal clones and 30 probes; (d) 500 fungal clones and 40 probes.

is identical to RRBC in all steps except for the rounding scheme: choose Xi = 1 with prob-
ability (1 − ε)x∗

i , and 0 otherwise, where ε = min
{

2
√

ln(4n + 2)/z∗, 1
}

. All notations
are defined similarly as these in Section 4.

Lemma 6.1. For any instance 〈G, s〉 of BCP Cmin, with probability at least 1
2 ,

CRRBC2
min (G, s) ≥ C∗

min(G, s) − O
(

√

C∗
min(G, s) ln n

)

.

Proof. The {Xi} are independent random variables with Exp[Xi] = (1 − ε)x∗
i , and

∑m
i=1 x∗

i ≤ s. By linearity of expectation, Exp[
∑m

i=1 Xi] ≤ (1 − ε)s. Thus, by the
Chernoff bound, Pr[

∑m
i=1 Xi ≥ s] ≤ Pr[

∑m
i=1 Xi ≥ (1 + ε)(1 − ε)s] ≤ e−ε2(1−ε)s/4.

Likewise, for each j, Exp[
∑m

i=1 aijXi] =
∑m

i=1 aij(1 − ε)x∗
i ≥ (1 − ε)z∗. Thus by

the Chernoff bound, Pr[
∑m

i=1 aijXi ≤ (1 − ε)2z∗] ≤ e−ε2(1−ε)z∗/2. Similarly, for all j,
Pr[

∑m
i=1(1 − aij)Xi ≤ (1 − ε)2z∗] ≤ e−ε2(1−ε)z∗/2.

As z∗ ≤ s/2, we have s/4 ≥ z∗/2. Hence, by the union bound, the probability that any
of these 2n + 1 events happens is at most (2n + 1)e−ε2(1−ε)z∗/2. Since (1− ε)2 ≥ 1− 2ε,
for ε < 1

2 , we have Z̃ ≥ z∗ − 4
√

ln(4n + 2)z∗ with probability at lest 1
2 . This bound is

also trivially true for ε ≥ 1
2 . Finally, since C∗

min(G, s) ≤ z∗, the lemma follows.

7. Concluding Remarks
Our work demonstrated that randomized rounding is an effective method for solving the
BCP Cmin version of Balanced Covering, especially on real data sets. In the actual imple-
mentation available at http://algorithms.cs.ucr.edu/OFRG/, the solution of
RRBC is fed as an initial solution into a simulated annealing algorithm. We found out that
the simulated annealing rarely produces any improvement of this initial solution, which
provides further evidence for the effectiveness of randomized rounding in this case.

We have several additional results related to this work that are not described in the
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paper due to lack of space. For BCP Cmin we improved the hardness approximation bound
to C∗

min(G, s) − O(log n log log n). We can show that it is hard to approximate BCP Csum

with the bound C∗
sum(G, s) − β(mn)ε for any constants β > 0 and 0 < ε < 1 even with

randomization. Finally, we have a randomized algorithm for BCP Dmax whose solution
deviates from the optimum by no more than O(

√
s ln n) with probability at least 1

2 . These
results will appear in the full version of this paper.
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