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In this paper, we study the exact probability distribution of the number of cycles c in the breakpoint
graph of two random genomes with n genes or markers and χ1 and χ2 linear chromosomes, respec-
tively. The genomic distance d between the two genomes is d = n − c. In the limit we find that the

expectation of d is n −

2χ1χ2

2χ1+2χ2−1
−

1
2

ln
n+min(χ1,χ2)

χ1+χ2
.

1. Introduction

The study of genome rearrangements has developed a sophisticated technology for infer-
ring a minimizing sequence of operations necessary to transform one genome into another,
where the genomes are represented by signed permutations on 1, · · · , n and the operations
are modeled on the biological processes of inversion, reciprocal translocation, chromosome
fusion and fission, transposition of chromosomal segments, excision and reintegration of
circular chromosomal segments, among others. Once these inferences are made, however,
there is a need for some way to statistically validate both the inferences and the assumptions
of the evolutionary model.

Our approach has been to see to what extent there is an signal remaining in the compar-
ative structure of the two genomes, or whether evolution has largely scrambled the order of
each one with respect to the other, in terms of the evolutionary model assumed. This has
led to the study of completely scrambled, i.e., randomized, genomes as a null baseline for
the detection of a evolutionary signal. Insofar as a pair of genomes retain some evidence of
evolutionary relationship, this should be detectible by contrast to randomized genomes. In
previous papers, we have worked out the statistical properties of random genomes consist-
ing of one or more circular chromosomes, 1 and those of two random genomes containing
the same number c of linear chromosomes.2. The latter paper concentrated on showing
that the number of circular chromosomes inevitably associated with random linear chro-
mosomes is very small with realistic numbers of chromosomes. It only included a rough
estimation of the statistical properties of the linear chromosomes.

The present paper introduces a new way of representing the comparison of linear
genomes, requiring only a single source/sink vertex in the breakpoint graph of the two
genomes, instead of the numerous “chromosomal caps” used in other treatments. This fa-
cilitates a more rigorous treatment of the case of linear chromosomes, including the more
realistic situation where the number of linear chromosomes may be different (χ1 and χ2)
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in the two genomes being compared.

2. Genome rearrangement with linear chromosomes

In our framework, each genome consists of n markers (genes, chromosomal segments,
etc.), divided among a number of disjoint chromosomes. We fix the number of linearly
ordered chromosomes, but in our construction of random genomes we will permit some
additional, circularly ordered, chromosomes as well. In graph-theoretical terms, we usu-
ally represent each marker by two distinct vertices, marking the beginning and end of the
marker, respectively. We call all of these inner vertices. For each linear chromosome, two
extra vertices, named caps are added to represent the ends of the chromosome. In com-
paring two genomes containing different numbers χ1 and χ2 of linear chromosomes, we
equalize their numbers at χ = max(χ1, χ2) by adding an appropriate number of null chro-
mosomes, each of which consists only of two caps, to one of the genomes.

2.1. The Breakpoint Graph

When two genomes, say a red one and a black one, containing the same n markers, are
compared, we use red edges to connect the the nearest vertices of two adjacent markers
according to their order in the red genome – this may be the end of one mark and the
beginning of the other, or two ends, or two beginnings, depending on the orientation or
“strandedness” of the markers on the chromosome. The first and last inner vertices are
connected to caps. Each cap may only be connected to one inner vertex. We also connect
the two caps of any null chromosome in the red genome by a red edge. Similarly, we use
black edges to connect the vertices and caps in the black genomes. There are thus 2n inner
vertices, 2χ caps, n+ χ red edges and n+ χ black edges in the graph.

Since each vertex is connected to one red and one black edge (one adjacency in each
genome), a 2-regular graph is formed. A 2-regular graph always can be decomposed into
number of cycles c, and in our bicoloured graph, the edge colours alternate around each
cycle. Yancopoulos, Attie and Friedberg3 showed that the edit distance d is related to the
number of cycles c by

d = n+ χ− max c, (1)

when block interchanges (each counting as two operations) are allowed besides inversions
and reciprocal translocations. The number of cycles depends on which red chromosome
and which black chromosome are incident to the same cap, a choice which is left free in
the graph definition. The maximal number of cycles in equation (1) refers to the optimal
choice of this cap assignment. We refer to this particular graph as the breakpoint graph of
the two genomes.



October 16, 2006 22:26 Proceedings Trim Size: 9.75in x 6.5in apbc138a

3

(a) (b)

Figure 1. The construction of a random breakpoint graph. We start with the red genome, represented by a set of
cap edges (in blue) and a set of inner edges (in red), and add the black edges randomly, one by one, until every
vertex is connected by one black edge. In (b) there are 3 cycles. Caps denoted by blue dots and inner vertices by
black ones.

2.2. Random Genomes

Were we to construct genomes by successively adding markers or caps in random order,
it would be very difficult to say anything precise about the breakpoint graph, because the
linearity condition on chromosomes induces great complexity to the events whose proba-
bilities we wish to calculate. Instead, we introduce the randomness directly in the construc-
tion of the breakpoint graph, leading to simple expressions for probabilities of the sizes and
numbers of cycles. This simplicity comes at a cost, however, since the construction of a
random genome at the level of the breakpoint graph does not exclude some circular chro-
mosomes. As we shall mention later, there is good reason to believe that this feature does
not affect our results on the limits of expectations.

To obtain two genomes randomized with respect to each other, it suffices to fix the
gene order in one of them, say the red genome, and to introduce randomness into the black
genome only. Because we are interested in calculations pertaining to the breakpoint graph,
we simply postulate that at each step a black edge may be added to connect any two in-
ner vertices that are not already incident to black edges. We do not at this stage really
connect caps to inner vertices using black edges, because these edges are implicitly deter-
mined by the cycle optimization procedure applied to the rest of the graph. Thus we start
with 2n+ 2χ vertices (inner vertices and caps), with red edges connected. We distinguish
between two kinds of edges: 2χ cap edges incident to a cap and n − χ inner edges not
incident to a caps. To construct the random breakpoint graph, we connect two inner ver-
tices at random by a black edge until every vertex is incident to a black edge. Note that in
randomly adding black edges we are not guaranteed to end up with linear chromosomes,
since there is the possibility that the black genome so constructed will contain one or more
circular chromosomes, with no caps. As χ becomes large, the number of such circles and
the number of markers in them, will be small. Nevertheless this possibility is not part of
the original problem involving two random genomes with linearly ordered chromosomes.
Fortunately, partial mathematical results indicate that in the limit, the possible presence of
circular chromosomes does not affect the probability structure of the breakpoint graph4.
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2.3. Cap Optimization

In the procedure of cap optimization, the breakpoint graph is decomposed into cycles and
2χ paths (whose two ends are caps or inner vertices incident to only one cap edge). The
ψHO homogenous paths terminate with caps via two red edges (type 1) or with two inner
vertices (type 2), with an equal number of the two types, and the ψHE heterogenous paths
end with one cap and one inner vertex. The optimization principle developed by Hannen-
halli and Pevzner5 and Tesler6, comes down to, in the reformulation by Yancopoulos et
al.3, to the addition of two black edges joining one homogenous path of type one to an-
other homogeneous path of type 2 to form a cycle and the addition of a single black edge
to each heterogeneous path to form a cycle. It can be seen that the maximized cap cycle
number ψ is

maxψ = χ+
1

2
ψHE (2)

2.4. The Flower Representation

To facilitate the construction of the random breakpoint graph, including the cycle opti-
mization, we abandon the regular graph representation and introduce a modified model as
follows.

(a) (b)

Figure 2. The illustration of the modified model. At the initial state (a), all the caps have been merged into one
source/sink vertex C. The dashed black edges are reserved for the 2χ black cap edges to be added later. At the
end (b), all the cap edges should be connected via inner edges, except for some that are composed of two cap
edges or a single edge with C at both ends. The rest of the inner edges form the inner cycles. In the figure, two
homogenous paths, two heterogenous paths and one inner cycle are depicted.

We replace all the caps by a single source/sink vertex C. Then we may portray the cap
edges as distributed around C as in Figure 2, while the inner edges are unaffected. In Fig-
ure 2(a), there are 2χ red cap edges and the same number of dashed edges incident to C
indicating where the black cap edges will eventually connect. Some same-coloured pairs
of these cap edges may represent null chromosomes. The construction proceeds by adding
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black edges one by one at random as detailed in the next section, and terminates when a
complete structure as in Figure 2(b) is achieved.
The cycles are of two sorts, those in the flower structure, named cap cycles and the rest,
inner cycles. In the next section, recurrence equations will derived for both kinds. Note
that each “petal” of the flower, connected to the source/sink vertex, represents a path, either
a homogenous or heterogeneous. The cap cycles are not explicitly depicted in the graph.
Their total number is determined by the capping optimization formula.

3. The Recurrence Equations

3.1. The Number of Heterogenous Paths ψHE

From the cap optimization principle, the number of cap cycles should be equal to χ+ 1
2ψHE .

During the construction, at each step it suffices to keep track only of the number of
extended red cap edges, where this includes paths with C connected to a red edge at one
end and a red edge at the other, the number of extended black cap edges, where this includes
either dashed edges of paths with C connected to a black edge at one end and a red edge at
the other.

We start from a general situation where there are r extended red cap edges and s ex-
tended black cap edges. The problem is denoted as (r, s).

(a) (b) (c)

Figure 3. The three possible ways of completing a cap path. Homogenous paths are shown in (a) and (b) and a
heterogenous path in (c).

At each step, one black edge is added, connecting two extended red cap edges, two dashed
or extended black cap edges or one extended red cap edge and one dashed or extended
black cap edge. Once a path forms, the total number of extended paths (i.e., the edges that
remain to be connected) decreases by 2. The three possible ways of adding the black edge
lead to the smaller problems (r − 2, s), (r, s − 2), (r − 1, s− 1), respectively. The num-
bers of ways of doing each are

(

r
2

)

,
(

s
2

)

and rs, respectively. Only in the last situation is
a heterogenous path completed. Denote n(ψHE , r, s) as the total number of ways to get a
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breakpoint graph with ψHE heterogenous paths for the (r, s) problem. Since each problem
with size (r, s) can be constructed from three smaller problems of sizes (r−2, s), (r, s−2)

and (r − 1, s− 1), respectively, we have the recurrence :

n(ψHE , r, s) =

(

r

2

)

n(ψHE , r−2, s)+

(

s

2

)

n(ψHE , r, s−2)+rs n(ψHE−1, r−1, s−1)

(3)

Denote by ψ̄HE(r, s) the average number of heterogenous paths in the breakpoint graph
for (r, s), defined as:

ψ̄HE(r, s) =

∑min(r,s)
ψHE=0 n(ψHE , r, s)ψHE
∑min(r,s)

ψHE=0 n(ψHE , r, s)

=

∑min(r,s)
ψHE=0 n(ψHE , r, s)ψHE

∏

r+s

2

i=0

(

r+s−2i
2

)

where
∑min(r,s)

ψHE=0 n(ψHE , r, s) =
∏

r+s

2

i=0

(

r+s−2i
2

)

is the total number of ways to construct
the breakpoint graph.

By summing over equation (3), we get the recurrence equation for the average number
of heterogenous paths.

ψ̄HE(r, s) =

(

r
2

)

ψ̄HE(r − 2, s) +
(

s
2

)

ψ̄HE(r, s− 2) + rsψ̄HE(r − 1, s− 1) + rs
(

r+s
2

) (4)

Equation (4) has a probabilistic interpretation, since (r, s) can be decomposed into
(r − 2, s), (r, s− 2) and (r − 1, s− 1) with probabilities r(r−1)

(r+s)(r+s−1) , s(s−1)
(r+s)(r+s−1) and

2rs
(r+s)(r+s−1) , respectively.

3.2. The Number of Inner Cycles

The number of the inner cycles depends on the number of inner edges not used by the paths.
Suppose we start with 2m extended cap edges (the extended red cap edges and the dashed
or extended black edges) and l inner edges, which it will be convenient to denote (m, l).a

In the random construction of the breakpoint graph, each addition of one black edge can
lead to four different situations:

(1) two cap edges are connected – there are
(

2m
2

)

ways of doing this – and the size of
the problem becomes (m− 1, l)

(2) one cap edge and one inner edge are connected – there are 4ml ways of doing this
– and the size of the problem becomes (m, l − 1)

aRather than (2m, l).
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(3) two different inner edges are connected – there are 2l(l − 1) ways of doing this –
and the size of the problem becomes (m, l − 1)

(4) the two ends of the same inner edges are connected – there are l ways of doing
this. The size of the problem becomes (m, l − 1) and the number of inner cycles
increases by one.

(a) (b) (c) (d)

Figure 4. The four possible ways to build a black edge in counting the inner cycles. Two cap edges are connected
(a); one cap edge and one inner edge are connected (b); two different inner edges are connected (c); the two ends
of the same inner edge are connected (d). And only in the last case, one inner cycle is formed.

Denote by n(κ,m, l) the number of ways to get a breakpoint graph with κ inner cycles for
a (m, l) problem. Similarly define κ̄(m, l) as the average number of inner cycles for the
problem (m, l)

κ̄(m, l) =

∑l

κ=0 n(κ,m, l)κ
∑l

κ=0 n(κ,m, l)

=

∑l

κ=0 n(κ,m, l)κ
∏m+l
i=0

(

2m+2l−2i
2

)

We then get the corresponding recurrences

n(κ,m, l) =

(

2m

2

)

n(κ,m− 1, l) + [4ml+ 2l(l− 1)] n(κ,m, l − 1)

+ l n(κ− 1,m, l− 1) (5)

κ̄(m, l) =

(

2m
2

)

κ̄(m− 1, l) + [4ml+ 2l(l− 1)] κ̄(m, l − 1) + l κ̄(m, l − 1) + l
(

2m+2l
2

) (6)

Equation (6) also has a probabilistic interpretation, associating the probabilities
2m(2m−1)

(2m+2l)(2m+2l−1) , 8ml
(2m+2l)(2m+2l−1) , 4l(l−1)

(2m+2l)(2m+2l−1) and 2l
(2m+2l)(2m+2l−1) with the

four possible smaller problems.
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4. The solution to the problems

4.1. The cap cycles

The recurrence equations (4) and (6) enable rapid calculation of ψ̄HE and κ̄, but there is no
easy way to convert them into a closed form solution.

We can, however, deduce these quantities through another combinatoric approach. The

total number of ways to form any kind of flower structure is
∏

r+s

2

i=0

(

r+s−2i
2

)

. The ways to
form a result with 2ψHE heterogenous paths (which should be always even) is

n(2ψHE , r, s) =

(

r+s
2

2ψHE

)

(r)!

(r − 2ψHE)!

(s)!

(s− 2ψHE)!

(

r+s
2 − 2ψHE
r
2 − ψHE

)

r+s

2
∏

i=0

(

r − ψHE − 2i

2

)

r+s

2
∏

i=0

(

s− ψHE − 2i

2

)

=
(r)!(s)!(r + s)!

( r+s2 )!

4ψHE

(2ψHE)!( r2 − ψHE)!( s2 − ψHE)!
(7)

Averaging over n(2ψHE , r, s) and rewriting r = 2χ1 and r = 2χ2, we get

ψ̄HE(χ1, χ2) =
4χ1χ2

2χ1 + 2χ2 − 1
(8)

So the average number of cap cycles is

ψ = max(χ1, χ2) +
2χ1χ2

2χ1 + 2χ2 − 1
(9)

When χ1 = χ2 = χ, it becomes χ + 2χ2

4χ−1 , approaching 1.5χ as χ becomes large, con-
firming a result which we have previously derived in another way.2

4.2. The Inner Cycles

In the flower structure where the numbers of chromosomes are equal, suppose we traverse
all the edges, starting with a black cap edge, and each time we visit C, we choose an
outgoing edge of colour different from the incoming edge. This will order the edges as in
Figure 5(a). The last edge will be a red cap edge and C will be the last vertex. We then add
the edges in the inner cycles to the right of the flower structure edges.

We define the position x of an edge, as the number of edges to the left of, and including,
that edge. We assume there are χ linear chromosomes in each genome. So the smallest
value possible for x is 1 and the largest one is n − χ. The 2χ cap edges occupy random
positions in the sequence. The constraints on the model are that the last cap edge should
haveC on its right, the ith cap edge can only distributed from xi−1+1 to n+χ−(2χ−i) =

n− χ+ i. Only the inner edges to the right of the variable x2χ, the position of the last cap
edge, are in inner cycles. Once we know the distribution of x2χ, we then use the formula1

for the expected number of cycles in circular genomes to calculate the number of inner
cycles.
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The last cap edge

The inner edges forming the inner cycles

(a)

The last cap

The inner edges forming the inner cycles

(b)

Figure 5. The exact model (a) for counting the inner cycle number and the approximate model (b). Model (a)
is discrete. The cap in the last cap edge should be in the right side in order to correspond to the flower structure.
Model (b) is a continuous approximation of model (a) when the number of inner edges are large enough and has
no constraint on the last cap edge.

When n becomes large, we may define a continuous approximation to this construction.
The xi become the order statistics of χ uniformly distributed points on (0, n + χ). Using
the distribution for the position of the xχ, we find the expected number of inner cycles is

c(m = 2χ, l = n− χ) =
1

2
ln
χ+ n

2χ
+B (10)

where B is some constant.2

Note that equation (10) is the asymptotic solution of equation (6), with m = 2χ, l =

n−χ. B can be found from an initial condition: when n = χ, then there are no inner edges
and hence no inner cycles. So 1

2 ln χ+χ
2χ +B = 0, i.e., B = 0. In numerical comparison as

well, the equation c = 1
2 ln χ+n

2χ confirms the recurrence equation (6).

4.3. Two Genomes Having Different Numbers of Linear Chromosomes

Suppose the two genomes being compared have χ1 and χ2 linear chromosomes, respec-
tively. We have already found the formula for the cap cycles which is max(χ1, χ2) +

2χ1χ2

2χ1+2χ2−1 . For the number of inner cycles, the approximate model only deals with the
case where χ1 = χ2 = χ. But that solution is also the asymptotic solution for the recur-
rence equation (6), which depends only onm and l. We can thus substitute the values form
and l in the case of unequal number of linear chromosomes. Note that in the case of equal-
ity,m = 2χ and l = n−χ and in the unequal casem = χ1+χ2 and l = n−max(χ1, χ2).

c =
1

2
ln
χ+ n

2χ
=

1

2
ln

2χ+ n− χ

2χ
=

1

2
ln
m+ l

m

=
1

2
ln
χ1 + χ2 + n− max(χ1, χ2)

χ1 + χ2

=
1

2
ln
n+ min(χ1, χ2)

χ1 + χ2
(11)
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Hence in the limit the total number of cycles is

c = max(χ1, χ2) +
2χ1χ2

2χ1 + 2χ2 − 1
+

1

2
ln
n+ min(χ1, χ2)

χ1 + χ2
(12)

And the genomic distance d is

d = n−

2χ1χ2

2χ1 + 2χ2 − 1
−

1

2
ln
n+ min(χ1, χ2)

χ1 + χ2
. (13)

5. Conclusion

The mathematical essence of the question with two genomes with linear chromosomes, is
the number of the cycles in the 2-regular breakpoint graph whose vertices consist of a set
of labeled vertices and another set of interchangeable caps vertices. We have shown that
collapsing all the caps to a single source/sink facilitates the optimal capping problem as
well as the calculation of cycle expectations.
The final result equation (13) can be applied to the comparison of two genomes with the
same or different number of linear chromosomes plus any number of circular chromo-
somes. This is true under the condition that inversions, translocations and block inter-
changes are the mechanism of genomic rearrangement, where the latter count as if they
were each two operations.3
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