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An important tool for analyzing metabolic pathways is beintgab do homology searches, that is, for
a given pattern network one would like to find occurrencesrilar (sub)networks within a set of host
networks. In the context of metabolic pathways, Pinter gBahinformatics, 2005] recently proposed
to solve this computationally hard problem by restrictingoitthe case where both the pattern and
host network are trees. This restriction, however, seydimits the applicability of their algorithm.
Here, we propose a novel algorithm that does not restrictapelogy of the host or pattern network
in any way; instead, we exploit a natural property of metaboétworks that we call “local diversity
property,” which allows us to obtain a very fast and simpleoatgm for the alignment of metabolic
pathways. Experiments on a testbed of metabolic pathwayactett from the BoCycC database
indicate that our algorithm is much faster than the restlictigorithm of Pinter et al. and yet has a
wider range of applicability and yields new biological igisis.

1. Introduction

Motivation. Shifting attention from linear data to more complex funeaand interac-
tions, recent years have seen a surge in the availabilitiotddical networkdata® An im-
portant tool for analyzing these data is being able to sefardhomologous (sub)networks
to a given pattern network: This promises to be useful, faneple, for interaction pre-
dictions, functional annotation, data integration, knesge transfers, and for developing
a better understanding of biological network organizatibth A recent survey by Sharan
and Idekel® even advances the opinion that “network comparison tedesigoromise to
take a leading role in bioinformatics [...].”

Unfortunately, the task of performing a network homologarsé turns out to be quite
hard as it can be traced back to the NP-complete GRAPH | SOMORPHISMproblem.

SUBGRAPHISOMORPHISM
Input: Two graphs= p (thepattern) andG g (thehos).
Task: Find whethelGG; contains a subgraph that is isomorphicie.

This problem is even NP-complete when restricted to grapésels that usually render NP-
complete problems tractable—for instance, if the pattemnfisrest and the host is a trée.
Polynomial-time algorithms are only known when the hosprhas bounded treewidiin

a\We use the term “network” discussing biological aspectstaaderm “graph” for discussing algorithmic aspects.
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and the pattern graph has either a high connectivity or beditbgree—in these cases,
SUBGRAPH I|SOMORPHISMcan be solved ir@(n‘jjrl - ny ) time for ann p-vertex pattern
andn g -vertex host.3:6

To overcome the hardness o) SGRAPH ISOMORPHISMWhen performing a network
homology search on biological networks, various algorighrave been proposed:

e For protein interaction networks, Kelley et apresented an algorithm called
PATHBLAST that, given a linear pathway as a query, randomly dgusas the
host graph into linear pathways to find homologous pathwaysng these.

o For linear patterns, Shlomi et &l.proposed an algorithm that is based on random
graph colorings.

¢ Pinter et all presented a homology search algorithm for metabolic patawa
that is based on restricting the host and pattern graph teeles,tin which case
polynomial-time algorithms are possible

Notably, all of these algorithms basically take the samer@ggh: They make network
homology searches algorithmically feasible by restrgtine topology of the network to
be cycle-free. This, in turn, causes all of these algorittorsuffer from basically the same
problems, namely at least one of the following three:

(1) Limited Applicability. Most biological networks of interest contain cycles and the
proposed algorithms therefore cannot be directly appbetiem.

(2) Long Running TimeTo apply the existing algorithms to a network that contains ¢
cles, the network must be decomposed in some way. Irrespagtivhether these
decompositions are randomized or deterministic, a greatbien of them is neces-
sary in order to ensure that all good matches for the patterfoand. This usually
leads to exponential running times that are only practioalvery small pattern
sizes (for example, mHBLAST requiresO(¢!) runs for a pattern of lengtt).

(3) Requirement of Manual Labor and Expert Knowled@ne might choose to use
expert knowledge and manually decompose networks intcedyek subgraphs.
Such an approach was chosen, for example, by Pinter’@badbtain some of the
dataset for their pathway alignment tool (they also exdlusteme of the networks
that have cycles).It is clear that such a process is not always applicable gor e
ample, when little information is known about a network lvefeand or we have no
idea what the result should roughly look like), tedious, entr prone.

Intriguingly, there is another thing that the existing netlwvhomology search algorithms
have in common besides basically taking the same approdady. do not algorithmically
expose the fact that vertices in biological networks areliadiy rather, the vertex labels are
used only for scoring the similarity of the pattern graph tgiveen subgraph in the host.
In the context of metabolic pathway alignment, this workgmees an approach thdoes
expose vertex labels in order to obtain a network alignmkgarahm that is simple, fast,
and imposes no restrictions concerning the topology ofripatinetworks.
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Organization of this Work. After introducing some notation, Section 2 presents our new
alignment algorithm for metabolic pathways in three stéfist, Subsection 2.1 formalizes
our network alignment problem and presents a simple—yetaotmal—algorithm for it
calledMATCH. Second, Subsection 2.2 introduces the local diversitggnty of metabolic
networks which, third, is exploited in Subsection 2.3 bglstly modifying themATcH al-
gorithm so as to obtain our new metabolic pathway alignmkgardhm FIT-MATCH. The
FIT-MATCH algorithm has been implemented in C++; the source code édyfivailable
athttp://theinfl.informatik.uni-jena.de/graphalignnments/. Sec-
tion 3 reports experiments with our implementation on abstof metabolic pathways
from the BoCvc databasé These indicate that our algorithm is much faster than the
algorithm of Pinter et al. and yet—because the topology of the input networks is not
restricted—is simpler to use, yields new insights, and ha&larwange of applicability.

2. A New Fast and Simple Pathway Alignment Algorithm

Before formalizing the problem of metabolic pathway aliggmhand discussing our new
algorithmFIT-MATCH to solve this problem, it is useful to establish some notatio

Notation. We model metabolic pathways as connected directed grajglos. \Eertex repre-
sents an enzyme and is labeled with BEreyme Commission number (EC numizdithat
enzyme? Two verticesu andv are connected by a directed edgev) if a product of the
pathway reaction catalyzed hyis a substrate of the reaction catalyzedvbylhe pattern
graph for which we seek a homolog is always dendgied= (Vp, Ep), thehostgraph in
which we seek an occurrence of the pattern graph is der@ted= (Vi, Ex). A vertex
with exactly one outgoing and one incoming edge (not cograglf loops) is called path
vertex all other vertices are calldatanch vertice$ A path in a graph that consists just of
path vertices and where every vertex occurs at most oncdeésl cgmple

An isomorphismbetween two graph& = (V, E) andG’ = (V', E’) is a one-to-one
mapping® : V' — V' such tha{u, v) € E < (®(u), ®(v)) € E’ (note that this definition
ignores the labels of the vertices). If there exists an ispmem between two graphs, we
call themisomorphic Two graphs are calldgdomeomorphid we can subdivide their edges
(that is, edges can be replaced by simple paths of arbiteagth in the same direction) in
such a way that the resulting graphs are isomorphic. Thegpondindhomeomorphism
is a functiony that bijectively maps the branch vertices of the two grapite each other.

2.1. Formalization and a Simple Backtracking Algorithm

In order to formalize the problem of metabolic pathway afigmt, we must define two
things, namely what we mean by “alignment” and what we view dsigh-scoring” align-

bThe EC number is a four-level hierarchical scheme that classifinzymes on a functional basis. Thus, each
enzyme is classified by four numbers (as in “3.4.23.48"), ttet fiumber representing the top level classification
and the three following numbers the subsequent refinementothe

¢Although somewhat counterintuitive, to simplify the overptesentation we chose to use the term “branch
vertex” also for vertices with degree one.
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ment. Concerning a formalization of alignments, we folloimter et al” and rely on a
notion that is based on subgraph homeomorphism:

Definition 2.1. An embeddingof a pattern graphGp into a host graphGy is a tu-
ple (G'y,¢) whereG’; is a subgraph of7y that is homeomorphic t6/p andy is a
homeomorphism betwees,; andG p.

We can use the notion of an embedding to phrase metaboligvpgthlignment as a
combinatorial problem called MxIMUM -SCOREEMBEDDING.

MAXIMUM -SCORE EMBEDDING
Input: Two directed labeled graplisp = (Vp, Ep) andGy = (Vy, Eg).
Task: Find the maximum-score embedding®§ into Gy .

It remains to define the scoring scheme that we plug into tiaislpm definition. Again,
we follow Pinter et af. and make use of a scoring scheme due to Tohsato'étthht is
based on mutual vertex—vertex similarities (observe thablbgical similarity is already
ensured by relying on homeomorphisms). The similarity af emzymes is calculated from
their functional EC numbers—the more of this number two ereyihave in common,
the more similar they are considered to%heThe scoring scheme also incorporates an
information-theoretic consideration, namely that theilsirity of two enzymes is more
significant the less their common EC number prefix occurs gnadirenzymes.

Definition 2.2. Let the vertices: andv represent two enzymes ande,, respectively. If
the lowest common enzyme classafande; as determined by their EC numbers con-
tainsh enzymes, then theimilarity of v andv is defined asim(u, v) := — log, h.

Using the scoring for pairwise similarity, we can define aikinty score for two simple
paths that is based on the notion of a sequence alignment.

Definition 2.3. Given two simple pathg; = u;...ug, p2 = v1...v, and a negative
gap penaltyg, their similaritysim(p;, p2, g) is defined as the maximum possible score of a
sequence alignment betwegnandp, usingg as the gap penalty and the scoring scheme
of Definition 2.2 to evaluate pairwise similarities.

For the sake of simplicity in our presentation, let us asstrav@ now on that there is
at most one simple path between any two branch vertices anchdlither the pattern nor
the host is a simple cycle. Our implementation in Section 8sdwot make any of these
restrictions, but handling them explicitly in the remainaé this section obfuscates the
main ideas. To render the scoring of an embedding precisasathe following definition:

Definition 2.4. Given an embeddingG";, ) of a pattern grapldp in a host graplG g,
let B(Gp) denote the branch vertices 6f». For two branch vertices andv let p(u, v)

dFor some applications, a purely functional classificationhile suspect and one might want to additionally
include genetic similarity information for the enzymes; we @6 e¢onsider this here, however.
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be the simple path betweento v; if no such path exists, thes(u, v) is the empty graph.
Given a gap penalty < 0, thescoreof (G';, ) is defined as

SCOrGly, ) = Y sim(v, p(v)) + Y sim(p(u, v), p(p(u), ¢(v)), g)-

veEB(Gp) u,vEB(Gp)

Naively, MAXIMUM -SCORE EMBEDDING can be solved by a simple backtracking al-
gorithm that exhaustively explores all possible embedslioiga given pattern grap@'p
into a host grapltZ . Formally, this algorithm is best described by using theéamst of a
partial embeddingandextensionshereof.

Definition 2.5. A partial embeddingof a pattern grapltzp into a host graplG g is an
embedding of a connected subgra@h of Gp into Gg. It is denoted by(G'p, Gy, ¢)
(wherep is the homeomorphism betweér, andG’;). Letp be a simple path itz p

that connects two branch verticesandv such that at least one of these branch vertices
is in G'» but no path vertex of. An extensiorof a partial embeddingG’z, G, ») by p

is a partial embedding of the subgraph inducedin by G5, u, v, andp that is identical

to (G'», G, ¢) when restricted to the vertices 6f,.

To illustrate the concept of a partial embedding and itsresitss, consider the follow-
ing example graph&p andG g and a partial embedding éfp into Gy

LT A L

Gp

Partial embedding of Gp into Gy

The shown partial embedding has ten possible extensiorsehyath fromu to v:

We can now describe ouriv@ backtracking algorithm for solving MKIMUM -SCORE
EMBEDDING. This algorithm, which we caMATCH, starts out by aligning a branch vertex
of the pattern to a branch vertex in the host graph and thehaisecursive subprocedure
EXTEND that takes as input a partial embedding and tries all passidknsions for it, thus
enumerating all embeddings of the pattern graph into thedraph.

Algorithm: MATCH(Gp,G g ,9)

Input: Two labeled graph&'p = (Vo, Eg), Gy = (Vg, Eg) and a gap penalty.
QOutput: A maximum-score embedding 6fp into G g, if one exists.

Global variables: GraphsG p andG g, scoremaxscoreand embeddingest

01 best— null ;maxscore— —oo

02 wu <« arbitrary vertex fromVa

03 for each v e Vydo

04 (G'p, G'y, @) — partial embedding by mappingto v
05 call EXTEND(G'p, Gy, )

06 return best
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Figure 1. Anaerobic respiration pathway B$cherichia colithat illustrates the local diversity property. The
label “-.-.-.-" denotes an unclassified enzyme.
EXTEND(G'p, Gy, )
El if G% #Gpthen
E2 p — simple path inG p not contained irG’, such that at
least one of the connected branch vertices i§'in

E3 for each extensionNG%,GY;,¢") of (G, Gy, ) bypdo

E4 cal | EXTEND(G',GY%,¢")

E5 else if scordG', Gy, ) > maxscord hen

E6 best— (G'5, Gy, ), maxscore— scorg G, Gy, @)

E7 return

Analysis of MATCH . The running time ofMATCH is primarily determined by the number
of recursive calls that are made in linesande4 of the algorithm. While this number is
upper-bounded by a constant—both the maximum path lengttirenchaximum degree
of a metabolic pathway are naturally bounded by some confstahiological reasons—it
turns out to be rather largeln our experiments, we have found that if the pattern graph
consists ofk simple paths, then the size of the search tree that is explyy@#ATCH is,

on average, aroungf. Considering that our dataset from theoBYc database contained

a considerable amount of pathways with more than ten patis)dads to a very long
running time formATCH.

2.2. The Concept of Local Diversity

As a typical example for a metabolic pathway, consider treeewbic respiration pathway
of Escherichia colithat is shown in Figure 1. The following observation can beenaere
which seems to hold for most metabolic pathways and is hemmgat to our approach:

Observation 2.1. Two paths that have the same starting vertex often carryenytdiffer-
ent biological functions.

This observation describes what we refer to addbal diversity propertyof metabolic
networks. There are plausible reasons why a metabolic metiwe@xpected to generally
have this property: First, most metabolic products offdy mery few possibilities where
a certain reaction can chemically take place. Second,ig#meactions for a certain sub-
strate within a pathway are usually carried out by only oreyere for reasons of efficiency.

¢Note thatall paths and not only simple paths in the host graph must be coadifier an extension because a
branch vertex in the host may become a path vertex in its subgrap
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Local diversity is an important property for the algorittond@lignment of metabolic
pathways: Intuitively, 8BGRAPH ISOMORPHISMIis hard because even very different
graphs might appear similar based on local information. [Bleal diversity property,
however, means that metabolic pathways usually provide rieh anddiverselocal in-
formation that can be exploited to overcome this phenomenon

2.3. Exploiting Local Diversity

When we compute all extensions of a partial embedding by apatbme of these might
not make sense from a biological perspective because thagtgal function of the pattern
pathp does noffit the biological function of the host path that it is aligned Tie key to
making MATCH more efficient is to observe that the local diversity propémplies that
usuallya lot of extensions of a partial embedding do not make sense fromlagical
perspective. Thus, to exploit local diversity and makercH more efficient, we need
to devise a formal definition of “fitting biological functiérior two given paths and then
modify MATCH such that it only explorefitting embeddings.

Definition 2.6. Given a real numbed < f < 1, a gap scorg, a simplez-vertex pathp;
and a simpley-vertex pathps, we say thap; andps fit if a maximum-score alignment
between them aligns at mostin{[(1 — f) - =], [(1 — f) - y]|} vertices to a gap. An
extension of a partial embeddig’s, G/, ¢) fitsif every simple path between two branch
verticesu, v € V/, fits the corresponding simple path betwesg), p(v) € V.

As an illustration, if we have a fitting parameterfof= 0.50, then a four-vertex path fits
no path that consists of seven or more vertices; a higherdfigtarameter of = 0.75 would
cause it to fit no path that consists of six or more vertfcd@s. exploit local diversity, we
now modify MATCH so that it only explores fitting embeddings. For this purpdisesos
and E4 need to be modified so that thexEEND-subprocedure is only called for fitting
extensions. We name the resulting algorithm of this modiboerI T-MATCH.

Analysis of FIT-MATCH Experiments show that, indeed, exploring only fitting estens

is a very effective pruning strategy due to the local diwgrproperty of metabolic net-
works. More precisely, they show that whereasTcH explored a search tree of size
around6” to align ak-path pattern, even a conservative fitting parameter ef 0.5 re-
duces this to aroun2 5%, “conservative” meaning that we found no meaningful aligmtn
in our experiments that is missed by this setting.

3. Experiments on Metabolic Networks

We implementedT-MATCH in C++ to test its practical performance; the source is avalil
able atht t p: // t hei nf 1. i nformati k. uni - j ena. de/ gr aphal i gnnment s/ .

fFor some applications, Definition 2.6 might be considered tdotsn its handling of very short paths: In
particular, a one-vertex path never fits a length-3 pathandigss of the fitting parameter. While we have not
found this property to be an issue in practice, one can eeisdymvent it by introducing a minimum number of
gaps that is always allowed regardless of the path lengtfiting parameter.
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Table 1. Runtimes of ounT-MATCH implementation for all-against all alignments between thedaisets
described in the text. For each combination of host and pattee show the total runtime including /O
overhead and excluding I/O overhead. All values are givesegonds.

Run time ofFIT-MATCH in seconds (including / excluding I/O overhead)
Pattern

B. subtilis E. coli H. sapiens S. cerevisiae T. thermophilus
B. subtilis 82/ 0.41 120 / 2.25 102 / 2.25 95/ 0.29 147 | 2.28
E. coli 120 / 0.02 121 / 0.22 112 / 0.19 151 / 0.02 227 1 0.20
H. sapiens 107 / 0.02 120 / 0.19 89/ 0.20 130 / 0.02 190 / 0.29
S. cerevisiae 93 / 0.06 141 / 0.09 121 / 0.09 114 / 0.08 172 / 0.10
T. thermophilus 140 / 0.02 135/ 0.22 107 / 0.23 167 / 0.03 264 / 0.24

Method and Results. Our testing machine is an AMD Athlon 64 3400+ with 2.4 GHz,
512 KB cache, and 1 GB main memory running under Debian GNw#.i3.1. Sources
were compiled with the GNU g++ 4.2 compiler using the optie@3”.

To evaluate the performance Bifr-MATCH, metabolic pathways were extracted from
the BioCyc databadefor five different organisms, yielding 145 pathwaysRf subtilis
220 pathways oE. coli, 190 pathways oH. sapiens 176 pathways of. cerevisiagand
267 pathways of. thermophiluslIf the full EC number of an enzyme was not specified, the
unknown part of the code was treated as “don’t care”, meathiagthe enzyme is scored
as if it were identical to every enzyme for which the knowntpéithe codes match. All 25
possible all-against-all inter- and intra-species alignta between the five datasets where
performed, resulting in a total of 996 004 homology searches

Following the suggestion of Pinter et ato set the gap score to about one third of
the worst vertex—vertex similarity score, we get —4.5. The fitting parameter was set
to .50 as a conservative choice, meaning that we never encouraeiiateresting alignment
that is only found with a lower fitting parameter in some préfiary experiments. The
obtained runtimes are shown in Table 1; some sample aligtsnag@ shown in Figure 2.

Discussion. The experiments show that o&rT-MATCH implementation is capable of
quickly aligning metabolic pathways; the complete dataaatbe aligned in under an hour
on our testing machine (including the 1/0 overhead, whiched out to consume far more
time than the algorithm itself). This is much faster compate the pathway alignment
tool of Pinter et af.: Their implementation (called MetaPathwayHunter) regsiisome
hours alone to align the simplified trees of thecoli andS. cerevisiagathways whereas
FIT-MATCH can align the corresponding unsimplified data in roughlyesawinutes.

The alignments shown in Figure 2 exemplify some interestipglication scenarios
whereFIT-MATCH can efficiently be used:

e Pathway ComparisonFigure 2a shows the highlighting of alternative metabolic
pathways by comparing the classical TCA cycle with a more mer variant
(note how the complex variant uses more pathways and thensteaehydro-
genases 1.3.99.1 instead of 1.3.5.1).

e Enzyme Classificationln Figure 2b, our results align all unclassified enzymes
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Figure 2. Four examples for the alignments that were found byithMATCH algorithm. In all graphs, the
vertices are not split if they have the same label in the hodtthe pattern, otherwise, the pattern enzyme is
shown at the top and the host enzyme at the bottom. A dashed lfoindieates that a vertex is only present
in the host graph. The four alignments (pattern/host) trmshown are) superpathway of of glycolysis, pyru-
vate dehydrogenase, TCA, and glyoxylate bypass versus Erifidgerhof pathway irB. subtilisb) anaerobic
respiration pathway oE. coli versus the same pathway B subtilisc) peptidoglycan and lipid A precursor
biosynthesis irB. subtilisversus the same pathway Th thermophilusd) superpathway of leucine, valine, and
isoleucine biosynthesis I. coli versus the same pathwayTnthermophilus

[2.6‘1.42

(denoted “-.-.-.-") with already known enzymes, possihiytimg at their function.

¢ |dentifying Enzyme Complex&be pathways shown in Figure 2c are almost iden-
tical, except thaB. subtilisdoes not possess the enzyme 2.3.1.157 (an acyltrans-
ferase) but is rather aligned to a gap. The preceding enzgno@dlassified in
both organisms. We can derive from the alignment that théasaified enzyme in
B. subtilisfulfills a task that requires two enzymes in T. thermophilus.

e Data Integration. Figure 2d shows an example where we can RISeMATCH to
detect the consistency of a database: The two enzyme dtasisifi numbers that
are seemingly totally different are the result of a changeimenclature.

The results we found moreover demonstrate that the toprbggstrictions imposed
by the algorithm of Pinter et dl.cause relevant alignments to be missed in several cases.
For example, if the methylglyoxal pathway and the chorigmatperpathway of. Coli
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are aligned, MetaPathwayHunter does not produce any sestktreasiT-MATCH finds
an alignment. Or, as a second example, MetaPathwayHungsemihe possible align-
ment between the cobalamin biosynthesis and the Kiyiid biosynthesis superpathway
of E. coli (which FIT-MATCH found).

4. Conclusion

We have presented the concept of local diversity for metalmgtworks and shown how
this property can be exploited to obtain a simple alignmdgbrihm FIT-MATCH for
metabolic pathways that is both faster and more generaliicgble than previous ap-
proaches. We are currently turning the-MATCH implementation into a graphical tool
for the discovery and analysis of metabolic pathway aligmisie

All biological networks carry labels at their vertices. Vi#nk that the concept of local
diversity is likely to occur in other types of biological meirks than metabolic networks
and could thus be exposed for alignment algorithms thece, Gven the nice properties
of FIT-MATCH, this certainly seems worthwhile to investigate.
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