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Microarray technologies, which can measure tens of thousands of gene expression values simultane-
ously in a single experiment, have become a common research method for biomedical researchers.
Computational tools to analyze microarray data for biological discovery are needed. In this paper, we
investigate the feasibility of using Formal Concept Analysis (FCA) as a tool for microarray data analy-
sis. The method of FCA builds a (concept) lattice from the experimental data together with additional
biological information. For microarray data, each vertex of the lattice corresponds to a subset of genes
that are grouped together according to their expression values and some biological information related
to gene function. The lattice structure of these gene sets might reflect biological relationships in the
dataset. Similarities and differences between experiments can then be investigated by comparing their
corresponding lattices according to various graph measures. We apply our method to microarray data
derived from influenza infected mouse lung tissue and healthy controls. Our preliminary results show
the promise of our method as a tool for microarray data analysis.

1. Introduction

Microarray technologies, which can measure tens of thousands of gene expression values
simultaneously in a single experiment, across different conditions and over time, have been
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widely used in biomedical research. They have found many applications, such as classifi-
cation of tumors, assigning functions to previously unannotated genes, grouping genes into
functional pathways etc (see [16] for a review). A large collection of database is available
in the public domain (e.g. see [8, 15]). A wealth of methods [13, 5] has been proposed
for analyzing these datasets to gain biological insights. A main method for analyzing these
microarray data is based on clustering, which groups set of genes, and/or groups of ex-
perimental conditions, that exhibit similar expression patterns. These include single clus-
tering algorithms, such as hierarchical clustering, k-means, self-organizing map (SOM)
algorithms (see [10] for a review and references therein); and biclustering algorithms (see
[12] and references therein). However, the challenge to derive useful knowledge from mi-
croarray data still remains. For example, see [3] for a recent biclustering algorithm that is
based on non-smooth non-negative matrix factorization. In this paper, we propose another
method that is based on Formal Concept Analysis (FCA) [18, 6] as an alternative to the
clustering approach.

Our Approach. The method of FCA builds a (concept) lattice from the experimental data
together with additional biological information. Each vertex of the lattice corresponds
to a subset of genes that are grouped together according to their expression values and
some biological information related to gene function. See Section 2 for the background
of FCA. The lattice structure of these gene sets might reflect biological relationships in
the dataset. Similarities and differences between experiments can then be investigated by
comparing their corresponding lattices according to various graph measures. In the high
level description, our method consists of the following three main steps:

(1) Build a binary relation (cross-table) for each experiment. The objects of the binary
relation are genes; and there are two types of attributes: gene expression attributes
and biological attributes. The gene expression attributes are obtained by a dis-
cretization procedure on gene expression values. The biological attributes can be
any biological properties related to gene function.

(2) Construct a Galois/concept lattice for each experiment’s binary relation using the
efficient Galois/concept lattice algorithm described in [4].

(3) Define a distance measure and compare the lattices.

Note that the biological attributes of genes are invariant/constant for all experiments and
they can be preprocessed. The ability to integrate these constant biological attributes is one
of the advantages of our method over clustering methods. This is because the constant in-
formation will be canceled out in clustering methods and thus do not add any contributions.

Related work of using FCA for microarray data mining. Using FCA for microarray
data comparison was proposed in D. Potter’s thesis [14]. Based on the framework proposed
there, we more rigorously develop each step. In particular, we more carefully discretize the
gene expression values to suit our purposes, namely, close gene expression values should
share the same attribute; and distance measure is also more rigorously defined and bet-
ter results are obtained. Also, our concept lattice construction algorithm is very efficient
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(within 1 second) while our data sets were too large for the program in[14] to handle. We
should also mention that using FCA or Concept lattice approach to mine microarray data
were also studied in [1, 2]. The goal there was to extract local patterns in the microarray
data and no biological attributes were employed.

Outline. The paper is organized as follows. In Section 2, we review some background and
notation on FCA. In Section 3, we describe our method in details. In Section 4, we describe
our data and present our preliminary results applying our method to the data. We conclude
with future work in Section 5.

2. Background on FCA

Formal Concept Analysis (FCA) [6] is a method that is based on lattice theory for the
analysis of binary relational data. It was introduced by Rudolf Wille in 1980s. Since its
introduction, FCA has found many applications in data mining, knowledge discovery and
machine learning etc [18].

The input of FCA consists of a triple (O,M, I), called context, where O =

{g1, g2, . . . , gn} is a set of n elements, called objects; M = {1, 2, . . . , m} is a set of
m elements, called attributes; and I ⊆ O × M is a binary relation. The context is often
represented by a cross-table as shown in Figure 1. A set X ⊆ O is called an object set, and
a set J ⊆ M is called an attribute set. Following the convention, we write an object set
{a, c, e} as ace, and an attribute set {1, 3, 4} as 134.

For i ∈ M, denote the adjacency list of i by nbr(i) = {g ∈ O : (g, i) ∈ I}. Similarly,
for g ∈ O, denote the adjacency list of g by nbr(g) = {i ∈ M : (g, i) ∈ I}.

Definition 2.1. The function attr : 2O −→ 2M maps a set of objects to their common
attributes: attr(X) = ∩g∈Xnbr(g), for X ⊆ O. The function obj : 2M −→ 2O maps a set
of attributes to their common objects: obj(J) = ∩j∈Jnbr(j), for J ⊆ M.

It is easy to check that for X ⊆ O, X ⊆ obj(attr(X)), and for J ⊆ M, J ⊆

attr(obj(J)).

Definition 2.2. An object set X ⊆ O is closed if X = obj(attr(X)). An attribute set
J ⊆ M is closed if J = attr(obj(J)).

The composition of obj and attr induces a Galois connection between 2O and 2M.
Readers are referred to [6] for properties of the Galois connection.

Definition 2.3. A pair C = (A, B), with A ⊆ O and B ⊆ M, is called a concept if
A = obj(B) and B = attr(A).

For a concept C = (A, B), by definition, both A and B are closed. The set of all
concepts of the context (O,M, I) is denoted by B(O,M, I) or simply B when the context
is understood.
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Let (A1, B1) and (A2, B2) be two concepts in B. Observe that if A1 ⊆ A2, then
B2 ⊆ B1. We order the concepts in B by the following relation ≺:

(A1, B1) ≺ (A2, B2) ⇐⇒ A1 ⊆ A2 (and B2 ⊆ B1).

It is not difficult to see that the relation ≺ is a partial order on B. In fact, L =< B,≺> is a
complete lattice and it is known as the concept or Galois lattice of the context (O,M, I).
For C, D ∈ B with C ≺ D, if for all E ∈ B such that C ≺ E ≺ D implies that E = C

or E = D, then C is called the successor a(or lower neighbor) of D, and D is called the
predecessor (or upper neighbor) of C . The diagram representing an ordered set (where
only successors/predecessors are connected by edges) is called a Hasse diagram (or a line
diagram). See Figure 1 for an example of the line diagram of a Galois lattice.

When the binary relation is represented as a bipartite graph (see Figure 1), each concept
corresponds to a maximal bipartite clique (or maximal biclique). There is also a one-one
correspondence between a closed itemset [17] studied in data mining and a concept in
FCA. The one-one correspondence of all these terminologies – concepts in FCA, maxi-
mal bipartite cliques in theoretical computer science, and closed itemsets in data mining
– was known, e.g. [17]. There is extensive work of the related problems in these three
communities, see [4] for related literature. The current fastest algorithm given in [4] takes
O(

∑
a∈ext(C) |cnbr(a)|) polynomial delay for each concept C, where cnbr(a) is the re-

duced adjacency list of a. Readers are referred to [4] for the details.

1 2 3 4

a x x
b x x x
c x x
d x x

(abc,1)

(ac,13)

(abcd, ø)

(ø, 1234)

(bd,24) 

(b,124) 

a 1

b 2

c 3

d 4

Figure 1. Left, a context (O,M,I) with O = {a, b, c, d} and M = {1, 2, 3, 4}. The cross × indicates
a pair in the relation I. Middle, the bipartite graph corresponding to the context. Right, the corresponding
Galois/concept lattice.

3. Methods

3.1. Building Binary Relations

In this section, we describe how to the construct the context (O,M, I) for each experiment.
Here the object set O consists of a set of genes. There are two types of attributes in the

aSome authors called this as immediate successor.
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attribute set M: biological attributes and gene expression attributes. For a gene g ∈ O and
an attribute a ∈ M, (g, a) ∈ I if g has the attribute a.

3.1.1. Biological Attributes

Any gene function related properties can be used as biological attributes. For instance,
one can use protein motif families as such attributes: a gene has the attribute if its cor-
responding protein belongs to the motif family. As an example, the protein motif family
oxidoreductases can be such an attribute, and a gene has this attribute if it is one of the
oxidoreductases. There are many other possible biological attributes, such as functional
characteristics of a gene, chromosomal location of a gene, known association with disease
states etc.

3.1.2. Discretization of Gene Expression Values

The data obtained from a microarray experiment consists of a set of genes and each gene has
a gene expression value. The gene expression values are continuous real numbers. In order
to represent microarray data in a binary relation, it requires to discretize the continuous
gene expression values into a finite set of values that correspond to attributes. Intuitively,
we would like to discretize the gene expression values such that two close values share the
same attribute. The straightforward method will be dividing the gene expression values
according to large “gaps”. First, we sort all the expression values in the increasing order.
Let the ordered values be y1 < y2 < . . . < ym. Then we compute the gaps δi = yi+1 −

yi, for i = 1, . . . , m − 1. The idea then is to divide the gene expression values into t

subintervals according to the largest t−1 gaps. However, the empirical results showed that
majorities of these gene expression values were very close. For example, if we partitioned
the values according to the largest 4 gaps, more than 75% of these values would belong
to one subinterval. If we were to recursively partition this large subinterval, then again, a
large portion of the values concentrated on one big subinterval. Instead, after partition the
gene expression values into t subintervals, we partition the largest subinterval into s even
subintervals.

Recall that our idea is to discretize the gene expression values such that close gene
expression values share the same attribute (or a subinterval). However, our even parti-
tion might not achieve this goal, for example, two close genes might belong to the same
subinterval in one experiment but belong to two consecutive subintervals in another exper-
iment. To overcome this problem, instead of assigning the gene expression value to only
one subinterval, if the gene expression value from one of the subintervals is within 50% of
the neighbor subinterval, we assign both subintervals to this gene expression value.

We illustrate the discretization procedure by an example in Figure 2. In this figure,
t = 5 and s = 4. That is, we first partition the gene expression values into five subintervals
I1, I2, . . . , I5 according to the four largest gaps. And then partition the largest subinter-
val (I2 in this example) into four even subintervals. There are total of eight subintervals:
I1, I21

, I22
, I23

, I24
, I3, I4, I5, and each subinterval in the order corresponds to one gene
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expression attribute ai, for i = 1 to 8. The gene expression value that falls in the subin-
tervals I1 (I3, I4, I5 respectively) is assigned to its corresponding attribute a1 (a6, a7, a8

respectively). The gene expression value that falls in I2 is assigned to one or two consec-
utive attributes depending the region it falls. If it falls in the subintervals Jii+1 (the region
overlapping with 50% of two neighboring subintervals) as shown in Figure 2, then it is
assigned to two attributes ai and ai+1. For example, if a gene expression value falls in the
subinterval J23 then it gets both attributes a2 and a3.

I1 I2 I3 I4

a1 a2 a3 a4 a5 a6 a7 a8

I5

J23 J34 J45

Figure 2. Discretization example. We partition the sorted gene expression values into five subintervals,
I1, I2, . . . , I5 according to the four largest gaps. We further partition the largest subinterval (I2 in this example)
into four even subintervals. There are total of eight disjoint subintervals and each subinterval corresponds to one
gene expression attribute ai. The gene expression value that falls in the subintervals I1 (I3, I4, I5 respectively) is
assigned to its corresponding attribute a1 (a6 , a7, a8 respectively). The gene expression value that falls in I2 is
assigned to one or two consecutive attributes depending on the region it falls. If it falls in the subintervals Jii+1,
then it is assigned to two attributes ai and ai+1, for i = 2, 3, 4.

3.2. Concept Lattices Construction

Once we have the binary relations, we then build a concept lattice for each binary relation,
using the efficient algorithm described in [4].

3.3. Distance Measures for Lattices Comparison

Given two lattices L1 = (V1, E1) and L2 = (V2, E2), there are many possible distance
measures that one can define to measure the similarities or differences of these two lattices.
The simplest distance maybe is the one based on common subgraphs. Recall that each
vertex in our lattice is a concept and it is labeled by a subset of genes and a subset of
attributes. For our purpose, we will ignore all attributes, that is, each vertex is labeled by
its object set of genes only. See Figure 3 for an example. A vertex v is called a common
vertex if v appears in both V1 and V2. Let VC = V1 ∩ V2 be the set of common vertices.
For u, v ∈ VC , if e = {u, v} is in both E1 and E2. Then e is called a common edge. Let
EC be the set of common edges. The distance distance(L1, L2) is then defined by

|L1 \ L2| + |L2 \ L1|

|L1 ∪ L2|

where |L1 \ L2| = |V1 \ VC | + |E1 \ EC |, |L2 \ L1| = |V2 \ VC | + |E2 \ EC | and
|L1 ∪ L2| = |L1| + |L2 \ L1| with |L1| = |V1| + |E1|.

Since the data is not perfect, we relax our requirement of the definition of a common
vertex. Instead of requiring the exact matching of the gene sets of the vertices, we consider
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Figure 3. Lattices Comparison. How similar/different are these two lattices?

v1 and v2 the same if their gene sets share more than ξ of the maximum size of the two
gene sets, i.e., |obj(v1) ∩ obj(v2)| ≥ ξmax(|obj(v1)|, |obj(v2)|).

Many other possible distance measures will be investigated in the future. For example,
spectral distance or maximal common sublattice distance that were also mentioned in [14].

4. Our Experiments

4.1. Our Data

Our microarray data [11] were derived from the lung tissue of mouse under four differ-
ent conditions : (1) Control: the mouse was normal and healthy; (2) Flu: the mouse was
infected by influenza (H3N1); (3) Smoking: the mouse was forced to smoke for four con-
secutive days, with nine packs cigarette per day; (4)SmokeFlu: the mouse was both infected
with flu and smoking. For each condition, the gene expression values on 6 different time
points — 6 hours, 20 hours, 30 hours, 48 hours, 72 hours and 96 hours — were measured.
At each time point, there were three replicates, which were used to clean up the noise in
the data. Also, the expression values were measured on probes and several probes can cor-
respond to a same gene. After cleaning up (through a clean-up procedure written in perl
scripts), one gene expression value was obtained for each gene of each sample. There are
total of 11, 051 genes for all 24 samples (=6 time points × 4 conditions).

4.2. Applying Our Method to the Data

In this section, we describe the parameters used in our method when it is applied to the
above data.

Biological Attributes. We used the protein motif families obtained from PROSITE [9] as
our biological attributes. In particular, for our gene sets, we used the stand-alone tools from
PROSITE [7] and identified 21 PROSITE families for our gene set. That is, we have 21
biological attributes. Note these biological attributes are experiment independent and thus
they only need to be computed once for all experiments.
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Discretization of Gene Expression Values. We performed the discretization procedure
for the gene expression values (after taking log transformation) of each sample. The pa-
rameter t was set to 5, and s was set to 4. That is, there were total of 8 gene expression
attributes. We have tested different parameter values and found that increasing the values
(and thus number of attributes) did not significantly change the results.

After discretization, we had total of 24 binary relations over the 11051 genes and the
29 attributes. We then applied our lattice construction algorithm on these binary relations
to construct the corresponding lattices. There is a small variation of these lattices in terms
of its size: each of them has around 530 vertices and 1500 edges. Using the program in [4],
it took less than one second to construct each lattice on a Pentium IV 3.0GHz computer
with 2.0G memory running under Fedora Core 2 Linux OS.

Distances for Comparing Lattices. The parameter in defining common vertices ξ was set
to 70%. That is, v1 ∈ V1 and v2 ∈ V2, v1 and v2 were considered the same if |obj(v1) ∩

obj(v2)| ≥ ξmax(|obj(v1)|, |obj(v2)|), where ξ = 70%. We have tested various relaxation
of ξ. This value seems to be best in our current application, that is, it clearly separates
different conditions (see Section 4.3 for details).

4.3. Our Results

First, using Control sample at 6 hours as a reference, we computed the distances between
all other Control samples and all Flu samples to this reference sample. The results are
shown in Figure 4. Since the distance measure is not transitive, we also computed all

Figure 4. Distance to Control sample at 6 hours (the reference sample). Each data point represents the distance
from a sample (Control shown in red, Flu shown in green) to the reference sample. There are small distances
from other Control samples to the reference sample. And there is a clear separation between Flu samples from
the Control sample at 6 hours.

distances when one of the Control samples was taken as a reference. See Figure 5. The
results showed that there was a clear separation between Flu samples from Control samples
(regardless which time point of Control was taken as the reference). This is a encouraging
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result and we are currently investigating what substructures in the lattices that contribute to
the differences which might shed some new biological insights. The results of comparing

Figure 5. Distance to Control at each time point. There is a clear separation between Flu samples from Control
samples regardless which time point of Control is taken as the reference..

other 2 conditions (Smoking/SmokeFlu) is shown in Figure 6.

Figure 6. Distance to Control from Flu/Smoking/SmokeFlu.

5. Conclusion and Future Work

Our current preliminary results showed the promise of using FCA approach for microarray
data analysis. The distance measure we employed is quite basic and it has not utilized the
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properties of the lattice structure. One can investigate other possible distance measures,
such as spectral distance, and distance based on maximal common sublattice. These dis-
tances will take advantage of the lattice structures and might provide better distinction to
aid analyzing the differences between experiments. Beside the global lattice comparison,
one can also investigate the local structures of the lattices. These local structures, or sub-
lattices, can be obtained by context decomposition or lattice decomposition. A study of
sublattices may assist identification of particular biological pathways or substructures of
functional importance.
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