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An important tool for analyzing metabolic pathways is being able to do homology searches, that is, for
a given pattern network one would like to find occurrences of similar (sub)networks within a set of host
networks. In the context of metabolic pathways, Pinter et al.[Bioinformatics, 2005] recently proposed
to solve this computationally hard problem by restricting itto the case where both the pattern and
host network are trees. This restriction, however, severely limits the applicability of their algorithm.
Here, we propose a novel algorithm that does not restrict thetopology of the host or pattern network
in any way; instead, we exploit a natural property of metabolic networks that we call “local diversity
property,” which allows us to obtain a very fast and simple algorithm for the alignment of metabolic
pathways. Experiments on a testbed of metabolic pathways extracted from the BIOCYC database
indicate that our algorithm is much faster than the restricted algorithm of Pinter et al. and yet has a
wider range of applicability and yields new biological insights.

1. Introduction

Motivation. Shifting attention from linear data to more complex functions and interac-
tions, recent years have seen a surge in the availability of biologicalnetworkdata.a An im-
portant tool for analyzing these data is being able to searchfor homologous (sub)networks
to a given pattern network: This promises to be useful, for example, for interaction pre-
dictions, functional annotation, data integration, knowledge transfers, and for developing
a better understanding of biological network organization.5,10 A recent survey by Sharan
and Ideker10 even advances the opinion that “network comparison techniques promise to
take a leading role in bioinformatics [. . . ].”

Unfortunately, the task of performing a network homology search turns out to be quite
hard as it can be traced back to the NP-complete SUBGRAPH ISOMORPHISMproblem.

SUBGRAPH ISOMORPHISM

Input: Two graphsGP (thepattern) andGH (thehost).
Task: Find whetherGH contains a subgraph that is isomorphic toGP .

This problem is even NP-complete when restricted to graph classes that usually render NP-
complete problems tractable—for instance, if the pattern isa forest and the host is a tree.2

Polynomial-time algorithms are only known when the host graph has bounded treewidthω

aWe use the term “network” discussing biological aspects andthe term “graph” for discussing algorithmic aspects.
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and the pattern graph has either a high connectivity or bounded degree—in these cases,
SUBGRAPH ISOMORPHISMcan be solved inO(nω+1

P · nH) time for annP -vertex pattern
andnH -vertex host.1,3,6

To overcome the hardness of SUBGRAPH ISOMORPHISMwhen performing a network
homology search on biological networks, various algorithms have been proposed:

• For protein interaction networks, Kelley et al.5 presented an algorithm called
PATHBLAST that, given a linear pathway as a query, randomly decomposes the
host graph into linear pathways to find homologous pathways among these.

• For linear patterns, Shlomi et al.11 proposed an algorithm that is based on random
graph colorings.

• Pinter et al.7 presented a homology search algorithm for metabolic pathways
that is based on restricting the host and pattern graph to be trees, in which case
polynomial-time algorithms are possible8.

Notably, all of these algorithms basically take the same approach: They make network
homology searches algorithmically feasible by restricting the topology of the network to
be cycle-free. This, in turn, causes all of these algorithmsto suffer from basically the same
problems, namely at least one of the following three:

(1) Limited Applicability.Most biological networks of interest contain cycles and the
proposed algorithms therefore cannot be directly applied to them.

(2) Long Running Time.To apply the existing algorithms to a network that contains cy-
cles, the network must be decomposed in some way. Irrespective of whether these
decompositions are randomized or deterministic, a great number of them is neces-
sary in order to ensure that all good matches for the pattern are found. This usually
leads to exponential running times that are only practical for very small pattern
sizes (for example, PATHBLAST requiresO(ℓ!) runs for a pattern of lengthℓ).

(3) Requirement of Manual Labor and Expert Knowledge.One might choose to use
expert knowledge and manually decompose networks into cycle-free subgraphs.
Such an approach was chosen, for example, by Pinter et al.7 to obtain some of the
dataset for their pathway alignment tool (they also excluded some of the networks
that have cycles).9 It is clear that such a process is not always applicable (for ex-
ample, when little information is known about a network beforehand or we have no
idea what the result should roughly look like), tedious, anderror prone.

Intriguingly, there is another thing that the existing network homology search algorithms
have in common besides basically taking the same approach: They do not algorithmically
expose the fact that vertices in biological networks are labeled; rather, the vertex labels are
used only for scoring the similarity of the pattern graph to agiven subgraph in the host.
In the context of metabolic pathway alignment, this work proposes an approach thatdoes
expose vertex labels in order to obtain a network alignment algorithm that is simple, fast,
and imposes no restrictions concerning the topology of the input networks.
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Organization of this Work. After introducing some notation, Section 2 presents our new
alignment algorithm for metabolic pathways in three steps:First, Subsection 2.1 formalizes
our network alignment problem and presents a simple—yet impractical—algorithm for it
calledMATCH. Second, Subsection 2.2 introduces the local diversity property of metabolic
networks which, third, is exploited in Subsection 2.3 by slightly modifying theMATCH al-
gorithm so as to obtain our new metabolic pathway alignment algorithm FIT-MATCH. The
FIT-MATCH algorithm has been implemented in C++; the source code is freely available
at http://theinf1.informatik.uni-jena.de/graphalignments/. Sec-
tion 3 reports experiments with our implementation on a testbed of metabolic pathways
from the BIOCYC database4. These indicate that our algorithm is much faster than the
algorithm of Pinter et al.7 and yet—because the topology of the input networks is not
restricted—is simpler to use, yields new insights, and has a wider range of applicability.

2. A New Fast and Simple Pathway Alignment Algorithm

Before formalizing the problem of metabolic pathway alignment and discussing our new
algorithmFIT-MATCH to solve this problem, it is useful to establish some notation:

Notation. We model metabolic pathways as connected directed graphs. Each vertex repre-
sents an enzyme and is labeled with theEnzyme Commission number (EC number)of that
enzyme.b Two verticesu andv are connected by a directed edge(u, v) if a product of the
pathway reaction catalyzed byu is a substrate of the reaction catalyzed byv. Thepattern
graph for which we seek a homolog is always denotedGP = (VP , EP ), thehostgraph in
which we seek an occurrence of the pattern graph is denotedGH = (VH , EH). A vertex
with exactly one outgoing and one incoming edge (not counting self loops) is called apath
vertex; all other vertices are calledbranch vertices.c A path in a graph that consists just of
path vertices and where every vertex occurs at most once is called simple.

An isomorphismbetween two graphsG = (V,E) andG′ = (V ′, E′) is a one-to-one
mappingΦ : V → V ′ such that(u, v) ∈ E ⇔ (Φ(u),Φ(v)) ∈ E′ (note that this definition
ignores the labels of the vertices). If there exists an isomorphism between two graphs, we
call themisomorphic. Two graphs are calledhomeomorphicif we can subdivide their edges
(that is, edges can be replaced by simple paths of arbitrary length in the same direction) in
such a way that the resulting graphs are isomorphic. The correspondinghomeomorphism
is a functionϕ that bijectively maps the branch vertices of the two graphs onto each other.

2.1. Formalization and a Simple Backtracking Algorithm

In order to formalize the problem of metabolic pathway alignment, we must define two
things, namely what we mean by “alignment” and what we view asa “high-scoring” align-

bThe EC number is a four-level hierarchical scheme that classifies enzymes on a functional basis. Thus, each
enzyme is classified by four numbers (as in “3.4.23.48”), the first number representing the top level classification
and the three following numbers the subsequent refinements thereof.
cAlthough somewhat counterintuitive, to simplify the overallpresentation we chose to use the term “branch
vertex” also for vertices with degree one.
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ment. Concerning a formalization of alignments, we follow Pinter et al.7 and rely on a
notion that is based on subgraph homeomorphism:

Definition 2.1. An embeddingof a pattern graphGP into a host graphGH is a tu-
ple (G′

H , ϕ) whereG′

H is a subgraph ofGH that is homeomorphic toGP and ϕ is a
homeomorphism betweenG′

H andGP .

We can use the notion of an embedding to phrase metabolic pathway alignment as a
combinatorial problem called MAXIMUM -SCOREEMBEDDING.

MAXIMUM -SCOREEMBEDDING

Input: Two directed labeled graphsGP = (VP , EP ) andGH = (VH , EH).
Task: Find the maximum-score embedding ofGP into GH .

It remains to define the scoring scheme that we plug into this problem definition. Again,
we follow Pinter et al.7 and make use of a scoring scheme due to Tohsato et al.12 that is
based on mutual vertex–vertex similarities (observe that topological similarity is already
ensured by relying on homeomorphisms). The similarity of two enzymes is calculated from
their functional EC numbers—the more of this number two enzymes have in common,
the more similar they are considered to be.d The scoring scheme also incorporates an
information-theoretic consideration, namely that the similarity of two enzymes is more
significant the less their common EC number prefix occurs among all enzymes.

Definition 2.2. Let the verticesu andv represent two enzymese1 ande2, respectively. If
the lowest common enzyme class ofe1 ande2 as determined by their EC numbers con-
tainsh enzymes, then thesimilarity of u andv is defined assim(u, v) := − log2 h.

Using the scoring for pairwise similarity, we can define a similarity score for two simple
paths that is based on the notion of a sequence alignment.

Definition 2.3. Given two simple pathsp1 = u1 . . . ux, p2 = v1 . . . vy and a negative
gap penaltyg, their similaritysim(p1, p2, g) is defined as the maximum possible score of a
sequence alignment betweenp1 andp2 usingg as the gap penalty and the scoring scheme
of Definition 2.2 to evaluate pairwise similarities.

For the sake of simplicity in our presentation, let us assumefrom now on that there is
at most one simple path between any two branch vertices and that neither the pattern nor
the host is a simple cycle. Our implementation in Section 3 does not make any of these
restrictions, but handling them explicitly in the remainder of this section obfuscates the
main ideas. To render the scoring of an embedding precise, weuse the following definition:

Definition 2.4. Given an embedding(G′

H , ϕ) of a pattern graphGP in a host graphGH ,
let B(GP ) denote the branch vertices ofGP . For two branch verticesu andv let p(u, v)

dFor some applications, a purely functional classification might be suspect and one might want to additionally
include genetic similarity information for the enzymes; we do not consider this here, however.
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be the simple path betweenu to v; if no such path exists, thenp(u, v) is the empty graph.
Given a gap penaltyg < 0, thescoreof (G′

H , ϕ) is defined as

score(G′

H , ϕ) :=
∑

v∈B(GP )

sim(v, ϕ(v)) +
∑

u,v∈B(GP )

sim
(

p(u, v), p(ϕ(u), ϕ(v) ) , g
)

.

Näıvely, MAXIMUM -SCORE EMBEDDING can be solved by a simple backtracking al-
gorithm that exhaustively explores all possible embeddings of a given pattern graphGP

into a host graphGH . Formally, this algorithm is best described by using the notions of a
partial embeddingandextensionsthereof.

Definition 2.5. A partial embeddingof a pattern graphGP into a host graphGH is an
embedding of a connected subgraphG′

P of GP into GH . It is denoted by(G′

P , G′

H , ϕ)

(whereϕ is the homeomorphism betweenG′

P andG′

H ). Let p be a simple path inGP

that connects two branch verticesu andv such that at least one of these branch vertices
is in G′

P but no path vertex ofp. An extensionof a partial embedding(G′

P , G′

H , ϕ) by p

is a partial embedding of the subgraph induced inGP by G′

P , u, v, andp that is identical
to (G′

P , G′

H , ϕ) when restricted to the vertices ofG′

P .

To illustrate the concept of a partial embedding and its extensions, consider the follow-
ing example graphsGP andGH and a partial embedding ofGP into GH :
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We can now describe our naı̈ve backtracking algorithm for solving MAXIMUM -SCORE

EMBEDDING. This algorithm, which we callMATCH, starts out by aligning a branch vertex
of the pattern to a branch vertex in the host graph and then uses a recursive subprocedure
EXTEND that takes as input a partial embedding and tries all possible extensions for it, thus
enumerating all embeddings of the pattern graph into the host graph.

Algorithm: MATCH(GP ,GH ,g)
Input: Two labeled graphsGP = (VG, EG), GH = (VH , EH) and a gap penaltyg.
Output: A maximum-score embedding ofGP into GH , if one exists.
Global variables: GraphsGP andGH , scoremaxscore, and embeddingbest.

01 best← null ; maxscore← −∞
02 u← arbitrary vertex fromVG

03 for each v ∈ VH do
04 (G′

P
, G′

H
, ϕ)← partial embedding by mappingu to v

05 call EXTEND(G′

P
, G′

H
, ϕ)

06 return best
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1.2.1.-2.7.1.40
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4.2.1.2

2.3.1.54

1.1.1.42

4.2.1.3

Figure 1. Anaerobic respiration pathway ofEscherichia colithat illustrates the local diversity property. The
label “-.-.-.-” denotes an unclassified enzyme.

EXTEND(G′

P
, G′

H
, ϕ)

E1 if G′

P
6= GP then

E2 p← simple path inGP not contained inG′

P
such that at

least one of the connected branch vertices is inG′

E3 for each extension(G′′

P
, G′′

H
, ϕ′) of (G′

P
, G′

H
, ϕ) by p do

E4 call EXTEND(G′′

P
, G′′

H
, ϕ′)

E5 else if score(G′

P
, G′

H
, ϕ) > maxscorethen

E6 best← (G′

P
, G′

H
, ϕ); maxscore← score(G′

P
, G′

H
, ϕ)

E7 return

Analysis of MATCH . The running time ofMATCH is primarily determined by the number
of recursive calls that are made in lines05 andE4 of the algorithm. While this number is
upper-bounded by a constant—both the maximum path length andthe maximum degree
of a metabolic pathway are naturally bounded by some constant for biological reasons—it
turns out to be rather large.e In our experiments, we have found that if the pattern graph
consists ofk simple paths, then the size of the search tree that is explored by MATCH is,
on average, around6k. Considering that our dataset from the BIOCYC database contained
a considerable amount of pathways with more than ten paths, this leads to a very long
running time forMATCH.

2.2. The Concept of Local Diversity

As a typical example for a metabolic pathway, consider the anaerobic respiration pathway
of Escherichia colithat is shown in Figure 1. The following observation can be made here
which seems to hold for most metabolic pathways and is hence crucial to our approach:

Observation 2.1. Two paths that have the same starting vertex often carry out very differ-
ent biological functions.

This observation describes what we refer to as thelocal diversity propertyof metabolic
networks. There are plausible reasons why a metabolic network is expected to generally
have this property: First, most metabolic products offer only very few possibilities where
a certain reaction can chemically take place. Second, identical reactions for a certain sub-
strate within a pathway are usually carried out by only one enzyme for reasons of efficiency.

eNote thatall paths and not only simple paths in the host graph must be considered for an extension because a
branch vertex in the host may become a path vertex in its subgraph.
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Local diversity is an important property for the algorithmic alignment of metabolic
pathways: Intuitively, SUBGRAPH ISOMORPHISM is hard because even very different
graphs might appear similar based on local information. Thelocal diversity property,
however, means that metabolic pathways usually provide very rich anddiverselocal in-
formation that can be exploited to overcome this phenomenon.

2.3. Exploiting Local Diversity

When we compute all extensions of a partial embedding by a pathp, some of these might
not make sense from a biological perspective because the biological function of the pattern
pathp does notfit the biological function of the host path that it is aligned to. The key to
making MATCH more efficient is to observe that the local diversity property implies that
usuallya lot of extensions of a partial embedding do not make sense from a biological
perspective. Thus, to exploit local diversity and makeMATCH more efficient, we need
to devise a formal definition of “fitting biological function” for two given paths and then
modify MATCH such that it only exploresfitting embeddings.

Definition 2.6. Given a real number0 ≤ f ≤ 1, a gap scoreg, a simplex-vertex pathp1

and a simpley-vertex pathp2, we say thatp1 andp2 fit if a maximum-score alignment
between them aligns at mostmin{⌈(1 − f) · x⌉, ⌈(1 − f) · y⌉} vertices to a gap. An
extension of a partial embedding(G′

P , G′

H , ϕ) fits if every simple path between two branch
verticesu, v ∈ V ′

G fits the corresponding simple path betweenϕ(u), ϕ(v) ∈ V ′

H .

As an illustration, if we have a fitting parameter off = 0.50, then a four-vertex path fits
no path that consists of seven or more vertices; a higher fitting parameter off = 0.75 would
cause it to fit no path that consists of six or more vertices.f To exploit local diversity, we
now modify MATCH so that it only explores fitting embeddings. For this purpose, lines05

and E4 need to be modified so that the EXTEND-subprocedure is only called for fitting
extensions. We name the resulting algorithm of this modification FIT-MATCH.

Analysis of FIT -MATCH Experiments show that, indeed, exploring only fitting extensions
is a very effective pruning strategy due to the local diversity property of metabolic net-
works. More precisely, they show that whereasMATCH explored a search tree of size
around6k to align ak-path pattern, even a conservative fitting parameter ofx = 0.5 re-
duces this to around2.5k, “conservative” meaning that we found no meaningful alignment
in our experiments that is missed by this setting.

3. Experiments on Metabolic Networks

We implementedFIT-MATCH in C++ to test its practical performance; the source is avail-
able athttp://theinf1.informatik.uni-jena.de/graphalignments/.

fFor some applications, Definition 2.6 might be considered too strict in its handling of very short paths: In
particular, a one-vertex path never fits a length-3 path, regardless of the fitting parameter. While we have not
found this property to be an issue in practice, one can easilycircumvent it by introducing a minimum number of
gaps that is always allowed regardless of the path lengths orfitting parameter.
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Table 1. Runtimes of ourFIT-MATCH implementation for all-against all alignments between the fivedatasets
described in the text. For each combination of host and pattern, we show the total runtime including I/O
overhead and excluding I/O overhead. All values are given inseconds.

Pattern
Run time ofFIT-MATCH in seconds (including / excluding I/O overhead)

B. subtilis E. coli H. sapiens S. cerevisiae T. thermophilus

B. subtilis 82 / 0.41 120 / 2.25 102 / 2.25 95 / 0.29 147 / 2.28
E. coli 120 / 0.02 121 / 0.22 112 / 0.19 151 / 0.02 227 / 0.20

H. sapiens 107 / 0.02 120 / 0.19 89 / 0.20 130 / 0.02 190 / 0.29
S. cerevisiae 93 / 0.06 141 / 0.09 121 / 0.09 114 / 0.08 172 / 0.10

T. thermophilus 140 / 0.02 135 / 0.22 107 / 0.23 167 / 0.03 264 / 0.24

Method and Results. Our testing machine is an AMD Athlon 64 3400+ with 2.4 GHz,
512 KB cache, and 1 GB main memory running under Debian GNU/Linux 3.1. Sources
were compiled with the GNU g++ 4.2 compiler using the option “-O3”.

To evaluate the performance ofFIT-MATCH, metabolic pathways were extracted from
the BioCyc database4 for five different organisms, yielding 145 pathways ofB. subtilis,
220 pathways ofE. coli, 190 pathways ofH. sapiens, 176 pathways ofS. cerevisiae, and
267 pathways ofT. thermophilus. If the full EC number of an enzyme was not specified, the
unknown part of the code was treated as “don’t care”, meaningthat the enzyme is scored
as if it were identical to every enzyme for which the known part of the codes match. All 25
possible all-against-all inter- and intra-species alignments between the five datasets where
performed, resulting in a total of 996 004 homology searches.

Following the suggestion of Pinter et al.7 to set the gap score to about one third of
the worst vertex–vertex similarity score, we setg = −4.5. The fitting parameterx was set
to .50 as a conservative choice, meaning that we never encounteredan interesting alignment
that is only found with a lower fitting parameter in some preliminary experiments. The
obtained runtimes are shown in Table 1; some sample alignments are shown in Figure 2.

Discussion.The experiments show that ourFIT-MATCH implementation is capable of
quickly aligning metabolic pathways; the complete datasetcan be aligned in under an hour
on our testing machine (including the I/O overhead, which turned out to consume far more
time than the algorithm itself). This is much faster compared to the pathway alignment
tool of Pinter et al.7: Their implementation (called MetaPathwayHunter) requires some
hours alone to align the simplified trees of theE. coli andS. cerevisiaepathways whereas
FIT-MATCH can align the corresponding unsimplified data in roughly seven minutes.

The alignments shown in Figure 2 exemplify some interestingapplication scenarios
whereFIT-MATCH can efficiently be used:

• Pathway Comparison.Figure 2a shows the highlighting of alternative metabolic
pathways by comparing the classical TCA cycle with a more complex variant
(note how the complex variant uses more pathways and the succinate dehydro-
genases 1.3.99.1 instead of 1.3.5.1).

• Enzyme Classification.In Figure 2b, our results align all unclassified enzymes
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-.-.-.-
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1.3.5.-
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-.-.-.-
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2.3.1.54

1.2.1.2

4.2.1.11

-.-.-.- 2.7.1.40
1.2.1.-

4.2.1.3

Figure 2. Four examples for the alignments that were found by the FIT-MATCH algorithm. In all graphs, the
vertices are not split if they have the same label in the host and the pattern, otherwise, the pattern enzyme is
shown at the top and the host enzyme at the bottom. A dashed top half indicates that a vertex is only present
in the host graph. The four alignments (pattern/host) that are shown area) superpathway of of glycolysis, pyru-
vate dehydrogenase, TCA, and glyoxylate bypass versus Embden-Meyerhof pathway inB. subtilisb) anaerobic
respiration pathway ofE. coli versus the same pathway inB. subtilisc) peptidoglycan and lipid A precursor
biosynthesis inB. subtilisversus the same pathway inT. thermophilusd) superpathway of leucine, valine, and
isoleucine biosynthesis inE. coli versus the same pathway inT. thermophilus.

(denoted “-.-.-.-”) with already known enzymes, possibly hinting at their function.
• Identifying Enzyme ComplexesThe pathways shown in Figure 2c are almost iden-

tical, except thatB. subtilisdoes not possess the enzyme 2.3.1.157 (an acyltrans-
ferase) but is rather aligned to a gap. The preceding enzyme is unclassified in
both organisms. We can derive from the alignment that the unclassified enzyme in
B. subtilisfulfills a task that requires two enzymes in T. thermophilus.

• Data Integration. Figure 2d shows an example where we can useFIT-MATCH to
detect the consistency of a database: The two enzyme classification numbers that
are seemingly totally different are the result of a change innomenclature.

The results we found moreover demonstrate that the topological restrictions imposed
by the algorithm of Pinter et al.7 cause relevant alignments to be missed in several cases.
For example, if the methylglyoxal pathway and the chorismate superpathway ofE. Coli
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are aligned, MetaPathwayHunter does not produce any results whereasFIT-MATCH finds
an alignment. Or, as a second example, MetaPathwayHunter misses the possible align-
ment between the cobalamin biosynthesis and the KDO2 lipid biosynthesis superpathway
of E. coli (which FIT-MATCH found).

4. Conclusion

We have presented the concept of local diversity for metabolic networks and shown how
this property can be exploited to obtain a simple alignment algorithm FIT-MATCH for
metabolic pathways that is both faster and more generally applicable than previous ap-
proaches. We are currently turning theFIT-MATCH implementation into a graphical tool
for the discovery and analysis of metabolic pathway alignments.

All biological networks carry labels at their vertices. We think that the concept of local
diversity is likely to occur in other types of biological networks than metabolic networks
and could thus be exposed for alignment algorithms there, too. Given the nice properties
of FIT-MATCH, this certainly seems worthwhile to investigate.
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