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Standard search techniques for DNA repeats start by identifyingseeds, that is, small matching words,
that may inhabit larger repeats. Recent innovations in seed structure have led to the development
of spacedseeds [8] andindel seeds [9] which are more sensitive than contiguous seeds (also known
as k-mers, k-tuples, l-words, etc.). Evaluating seedsensitivityrequires 1) specifying a homology
model which describes types of alignments that can occur between two copies of a repeat, and 2)
assigning probabilities to those alignments.Optimal seed selection is a resource intensive activity
because essentially all alternative seeds must be tested [7]. Current methods require that the model and
probability parameters be specified in advance. When the parameters change, the entire calculation
has to be rerun. In this paper, we show how toeliminatethe need for prior parameter specification. The
ideas presented follow from a simple observation: given a homology model, the alignmentshit by a
particular seed remain the same regardless of the probability parameters. Only the weights assigned to
those alignments change. Therefore, if we know all the hits, we can easily (and quickly) find optimal
seeds. We describe a highly efficient preprocessing step, which is computed justoncefor each seed.
In this calculation, strings which represent possible alignments areunweightedby any probability
parameters. Then we show several increasingly efficient methods to find the optimal seed when given
specific probability parameters. Indeed, we show how to determine exactly which seeds cannever
be optimal under any set of probability parameters. This leads to the startling observation that out
of thousands of seeds, only a handful have any chance of being optimal. We then show how to find
optimal seeds and the boundaries within probability space where they are optimal. We expect this
method to greatly facilitate the study of seed space sensitivity, construction of multiple seed sets, and
the use of alternative definitions of optimality.

1. Introduction

We are interested in solving the following problem. Given 1) a homology model (iid,
Markov chain, hidden Markov model, etc.) which describes the types of alignments that
occur between DNA repeats, 2) a maximum length for the alignments, and 3) a class of
seeds (number of matches, number and type of wildcards), efficiently preprocess all the
seeds in the class so that when given a set of probability parameters for the model, the
optimal seed can be quickly identified.

As an example, assume the homology model ismatch/mismatch iid, where alignments
of repeats are presumed to consist solely of matches and mismatches, arepresentative
string for an alignment is a binary sequence of 1’s (matches) and 0’s (mismatches), and
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the probabilities for 1 and 0 at each position in the string are independent and identically
distributed. Also assume that alignments have maximum length 100 and that the seed class
has 11 matches and 7 match/mismatch wildcards (this is the PatternHunter seed class [8]).
We seek to preprocess all the seeds in the class (there are 16 choose 7 or 11,440 of them
and because mirror images have the same sensitivity, actually 5,720 different seeds) so
that when given the parameters which fully describe the homology model we can quickly
choose the optimal seed. In this case, if the parameters, specified as (probability of match,
probability of mismatch, alignment length), arep0.7, 0.3, 64q, then we want to quickly
identify the optimal seed, which is the PatternHunter seed (111*1**1*1**11*111) [8].But,
if we are then given another set of parameters which can be different in both probabilities
and length, sayp0.75, 0.25, 50q we want to again quickly find the optimal seed, which is
(111*1*1**11*1**111) [4]. Even more, we would like to know at what particular values
(probability and length) optimality ends for one seed and begins for another.

Many existing methods [1, 5, 9] find the optimal seed for a single combination of ho-
mology model, parameter set, and seed class by enumeratingall patternsfor a given seed
(e.g.,128 for the PatternHunter seed) forall seedsin the classe.g.,5,720 for the Pattern-
Hunter class) and testing these against the representative strings from the homology model.
Best methods have time complexity inOpLPwSq whereL is the string length,P is the
number of patterns per seed (an exponential in the number of wildcards),w is the length of
a seed, andS is the number of seeds (the number of combinations of positions available in a
seed for the wildcards). Importantly, when the parameter set changes, the entire calculation
must be rerun. Choiet. al [4], in an extensive sampling of seed sensitivities, have taken
this approach, rerunning a seed sensitivity algorithm for every combination of parameter
values. Keichet. al [6] use a DP algorithm to find the optimal seed and Buhleret. al [3]
sacrifice global optimality for locally optimal seeds.

Our seed preprocessing, which only needs to be calculated once, adds another factor
to the time complexity which is dependent on the homology model (see section 3). But,
it gives us three benefits. It allows repeated searches for the optimal seed with different
parameters to proceed much more efficiently, it allows us to identify seeds that cannever
be optimal, and allows us to partition the parameter space into regions, each covered by a
single optimal seed. (Note: a general method for parametric inference, which allows the
partitioning of parameter space, has been described in [11].)

Our method has other advantages. It works withsetsof seeds, and it allows for alternate
definitions of optimality (see section 6). We expect this later feature will aide the discovery
of highly sensitivesetsof seeds.

The ideas presented in this paper follow from a simple observation: given a model, the
alignmentshit by a particular seed remain the same regardless of the probability parame-
ters. Only the weights assigned to those alignments change. Therefore, if we know all the
hits, we can easily (and quickly) find optimal seeds. In essence, our preprocessing iden-
tifies, for each seed, the specific set of representative strings it hits. Because the number
of strings can be enormous (2100 for alignments of length 100 in the binary iid model) we
cannot actually save the entire set of strings for each seed. Rather, we savecountsfor each
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probability class that the strings can occupy.
The remainder of the paper is organized as follows. In section 2 we give a formal

definition of the problem. In section 3 we present the seed preprocessing method. In
section 4 we show several increasingly efficient methods to find the optimal seed when
given specific model parameters. In section 5 we show results from applying our parameter
free calculation to several seed classes. Finally, in section 6 we discuss implications of this
method and several uses of the information provided by preprocessing the seeds.

2. Problem Description

Formally, the problem we address is:
Seed All Hits Preprocessing

 Given: 1) a homology model (specified by probability variables), 2) a seed class
(specified by seed width, number and type of wildcards), and 3) a maximum length
for alignments called the target lengtht.

 Compute: A preprocessing of the seed class so that when values are assigned to
the probability variables and a lengthL between 1 andt is selected, the optimal
seed is returned.

For the remainder of this paper we will assume that the homology model is binary
(match/mismatch) iid,i.e., the Bernoulli model. The method extends to iid models with
more parameters such as the ternary alphabet model (match/transition/mismatch) of Noé
and Kucherov [10] and to Markov chains as well.

3. Method

We start with some definitions.
Definition 1: An alignment is described by arepresentative stringover a binary al-

phabet: 1 indicates a match and 0 indicates a mismatch. Aprobability equivalence class
contains representative strings that have the same probability when the probability param-
eters are specified.

In the Bernoulli model, strings belong to an equivalence class if they are the same length
and contain the same number of 1’s because all such strings have the same probability when
P p1q � the probability of 1, is defined. The number of equivalence classes ist � 1, where
t is the target length.

Defintion 2: A seedis a string beginning and ending with a 1 and containing 1’s and
*’s, where 1 represents a match and * is a wildcard that denotes either 1 (match) or 0
(mismatch). The lengthw of a seed is the total number of 1’s and *’s. Apatternof a seed is
any string of 1’s and 0’s which is obtained by replacing each wildcard in the seed by either
a 1 or 0. A patternhitsa representative string if the pattern occurs in the string. Any pattern
or set of patterns will hit a certain number of representative strings and these strings will
fall into different equivalence classes. We indicate how many in each equivalence class by
a vector of counts which we call thePECC vector(probability equivalence class counts
vector) of lengtht � 1 with the classes ordered by the number of 1’s from zero tot.
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Figure 1. Aho-Corasick tree for seed 1**1 (bold) overlayed on all-strings tree.Phantomnodes are shown with
�, fail-to nodes are shown with�, andphantomnodes are linked to theirfail-to nodes with99K.

Our preprocessing algorithm derives from a recognition that seed hits can be summa-
rized as hits within probability equivalence classes, that is, by PECC vectors (see figure 2).
The result of the preprocessing for a single seed is a collection of PECC vectors, one for
each representative string lengthL from 1 to t. Conceptually, the preprocessing, generates
all possible representative strings for all lengthsL from 1 to t, tests each to see if it contains
a hit to the seed, and stores counts for the ones that do in the appropriate equivalence class.
In actuality, strings arenot generated. Instead, we collect and store PECC vectors which
are used recursively in a dynamic programming algorithm.

Our data structure for collecting information is the Aho-Corasick tree (AC tree) for the
seed patterns which is constructed as the initial step of the preprocessing. For the remainder
of this section, we illustrate the preprocessing algorithm with a simple example using the
seed 1**1, and a target lengtht � 5. In figure 1, we show the AC tree for 1**1 overlayed
on the tree of all representative strings (all-strings tree). The following definitions refer to
that figure.

Definition 3: For a noden, the number of edges in the path from the root ton is
depth(n). Thenode stringfor n, in the AC tree or all-strings tree, is the concatenation of
edge labels from the root ton. The node string for a leaf (in either tree) is aleaf string. The
leaf string for a leaff in the AC tree is a pattern of the seed and is calledpatf . The number
of 1’s in a node string for noden is onespnq. Each leaf,f , of the AC tree is the root of a
subtreeTf in the tree of all-strings. Afail node in the AC tree is a non-leaf which has at
least onephantomchild, that is, a child node in the all-strings tree which does not occur
in the AC tree. Each phantomp is the root of a subtreeTp in the all-strings tree. For each
phantomp, its fail-to nodeftp is the node in the AC tree whose node string is the longest
propersuffix of the node string forp.
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Observations 3: Each phantomp has a fail-to node in the AC tree. The depth of a
fail-to nodeftp is at most one less than the depth ofp (alternately, at most the depth of the
fail node parent ofp).
Computing the PECC Vector

Base case:L � w. (For L   w, the PECC vector is all zeros.) The leaf strings of
the AC tree are the only strings hit by the seed. The PECC vector for these strings can be
determined when the tree is constructed.

Induction Step: L � k � 1. PECC vectors are already stored forL � w, . . . , k.
Consider the AC tree overlayed on the all-strings tree of lengthk � 1 (figure 1). We are
interested in three types of AC tree nodes. For each node, we calculate a PECC vector
which stores the leaf strings hit in the subtree (of the all-strings tree) rooted by the node.

 Leaf. Each leaf,f , of the AC tree is the root of a subtreeTf in the tree of all-
strings. Every leaf string inTf (from the root of the all-strings tree) is hit by the
seed because it is anextensionof patternpatf to lengthk � 1. Using regular
expression notation, the leaf strings inTf can be specified as

patft0|1uk�1�w.

The PECC vector for leaff is the vector of counts for all the leaf strings inTf .
These strings fall intok � 2 � w probability equivalence classes, where classi

containsonespfq � i 1’s with i in the range

i � 0, . . . , k � 1 � w.

The number of strings for eachi is determined by a combinations formula

pk � 1 � wq choose i.

Notice that the subtrees rooted by all AC tree leaves are identical and can be
treated identically, only the valuesonespfq differ. The combination formulas can
be computed in advance and consulted when needed through a look-up table.

 Phantom node.Each phantom childp of a fail noden, is the root of a subtreeTp

in the tree of all-strings. Unlike the subtreesTf , not all leaf strings inTp are hit
by the seed. But, there is a simple way to determine which strings are hit. The
information is already stored (as part of the dynamic programming) as a PECC
vector in its fail-to nodeftp.

 Fail-To node. Each fail-to nodeft must store aseriesof PECC vectors for subse-
quent iterations for look-up by phantom nodes that point to it. Each vector in the
series represents a different depth of the all-strings tree. The PECC vectors for the
root, which is also a fail-to node, are the output vectors for the seed, one for each
lengthL from 1 to t.

For efficiency, the vector for each leaf, phantom, and fail-to node is pushed up the tree
for addition into its nearest ancestor fail-to node. This assures that the additions are linear
in the size of the tree. Determining where each vector must be added and the vector’s depth
relative toL can be done with a single traversal of the AC tree when the tree is constructed.
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Time complexity
Theorem 1: The time complexity for computing the PECC vectors for a single seed for

all lengths betweenL � 1 andL � t is OpvtPxq wherev is the number of probability
equivalence classes,t is the target length,P is the number of patterns for the seed, andx

is the number of ones in the seed. The time complexity for all seeds in a class isOpvtPxSq

where the class containsS seeds. This is a factorv more than current best calculations.
Proof: Building the AC tree for all patterns of the seed, determining fail nodes and

fail-to nodes is linear in the size of the AC tree which has sizeOpPxq. There aret � w

iterations through the tree. In each iteration, PECC vectors are updated for the leaves, fail
nodes and fail-to nodes. The total number of these nodes and the total number of additions
is linear in the size of the AC tree. Note that every addition requires adding two vectors of
size at mostv.

Note: In the match/mismatch iid homology model,v � t � 1, so the time complexity
is Opt2Pxq.

Algorithm performance. Table 1 gives times for computing the PECC vectors for
several seed classes.

4. Finding Optimal Seeds

Below we present three ways to find optimal seeds when given a probability valuep and a
homology region lengthL. We assume that the seeds in the class under consideration have
already been preprocessed for their PECC vectors.

4.1. Scan the PECC Vectors

Using the PECC vector for lengthL from each seed, compute the total sensitivity of the
seed and return the seed with maximum sensitivity. A PECC vector for lengthL contains

Table 1. Results for several seed classes for homologous regions of
length 64. Note the very low number of dominant and optimal seeds
in all classes. All computation was done on seeds after removal of
mirrors. Time is for computing all PECC vectors in a single run
for regions of length 50 to 64. Lengths under 50 were also com-
puted in the same run, but PECC vectors were not saved. Calcu-
lations were made on a dual 1GHz PIII processor with 2GB RAM.

class number of seeds Time
1’s *’s all minus mirrors dominant optimal (hr:min:sec)
9 6 1,716 868 7 4 0:03:40
10 6 3,003 1,519 6 4 0:06:27
11 7 11,440 5,720 12 5 0:47:00
12 6 8,008 4,032 10 3 0:19:06
12 7 19,448 9,752 36 10 1:24:35
13 6 12,376 6,216 13 7 0:32:25
13 7 31,824 15,912 20 5 2:28:32
14 6 18,564 9,324 20 7 0:49:51
14 7 50,388 25,236 22 3 4:09:25
15 6 27,132 13,608 24 4 1:17:58
15 7 77,520 38,760 23 5 6:29:26
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L� 1 equivalences classes. The probability of a representative string which belongs to the
ith equivalence class (specified by the number of 1’s in the string,i � 0, . . . , L) is piqL�i

wherep is the probability of 1 andq � 1 � p. Let the count in equivalence classi beCi.
Then the polynomialC0 � p

0qL �C1 � p
1qL�1 � ...�CL � pLq0 gives the sensitivity of the

seed. This method recomputes the sensitivity for each seed whenp changes.

4.2. Dominant Seeds

Definition 4: For two seedsA andB with PECC vectors~VA and~VB , if the difference vector
~D � ~VA � ~VB contains only zero values, thenA andB areequivalent. If the difference
vector contains no negative values and some values are positive, thenA dominatesB. If A

is never dominated by another seed, thenA is dominant.
If A dominatesB, it means that in every probability equivalence class,A hits at least as

many strings asB and in some classes hits more. In this situation,B canneverbe optimal
and can be removed from the seed class. For this method, first determine the dominant
seeds, then compute sensitivity only for their PECC vectors as in the previous section.
Return the seed with maximum sensitivity. Determining which seeds are dominant occurs
just once. Whenp changes, only the sensitivity of each dominant seed must be recomputed.

Amazingly, only a few seeds are dominant within the seed classes for the
match/mismatch iid homology models we have investigated. For example, in the Pattern-
Hunter seed class, with 5720 seeds (after removing equivalent mirrors), at length 64, only
12 seeds are dominant. Table 1 shows the number of dominant seeds in several seed classes.

4.3. Partitioning the Parameter Space

Definition 5: For two dominant seedsA andB with PECC vectors~VA and ~VB , if the
difference vector~D � ~VA � ~VB contains both positive and negative values, thenA andB

flip. A has more hits in some probability equivalence classes thanB, andB has more hits
in other classes. In this case,A andB will usually partition the probability space (figure 3)
with A having better sensitivity in some regions of the space (whereA winsrelative toB)
andB having better sensitivity in others (whereB wins relative toA). A dominant seed
A is optimal in some region of probability space only ifA wins in that region relative to
every other dominant seed.

Figure 2 shows the PECC vectors and difference vector for a pair of seeds that flip. To
determine the winning regions for a seed pairA andB in the match/mismatch iid model,
we solve for the roots of a polynomial equation with a single unknown variablep. Let the
difference in counts in equivalence classi beDi. Then our polynomialPAB , containing
L�1 terms has the form:D0 �p

0qL�D1 �p
1qL�1� ...�DL �p

Lq0 (see bottom of figure 2).
Replacingq with 1 � p, we solve the equationPAB � 0 using the Mathematica function
SOLVE [13]. There areL roots (complex and real) that exist but only real roots between 0
and 1 are of interest. Testing the PECC vector forA on either side of the roots reveals those
regions whereA wins. To find where a dominant seedA is optimal, we merge the regions
whereA wins relative to every other dominant seed. An example is shown in figure 3.
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number of 1’s hit counts different in hit counts
seed A seed B A - B

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 38 38 0
6 1520 1520 0
7 29640 29640 0
8 375332 375334 -2
9 3468729 3468766 -37
10 24928629 24928696 -67
11 144948172 144942776 5396
12 700456139 700364916 91223
13 2867679722 2866827015 852707
14 10087980802 10082362006 5618796
15 30819118260 30790682312 28435948
16 82428580640 82313087704 115492936
17 194186285079 193799799947 386485132
18 404765317464 403681622157 1083695307
19 748926920505 746353121681 2573798824
20 1232762203160 1227550871937 5211331223
21 1807611479754 1798588935398 9022544356
22 2362723608570 2349367736133 13355872437
23 2753640936852 2736789617398 16851319454
24 2861644355241 2843634715311 18009639930
25 2652331424044 2636186283832 16145140212
26 2194080691374 2182108728673 11971962701
27 1622400592905 1615198100214 7202492691
28 1075039055326 1071615007952 3424047374
29 640344850572 639104255291 1240595281
30 343883821799 343558130745 325691054
31 166774138475 166716560683 57577792
32 73001069494 72994947436 6122058
33 28759911342 28759587965 323377
34 10150595182 10150589139 6043
35 3190187285 3190187260 25
36 886163135 886163135 0
37 215553195 215553195 0
38 45379620 45379620 0
39 8145060 8145060 0
40 1221759 1221759 0
41 148995 148995 0
42 14190 14190 0
43 990 990 0
44 45 45 0
45 1 1 0

�2x8p1�xq37� 37x9p1�xq36� 67x10p1�xq35� 5396x11p1�xq34� 91223x12p1�xq33� 852707x13p1�

xq32 � 5618796x14p1� xq31 � 28435948x15p1� xq30 � 115492936x16p1� xq29 � 386485132x17p1� xq28 �

1083695307x18p1�xq27�2573798824x19p1�xq26�5211331223x20p1�xq25�9022544356x21p1�xq24�

13355872437x22p1� xq23 � 16851319454x23p1� xq22 � 18009639930x24p1� xq21 � 16145140212x25p1�

xq20�11971962701x26p1�xq19�7202492691x27p1�xq18�3424047374x28p1�xq17�1240595281x29p1�

xq16 � 325691054x30p1 � xq15 � 57577792x31p1 � xq14 � 6122058x32p1 � xq13 � 323377x33p1 � xq12 �

6043x34p1� xq11 � 25x35p1� xq10

Figure 2. Top) PECC vectors for seeds A: 111*1**1 and B: 111**1*1 (for the class with five 1’s and three
*’s and homologous region length 45) and the difference vector showing positive and negative values. Bottom)
Polynomial constructed from the difference vector.
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Figure 3. Partition of parameter space into regions won by seeds A and B from figure 2

For this method, the probability space is first partitioned, the optimal region is found
for the specific valuep, and the sensitivity of the optimal seed in that region is computed
using the seed’s PECC vector. Partitioning occurs only once. Whenp changes, the optimal
region must again be determined and the sensitivity of a single seed computed.

5. Results

Table 1 shows the results of our preprocessing for dominant and optimal seeds on several
seed classes. Note the extremely small number of dominant and optimal seeds in these
classes. Table 2 shows the partition of probability space by the optimal seeds in each class.
Note that some seeds are optimal in more than one region. Figure 4 illustrates the partition
for a single seed class, the PatternHunter class, for homologous regions of length 64. More
generally, we are interested in the partition of probability space for all seeds in the same
weight class, not just a seed class. Figure 5 illustrates the partition of probability space by
seeds drawn from all seed classes of weight 11,i.e., those having 11 ones and any number
of wildcards. Note that the contiguous seed is optimal only at the low end of the probability
range. The number of wildcards in the optimal seed increases towards the high end of the
range and ultimately decreases again at the highest levels.

6. Discussion

How optimal regions vary as homology region length varies.The issue of optimality in
the limit with respect to length of the homologous regions has been addressed in [3, 5, 4].
Using our partition method, we can examine variations in optimal seeds and the regions
of probability space they cover as the length of the homologous region varies. Figure 5
illustrates this variation for the weight 11 seed classes. Note that in this case, the set of
optimal seeds remains relatively stable over a range of lengths,e.g., seeds A, B, C, D,
E, G, I, etc. If this property holds generally, it can be used to make the time to search

Figure 4. Range for optimal seeds from the Pattern Hunter class at region length 64. A:
111*1**11*1*1**111, B: 111*1*1**11*1**111, C: (PH seed) 111*11**1*1**1*111, D: 11**111*1**1*111*1,
E: 1111*1*11**1***111, F: 1111***1**11*1*111
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Table 2. Optimal seeds and the range of probabilities where they
are optimal for several seed classes at region length 64. Note
that the same seed can be optimal in more than one region.

number of 1’s number of *’s optimal seeds probability range
9 6 A:111**1*1**11*11 0 - 0.1110266686

B:111*1*1**1**111 0.1110266686 - 0.4327682188
C:111***1*1*11*11 0.4327682188 - 0.9694790865
B:111*1*1**1**111 0.9694790865 - 0.9991450536
D:1111**11*1*1**1 0.9991450536 - 1

10 6 A:111**1*1*1*11*11 0 - 0.0231912575
B:111*1**1*11**111 0.0231912575 - 0.0457879868
C:111*1*11***11*11 0.0457879868 - 0.9436271851
D:1111**1*1*11**11 0.9436271851 - 1

11 7 A:111*1**11*1*1**111 0 - 0.0524790924
B:111*1*1**11*1**111 0.0524790924 - 0.0775105071
C:111*11**1*1**1*111 0.0775105071 - 0.7304317142
B:111*1*1**11*1**111 0.7304317142 - 0.9845899783
D:11**111*1**1*111*1 0.9845899783 - 0.9997355115
E:1111*1*11**1***111 0.9997355115 - 1

12 6 A:111*1*1*11*11**111 0 - 0.0125740804
B:111*11**1*11*1*111 0.0125740804 - 0.9818956319
C:11*111**1*111*1*11 0.9818956319 - 1

12 7 A:111*1**11*1*11**111 0 - 0.0269449089
B:111*1*11*1**11**111 0.0269449089 - 0.0501533511
C:1111**11**1*1*11*11 0.0501533511 - 0.1324581579
D:1111*1**11**1*1*111 0.1324581579 - 0.1713344621
E:1111**1*1*1**11*111 0.1713344621 - 0.2193278527
F:1111*1*1**11**1*111 0.2193278527 - 0.5616667374
G:1111*11**1*1*1**111 0.5616667374 - 0.8266957477
H:1111*1*1**11*1**111 0.8266957477 - 0.9600165421
I:111*1**11*1**111*11 0.9600165421 - 0.9824252510
G:1111*11**1*1*1**111 0.9824252510 - 0.9833842249
J:1111*1*11**1***1111 0.9833842249 - 1

13 6 A:1111**11*11*1*1*111 0 - 0.0250132023
B:1111**11*1*1*11*111 0.0250132023 - 0.5568886832
C:1111*1*1**11*11*111 0.5568886832 - 0.9726822943
D:111*111*11*1**1*111 0.9726822943 - 0.9845644894
E:111*11**1*1111*1*11 0.9845644894 - 0.9991885007
F:111*1**111*111*1*11 0.9991885007 - 0.9999389894
G:1111111*1*1*11***11 0.9999389894 - 1

13 7 A:111*1*11*1*11**11*11 0 - 0.0128994408
B:111*11**1*11*1*1*111 0.0128994408 - 0.1449709023
C:1111*1**11**11*1*111 0.1449709023 - 0.7775640305
D:111*111**1*11**1*111 0.7775640305 - 0.9771389517
E:11111**11*1**1*1*111 0.9771389517 - 1

14 6 A:111*11*11*1*111**111 0 - 0.0255990753
B:1111**11*11*1*11*111 0.0255990753 - 0.0269689880
C:1111*11**11*11*1*111 0.0269689880 - 0.1397167664
D:1111*11**11*1*1*1111 0.1397167664 - 0.8585536713
E:11111**11*1*11*1*111 0.8585536713 - 0.9733966204
F:11111*11*1*1*11**111 0.9733966204 - 0.9774612165
G:1111*1**111*111*1*11 0.9774612165 - 1

14 7 A:111*1*11*11**11*1*111 0 - 0.0263720408
B:111*11**11*1*11*1*111 0.0263720408 - 0.4156480746
C:1111*1**11*1**111*111 0.4156480746 - 1

15 6 A:111*11*1*11*111*1*111 0 - 0.1140558268
B:1111*1*11*11**111*111 0.1140558268 - 0.5238349212
C:11111**1*11*1*111*111 0.5238349212 - 0.8916876889
D:1111*11**1*1111*1*111 0.8916876889 - 1

15 7 A:1111*1*11**11*11*1*111 0 - 0.6176146226
B:111*111*1**11*1*11*111 0.6176146226 - 0.6698669044
C:11111*1**11*1**111*111 0.6698669044 - 0.9307720060
D:1111**1*111**1*111*111 0.9307720060 - 0.9762530821
E:111*1*1111*11**1*11*11 0.9762530821 - 1

for dominant seeds nearly linear in the number of seeds in the class (after preprocessing)
rather than quadratic in that number. To search for dominant seeds at lengthL we would
first choose the optimal seeds at lengthL�1 and then test the remaining seeds against only
these to eliminate the non-dominant ones.

Optimality within probability equivalence classes. To say a seed is optimal
for some homology model can be somewhat misleading. For example, the seed G
(111*111*1**1*111) from figure 5 is optimal for the model with probability of match-
ing = 60% at region length 64, but this might be construed to mean that it does best at
hitting alignments which contain 60% matches, which is not the case. The seed E is better
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Table 3. Seeds with the most hits in equivalence classes (number of 1’s) for weight 11
seeds at region length 64. Seed G from figure 5 is optimal for the model with probabil-
ity of match equal to0.60, but seed E does best at hitting alignments with 60% matches.

seed most hits in equivalence classespercentage of region length
E: 111*11*11*1*111 33-39 51%-61%
F: 1111*1*1**11*111 40-42 62%-66%

H: 111*11**1*1**1*111 43-47 67%-74%
I: 111*1*1**11*1**111 48-54 75%-85%

for these alignments as shown in table 3. In fact, G is not best at hitting any individual
equivalence class at length 64. This leads us to propose an alternative concept of opti-
mality. We might be interested in seeds that do best in a particular probability equivalence
class, rather than seeds that do best across all the classes. Our method for computing PECC
vectors allows us to identify these winners, which by definition are dominant seeds.

7. Multiple Seed Sets

Here we explore the characterization of seed pair sensitivity using our PECC vector
method. Seed pairs (and triplets, etc.) are more sensitive than single seeds and can be

Figure 5. Optimal range of winning seeds of weight 11 at varying region lengths. a) region length 50,
b) region length 55, c) region length 60, d) region length 64. A: 11111111111, B: 111111*11111, C:
1111*111*1111, D: 11111*1*11*111, E: 111*11*11*1*111, F: 1111*1*1**11*111, G: 111*111*1**1*111,
H: (PH seed) 111*11**1*1**1*111, I: 111*1*1**11*1**111, J: 1111**1*1*111*11, K: 111*1111*1**11*1, L:
11111*1*1*11**11, M: 1111**1*111*111, N: 111*1**11*1*1**111, O: 111*1**11*1111*1
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Table 4. Results for seed pairs in seed class for homologous regions of length 64.
All computation was done on seed pairs after removal of mirrored pairs. Time is
for computing all PECC vectors in a single run for regions of length 50 to 64.
Lengths under 50 were also computed in the same run, but PECC vectors were not
saved. Calculations were made on a dual 1GHz PIII processor with 2GB RAM.

class number of seed pairs Time
1’s *’s all minus mirrors dominant optimal (hr:min:sec)
9 6 2,944,656 736,254 23 7 100:30:05

used efficiently in homology detection programs [12, 14, 2]. But, the calculation of dom-
inant seed pairs is time intensive because the number of pairs is roughly quadratic in the
number of seeds in the seed class. As an illustration of our method, we calculated the dom-
inant and optimal seedpairs, for the class of seeds with 9 ones and 6 wildcards. Results are
summarized for homologous region length 64 in table 4. Note that as with single seeds, we
excluded mirrors from our calculation. For the seed pairA andB, the mirror is the pair:
mirror ofA and mirror ofB. We also excluded redundant pairs, i.e.,A with A. As observed
with single seeds, only a miniscule number of seed pairs are dominant and/or optimal.

Because the long computation time prohibits easily calculating pairs for larger seed
classes, we have explored the possibility of calculating dominant and optimal seed pairs
from among only the set of dominant single seeds. We paired single dominant seeds
from homologous regions of length 50 to 64 (since dominant seeds vary at different re-
gion lengths) and results are shown in table 5 for homology region length 64. We next
compared the sensitivity of an optimal seed pair taken from the entire seed class to the
sensitivity of the optimal pair calculated from only the dominant single seeds (table 6). At
probability of match = 70%, the difference in sensitivity is less than 1% which is a fair
tradeoff given the roughly 3000 fold decrease in computation time. Our results suggest that
using only dominant single seeds to determine sensitive multiple seed sets can be a good
heuristic.

8. Conclusion

We have presented a new, efficient preprocessing method to determine optimal seed sen-
sitivity without first specifying the probability parameters for the homology model. This
allows finding the optimal seed quickly once the parameters are specified. It reveals that

Table 5. Results for pairing single dominant seeds in seed class for ho-
mologous regions of length 64. All computation was done on seed pairs
after removal of mirrored pairs. Time is for computing all PECC vec-
tors in a single run for regions of length 50 to 64. Lengths under 50
were also computed in the same run, but PECC vectors were not saved.
Calculations were made on a dual 1GHz PIII processor with 2GB RAM.

class number of seed pairs Time
1’s *’s all minus mirrors dominant optimal (hr:min:sec)
9 6 528 256 8 7 00:02:18
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Table 6. Comparison of optimal seed pair sensitivities at region length 64 at 70% matching. The optimal
seed pairs of the entire seed class with 9 ones and 6 stars and from dominant seeds from the same seed class.

Homology Model Optimal seed pair from entire seed classSensitivity optimal pair from dominant seeds
% match % mismatch 111*11*1*1***11 + 1*111**1*11*11 111*1***11*1*11 + 111**1*1**11*11

70 30 0.85162 0.84953

the overwhelming majority of seeds have no chance of being optimal and allows us to de-
scribe the partition of probability space by optimal seeds. Finally, this method permits us
to consider an alternative definition for optimality, and gives a good heuristic for designing
near optimal sets of multiple seeds.
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