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We describe an abstract data model of protein structures by representing the geometry of proteins 
using spatial data types and present a framework for fast structural similarity search based on the 
matching of topology strings using bipartite graph matching. The system has been implemented on 
top of the Oracle 9i spatial database management system. The performance evaluation was 
conducted on 36 proteins from the Chew and Kedem data set and also on a subset of the PDB40. Our 
method performs well in terms of the quality of matching whilst having the advantage of fast 
execution and being able to compute similarity search in polynomial time. Thus, this work shows 
that the pre-computed string representation of topological properties between secondary structure 
elements using spatial relationships of spatial database management system is practical for fast 
structural similarity search.

1 Introduction  

The complexity of structure similarity search for 3D structures is NP hard [1]. Due to the 
complexity of similarity search and the exponential growth of the size of the 3D structure 
databases, the issue of speed becomes ever more important, and tools for fast structure 
similarity search have been required. 

GRATH [2] and SSM [3] are examples of recent work dealing with the speed of 
structure similarity search which make full database searches possible. Some similarity 
search methods use fast pre-filtering before performing accurate alignment. Even in this 
case, due to the lack of pre-computed and stored data, each structure in the database has 
to be scanned at least once. Therefore, such an exhaustive search is expensive to perform.  

The degree of abstraction influences the accuracy and performance of structure 
comparison programs. For example, DALI [4] and SSAP [5] which are based on atomic 
coordinate level data can be accurate but execute more slowly than less accurate 
approaches that use abstractions such as vectors and SSEs (e.g. VAST [6], LOCK [7], 
TOPS [8]).  

We determined that the computation cost for geometrical features is known to be 
more expensive than that of I/O access to them whilst the opposite is true for general data. 
The computational cost of a topological match is less expensive than that of atomic-
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coordinate based geometry matching, and the comparison of topological properties can 
identify global similarities. Our method is based on the spatial theory of GIS (Geographic 
Information Systems): topological properties of spatial objects are invariant even if 
geometric features such as length and angle are easily changed [9]. Topological 
properties are preserved in conserved structures and can help to identify the fold family 
in similarity searching. Thus, we consider that topological properties of proteins are 
suitable for fast structure comparison. 

In this paper we describe in detail a method to derive abstract models of protein 
structures at the tertiary (fold) level, where secondary structure elements (SSEs) are 
represented using spatial data types. Our models comprise sequences of topology strings, 
each string describing the topological relationship between a pair of such SSEs using the 
9IM (Intersection Matrix) [10]. As an application of our abstract model to protein 
structure comparison, we describe a framework for fast similarity search based on 
finding maximum matching pairs of topology strings using a bipartite graph matching 
algorithm implemented by join operations. We report experimental results on two 
significant data sets, comparing our approach with the TOPS system.   

2 An Abstract Model of Protein Structures 

2.1. Geometry Representation of Proteins 

The geometry of SSEs is modelled as a polyline of 4–10 connected points (the normal 
range of the numbers of amino acids in SSEs). These polylines are implemented using 
the geometric types of SDO_GEOMETRY in ORACLE 9i Spatial by LINE STRING 
where points are connected by straight line segments. Figure 1 (a) shows an example of 
Helix 4 that starts from amino acid residue 348 and ends at residue 335; Figure 1 (b) is 
for a strand 2 of protein domain 2bopA0.  The tertiary structure of a protein can be 
defined as a finite set of SSEs and the spatial topological relationships between them, and 
can thus be described by a list of polylines. 
  

335(Cα) 
348(Cα) 

(a) Helix 4 (348-335)                                         
. 

Figure 1.  Polylines for an Helix and a 

2.2. Inference of Topological Relationships  

The biological meaning of protein topology refers to
the spatial arrangements of SSEs. This can be
relationships of spatial geometry and spatial types.
topological relationships between SSEs in 3D spa
327(Cα)
333(Cα) 
     (b) Strand 2 (327-333)  

Strand of 2bopA0 

 

 the spatial relations of 3D folds, i.e. 
 described using the topological 

 Thus, the problem of inferring the 
ce can be transformed into that of 
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inferring the spatial relationships between binary polylines in a spatial database. We 
employ spatial topological relationships [10] that have been previously used in GIS 
applications to infer relationships in 3D space. Spatial relationships between pairs of 
SSEs are represented by eight topological relations, defined by the 9IM (Intersection 
Matrix) [10].  

Two lines can induce eight different types of topological relationships: disjoint, 
contains, inside, equal, meet, cover, coveredBy, and overlaps. In our approach we 
consider the three topological relations touch, equal, overlaps due to the fact that 
overlaps subsumes inside, contains, cover, coveredBy. These three topological 
relationships are enhanced by the addition of the types of SSEs, e.g. Helix and Strand. 
We thus generate the major nine topological relationships (e.g. Helix⊙overlapsHelix, Helix
⊙ overlapsStrand, Strand ⊙ overlapsStrand, and etc.) as shown in Table 1. The three 
topological relationships (overlaps, equal, touch) are computed by a method that we have 
previously described [11], which uses topological operators in the ORACLE 9i Spatial. 
This system provides the spatial operator SDO_RELATE that implements a 9IM model 
between points, lines and polygons. The spatial operator is accomplished by the join 
operation of two R-tree indexes in a spatial query.    

In the 9IM Model a binary topological relationship R(A, B) between two lines A and 
B is calculated by the comparison of A’s interior (A°), boundary (∂A), and exterior (A−) 
with B’s interior (B°), boundary (∂B), and exterior (B−). These six objects can be 
combined to form nine fundamental descriptions of the three topological relationships 
between two lines and can be concisely represented by the 3×3 matrix in Figure 2(a), 
called the 9-Intersection Matrix (9IM). The three topological relationships provide a 
mutually exclusive coverage with corresponding 9-intersection matrices in Figure 2(b) 
where 0 and 1 correspond to the empty set and non-empty set respectively.      

 
                                                                           Table 1.  Enhanced Topological Relationships 

 

 

SSE types of Secondary Structure Topological
Relation

( )⊙  
Helix  ⊙

Helix 
Helix  Strand⊙  Strand  Strand⊙  

overlaps A F K 
equal B E H 
touch D I N          (a)  9IM               (b) three relationships  

           Figure 2.  Topological Relationships  

The topological relationship overlaps identifies a pair of SSE in a protein, where the 
interiors and boundaries of two SSEs intersect. The relationship touch recognizes that the 
boundaries intersect but interiors do not intersect between two SSEs whereas equal finds 
two SSEs having the same boundary and interior. 

We formalize the binary topological relations corresponding to SSE types using 
these three topological relationships.  Given a protein P={ S ,…, S ,  …S }, where i ∈ 1, 
2,…, p, 0 < i < j < p, p is the number of SSEs in a protein P,  S   and S  are SSEs, the type  

1 i p

i j
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                          (a) 2hbg00                              (b)1cdb00                                 (3)1aa900 
  
(a) 2hbg00:  
TOPS:  NhHhhHhHC 1:4R4:6R5:7R 
TStringSet:{(Anf,2,12,10.04)(Anf,2,14,8.1)(Asf,4,6,11.90)(Anf,4,8,9.117)(Anf,4,12,8.6)(Anf,8,12,14.3)(Anf,8,

14,15.2)(Anf,10,14,6.299)(Asf12.14.10.7)} 
 (b)1cdb00: 
 TOPS: NEEeeEC 1:5P2:3A2:4A4:5A 
 TStringSet: (Ksf,4,6,5.204)(Knf,4,8,3.601)(Ksf,8,10,5.202)} 
 (c)1aa900: 
TOPS: NEheEhEhEhEhC 1:4P1:6P3:4A4:6R6:8Z8:10Z 
TStringSet:{(Knf,2,8,3.92)(Knf,2,12,4.6)(Fsf,4,6,8.49)(Fnf,4,8,)(Anf,4,22,7.9)(Ksf,6,8,3.7)(Knf,12,16,3.92)(An

f,14,18.5)(Knf,16,20,5.58)} 
Figure 3.  3D Structures and Textural Representation 

of an SSE is T(Si) ∈ {α, β} standing for helix (α) and strand (β), and a set of topological 
relationships R={overlaps, equal, touch}, then:  
[Definition1] (a binary topological relation) Let R2 = {(Si ⊙  Sj)} be a binary 
topological relation, where Si, Sj ∈ P, i ≠ j, ⊙ ∈ R and T(Si), T( Sj

 ) ∈ {α, β}. R2
ij 

denotes a binary topological relationship (Si ⊙ Sj) between SSEs Si and Sj.. The database 
terminology R2 without subscripts is a binary topological relation over protein P, which is 
a set of binary topological relationships.  
Most binary relationships are symmetric, but some are asymmetric. An asymmetric 
binary topological relationship, R2

ij = {Si ⊙ Sj} is forward if  i < j and backward  if  i > j. 

2.3. Notation of A Topology String and TStringSet 

We represent our topological relationships by strings, called topology strings in order to 
reduce the complexity of the comparison problem, which is to find similar topological 
relationships between protein structures. A topology string is represented by a string of 3 
characters, where:   
• The alphabet of the first character denotes the type of topology relationship 

described in Table 1 (e.g. A, B, D, F, E, I, K, H, N).   
• The second character encodes the order of the SSEs participating in a topology 

relationship. Sequential order, denoted by ‘s’, means that SSE are adjacent along the 
backbone, whilst ‘n’ refers to neighboring order, i.e. one SSE is far from another in 
sequence (e.g. Asf or Anf ).  

• The third character denotes the direction of a topological relationship i.e. forward 
(‘f’) and backward (‘b’). 

For instance, the string ‘Anf’ describes the Helix⊙overlapsHelix topological relationship 
between two SSEs which are far from each other in the order of sequence, there being 
other SSEs in between the starting and ending helices in the relationship.  
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A protein structure is described by a (non-empty) set of topology strings, which we 
term a TStringSet. Each topology string together with its attributes are stored in a tuple. 
Our topology description can denote strand-strand and helix-helix relationships as well as 
helix-strand relationships that the current version of TOPS cannot represent.  

2.4. Examples 

Figure 3 illustrates examples of our representation of proteins and that of TOPS. SSE 
numbers and the distance between them are added to our topology strings. We observe 
that our string representation provides richer information about helix-helix interactions in 
protein 2hbg00 compared with TOPS. 

3 Similarity Search  

3.1. Topology String Match 

A topology string match, i.e. matching a pair of SSE pairs, is the basic unit operation in 
this structure comparison. It evaluates the similarity between two topology strings.  
[Definition 2] (a topology string match) The approximate string match function 
Match(ai, bj) returns string match score Sij

 between given topology strings ai and bj..

Given a pair of topology strings (ai, bj), where {S0, Sp} ∈ ai, {Sq, Sr} ∈ bj, and  the 
topological relationships Rop = (So ⊙ Sp)  for the topology string ai and  Rqr = (Sq ⊙  Sr) 
for bj

Match(a  ,  b )  iff: i j
(i) ai = bj  if  T(So) = T(Sq), T(Sp) = T(Sr) and Rop = Rqr 
(ii) 0 ≤ |D(ai) − D(bj )| ≤ σ   
(iii) 0 ≤ |L(ai) − L(bj) | ≤ ε 
(iv)  Dir(ai) = Dir(bj)                                                                                                                                                ( 1 ) 

where,    
σ:  the tolerance for distance difference between the matched strings ai, bj (0 <σ < 4)         
D(ai): distance between SSE S0  and SSE  Sp in a topology string ai  
D(bj): distance between SSE Sq  and SSE  Sr in a topology string bj 

ε: difference between the SSE length ratios for a pair of topology string ai  and  bj   (0 < ε 
< 0.5)         

L(ai): the length ratio of SSEs joined in a topology string ai  
L(bj): the length ratio of SSEs joined in a topology string bj  
        L(ai) = MinLen(S0, Sp)/MaxLen(S0, Sp) and L(bj) = MinLen(Sq, Sr)/MaxLen(Sq, Sr) 
MinLen(S0, Sp): The smaller length of SSEs S0 and Sp in a topology string ai
MaxLen(S0, Sp): The greater length of SSEs S0 and Sp in a topology string ai 
MinLen(Sq, Sr): The smaller length of SSEs Sq and Sr in a topology string bj
MaxLen(Sq, Sr): The greater length of SSEs Sq and Sr in a topology string bj 
Dir(ai): a relative direction {P, A} of SSE S0 and Sp in a topology string ai
Dir(bj): a relative direction {P, A} of SSE Sq and Sr in a topology string bj 
The distance decides the degree of overlap between SSEs in a pair of topology strings. A 
low distance difference indicates a high degree of similarity between two pairs of SSEs. 
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In our experiments we used values of 2 for σ and 0.3 for ε, which are the default for these 
parameters when measuring the similarity between two proteins.  

3.2. Pairwise Comparison  

The similarity of a pair of protein structures in our representation is measured by the 
similarity between their corresponding TStringSets. A pairwise operation is employed to 
find the maximum subsets of matched pairs of topology strings between two sets of 
topology strings.  
[Definition 3] (pairwise comparison: matching of two TStringSets) Given two sets of 
topology strings (TStringSets) for a query protein Q, Q= {a1, … , an} and a target protein 
T in database D, T ={b1, … , bm}, pairwise comparison S(Q, T) is an operation to find the 
maximum number of weighted matching pairs of topology strings S(Q, T) = {(a1

1, b1
1), 

(a2
2, b2

2
 ), …, (ai

k, bj
k)}, 1 ≤ k <  n, m and returns the associated similarity score S. 

The pairwise comparison problem is transformed into a maximum matching problem 
in a bipartite graph. Given the topology string sets Q and T, a directed weighted bipartite 
graph G = (V, E) can be constructed as follows: V = VQ ∪ VT, E = {eij}. Each edge eij (i.e. 
i = 1,2,…, n; j = 1,2, …, m) corresponds to a weighted link between ai and bj, whose 
weight w(eij) is equivalent to the similarity Sij between topology string ai , bj. A graph is 
bipartite if it has two kinds of vertices and edges are only permitted between vertices of 
different kinds. Thus the graph created is a weighted bipartite graph.  

Our similarity score function for pairwise comparison is based on a compression 
measure over topology strings. It is calculated by the sum of topology string matching 
scores as follows: 
                                 

[Definition 4] (Similarity score) The similarity score S for two sets of the topology 
strings for a query protein Q={a1, a2 , …, ai,…, an} and a target protein T={b1, 
b2, … ,bj, …, bm}, is computed by Eq. (2).  
                 

                                           (2) ) |M|(log)
|)||,(|

( klS
S = ∑ ∑ QT

1 1
e

n

k

m

l TQMax
⋅

= = 
iff  Match( k, l) and |MQT|  ≥ 2       
where, 

 k: a topology string in the query protein Q, i.e. k ∈ {a1, a2 , …, ai, … , an}  
 l: a topology string in the target protein T, i.e. l ∈ {b1, b2, … , bj, …, bm} 
|Q|: total number of topology strings in a query protein Q  
|T|: total number of topology strings in a target protein T in a database  
|MQT|: number of the matched topology strings between proteins Q and T 
Skl : The topology string match score Skl for topology strings k ∈ Q and l ∈ T 

 
High structural similarity scores do not always imply high significance of an alignment. 
Thus, we use the log ratio of the number of the matched strings in order to assign less 
weight for low numbers of matched topology strings. The best known strongly 
polynomial time bound algorithm for weighted bipartite matching is the classical 
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Hungarian method due to Kuhn [12], which runs in time O(|V|(|E| + |V| )log|V|). 
Weighted bipartite matching algorithms can be implemented efficiently, and can be 
applied to graphs of reasonably large size. The pairwise comparison can run in time 
O(n(m + nlogn)), where a bipartite matching graph G = (VQ ∪ VT, E), n = |VQ ∪ VT|, m = 
|E|, n is number of vertex in query protein Q and a protein T in a database, m is the 
number of edges and the maximum edge capacity is 1. Our pairwise comparison 
algorithm can be solved in polynomial time. 

4 Experiments  

4.1. Datasets 

In order to permit a large scale analysis, a protein 3D structure database was constructed 
from a subset of domains in the SCOP PDB40 [13] release 1.61 representative dataset.  
This release of the PDB40 contains proteins no two of which share >40 % sequence 
similarity, a total of 4,420 domains in the all-α, all-β, α/β, and α+β SCOP classes.  We 
selected the subset of entries for which we had sufficient data to construct our models, a 
total of 2,654 domains. 
 
           Table 2.  Data distribution in PDB 40                             Table 3. Fold Superfamily in Chew and Kedem 

 
 

SCOP 
Class 

Fold 
Family DOM HDP % of

 HDP NHDP % of 
NHDP

All α 171 415 1,742  2.12 82,238 97.88
All β 124 457 5,074 5.35 94,810 94.65
α/β 172 904 10,104 2.56 395,008 97.44
α+β 284 878 2,609 0.69 376,983 99.31
Total 751 2,654 19,529 2.02 949,039 97.98

Supferfamily Fold Class Num. of DOM  
1.1.1 Globin Like 16 

1.107.1 All a 1 
1.34.1 All a 1 
2.1.1 All b 7 
3.1.11 TIM barrels 3 
3.1.15 TIM barrels 1 
3.25.1 a/b 5 
3.26.2 a/b 1 

DOM: Number of unique protein domain entries  
HDP: Number of homologous domain pairs  
NHDP: Number of non-homologous domain pairs 
 

Our data set selected from SCOP PDB40 contains 75l SCOP fold superfamilies (Table 2); 
the distribution of SCOP fold superfamilies in our data set is diverse.  We generated a set 
of all against all domain pairs for our 2,654 unique domain entries and selected a subset 
for evaluation of ~1M pairs comprising those pairs for which both domains belong to the 
same SCOP class.  We also tested our method against the data set of Chew and Kedem 
[14] for a smaller scale evaluation of its accuracy.  Table 3 shows 35 domain entries in 
eight different SCOP superfamilies of the three SCOP classes. Experimental data sets are 
available at http://www.brc.dcs.gla.ac.uk/~shpark/pcom/. 

4.2. Evaluation  

We compared our results with the SCOP classification hierarchy. We have constructed 
ROC curves and calculated the corresponding AUC (Area Under ROC Curves) values 
over different SCOP classes (Figure 4) for both data sets. To construct the ROC curve, 
we define that two domains are defined as homologous if at least their first three SCOP 
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numbers are identical; the domains are non-homologous if only their first SCOP numbers 
are identical.  We did not include protein domain pairs for which only the first two levels 
of their SCOP numbers match since the SCOP classification does not differentiate 
between homologous and non-homologous pairs at this fold level. 
Chew & Kedem data sets: We evaluated the accuracy of our method by performing a 
one against all comparison for each of the 35 domains; the average AUC value for this is 
87.93%. Figure 4(a-c) gives ROC curves for three illustrative one against all domain 
comparisons. Table 4 shows the results for our method regarding the coverage of the 
correct fold superfamily at the top of our resulting lists sorted by comparison score for 
those superfamilies that had more than one domain member.  We repeated the same 
experiment for TOPS (Table 5).  Overall, our system consistently finds the correct fold 
superfamily within the top 3 positions in the list with 85.7 % of certainty.  Regarding the 
test for major SCOP fold classes, our algorithm performs better than TOPS for all-α 
proteins and the α/β Rossman folds (family 3.25.1). TOPS performs better for the all-β 
class and for the 3.1.11 α/β fold family (TIM barrels).          

                                                                                      
        Table 4. Coverage of top K in our result lists                  Table 5. Coverage of top K in TOPS 

a: Average AUC value in a corresponding  family  for one against all search  

Top Kb=3 Top Kb =4 Top Kb =5 Top Kb=3 Top Kb =4 Top Kb =5 fold 
family 

AUC 
valuea

( % ) TPc FPd TPc FPd TPc FPd

 

Fold
family

AUC 
valuea

( % ) TPc FPd TPc FPd TPc FPd

   1.1.1 88.1 2.9 0.1 3.82 0.18 4.8 0.2
 

1.1.1 82.15 2.9 0.1 3.8 0.2 4.8 0.2 
 2.1.1 84.6 2.4 0.57 3 1 3.6 1.4

 

2.1.1 97.85 3 0 4 0 5 0 
3.1.11 85.4 1.6 1.3 2 1 2 1

 

3.1.11 94.58 2 1 2.3 0.7 2.6 0.4 
 3.25.1 84.7 2.8 0.2 3.8 0.2 3.8 0.2

 

3.25.1 81.9 2.6 0.4 3.2 0.8 3.2 0.8 

b: Number of top K domain in result lists of similarity score.  
c: Number of average times ranks true positives that is  homologous pairs  ahead of  non-homolog pairs  
d: Number of average times ranks false positives      

 
Our explanation is that since our topology strings encode geometrical features such as the 
distance between SSEs, and helix-helix and helix-strand interactions, our comparison 
performed well for the all-α class in the experiments. However, TOPS strings mainly 
encode β-strand connectivity [8].  Therefore TOPS works well for superfamilies in the 
all-β class as well as for those in the α/β class whose structures are classified according to 
β sheet topology (e.g. TIM barrels).   
 

 
 
 
 
 
 
 
 

       (a)  2hbg00( (1.1.1)             (b)  1cdb00 (2.1.1)               (c) 1aa900 (3.25.1)                (d) SCOP PDB40 
Figure 4 . ROC Curves 
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Subset of SCOP PDB40:  The AUC values for α, β, and mixed α β classes are 68.5%, 
62.6%, and 69.4% respectively, with an overall average of 66.83%.  The corresponding 
ROC curves are shown in Figure 4(d).  The reason that the accuracy is lower than for the 
Chew & Kedem data set is related to the distribution of the SCOP PDB40 data, which is 
extremely diverse and contains a very low number of homologous pairs.  

4.3. Performance Analysis  

Our similarity search algorithms ran on an IBM PC with 3GHz CPU and 2GBytes 
memory. We used the database mentioned above as our target database which was built 
on ORACLE 9i DBMS by using spatial types and topological operators running on a 
spatial index.   

The ∼1M pairwise comparisons took 10hr and 17 min and all against all for 35 
domain entries took 8.1 sec. The average execution time for pairwise comparisons ranged 
from 12.17 ms in the small scale analysis to 38.45 ms in the large scale analysis. 
Although our method has a very fast comparison time, it took 1 hour and 20 minutes to 
represent the geometry of SSEs using spatial types and build an index over 2,645 protein 
domain having 34, 114 SSEs (Table 6). According to our experiments, it takes on 
average 1.08 sec to build the topology strings for one protein.  Most of this time is in the 
discovery of binary topology strings. 

 
Table  6.  Execution time for computational task 

Task name Num.  of  Data Total exe.time AVG exe. Time 
SSE representation 2,654 dom. ent.  1hr 20 m 1.8 sec 

Generation of topology string 2,654 dom. ent. 1hr 05m  1.5 sec 
All against all search 35 dom ent. 8.1 sec 12.17ms 
pairwise comparison 968,568 dom. pairs 10hr17m 38.45ms 

 
As shown in Table 6, the computation time for the identification of topological properties 
based on geometrical features is expensive to run. However, since the database of 
topology strings is pre-computed, the time required for the discovery of topology strings 
does not affect the execution time for structural similarity search. The matching of two 
topology string sets is performed in polynomial time.   

5 Conclusions 

We have developed a new fast similarity search based on topology string matching. We 
used a constrained string match algorithm for the comparison of linear topology strings 
encoding the non-linear topological relationships. Our method could be used as a 
filtering step prior to slower but more accurate similarity search and fold discovery 
methods based on all-atom approaches in a pipeline for automated structure classification.  

Our results indicate that our algorithm performs reasonably well for structures with 
all α-helices and a mixture of α and β SSEs, but does not work so well for all-β proteins. 
The overall accuracy of our system is comparable to that of TOPS, which is a fast and 
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accurate structure comparison method based on abstraction over SSE topologies. The 
weakness of TOPS is that it does not perform well on α class members; our method is 
superior in such cases. 
 Compared with existing methods, our method uses spatial characteristics of protein 
structures that are represented by using an existing spatial DBMS. The application of 
spatial databases in bioinformatics has many advantages; one can analyze and represent 
multi-dimensional information with spatial types, multidimensional index, and spatial 
operations that are implemented using algorithms from computational geometry.  

We observe that the use of index structures will facilitate the retrieval of biological 
data, and extracted patterns from source databases.  In future research, we will work on 
the development of index based similarity search over topology strings using spatial 
indexes.  
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