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A Single Nucleotide Polymorphism (SNP) is a small DNA variation which occurs natu-
rally between different individuals of the same species. Some combinations of SNPs in
the human genome are known to increase the risk of certain complex genetic diseases.
This paper formulates the problem of identifying such disease-associated SNP motifs as
a combinatorial optimization problem and shows it to be NP-hard. Both exact and
heuristic approaches for this problem are developed and tested on simulated data and
real clinical data. Computational results are given to demonstrate that these approaches
are sufficiently effective to support ongoing biological research.

1. Introduction

The DNA sequences of different individuals within the same species are highly
conserved but not exactly the same. One common type of variation is called a Single
Nucleotide Polymorphism (SNP), where a single position within a DNA sequence
is altered from one nucleotide base to another. A general research question within
the field of human genetics is to ask whether a disease of interest is related to
the occurrence of (unknown but) particular SNPs within the human genome. This
question is hard to answer in most cases due to the fact that the frequency of SNPs
occurring in the human genome is estimated to be 1 SNP per 300 bases, which means
that there are about 10 million common SNPs to be investigated. It is currently
technically and economically impossible to screen the whole genome of all patients.

Fortunately, the phenomenon of Linkage Disequilibrium (LD) makes some
progress possible. Two SNPs are said to be in high Linkage Disequilibrium if their
respective alleles are not randomly associated with each other. This allows us to in-
vestigate only some SNPs and infer others. To calculate the LD value between two
SNP loci, several quantitative LD measures have been proposed, including D′ 4,
r2 3 and λ 9. The International HapMap Project (http://www.hapmap.org/),
which aims to produce a map of all the common SNPs in the human genome, was
started in October 2002.
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Within this framework there are currently two different typical scenarios for
finding the positions of disease-associated SNPs depending on how much a priori
knowledge we have about these positions. In the first scenario, where we know
nothing about where these SNPs might be, we have to do a genome-wide scan
which samples a small proportion of the SNPs from the whole genome and outputs
the estimated region which is most likely to contain disease-associated SNPs. This
problem has been the subject of extensive research by statisticians 5,6,7,8. Some
research has also been done by computer scientists, including HPM (Haplotype
Pattern Mining) 11, which has had some success. Many of these methods are sta-
tistically powerful; they can often locate candidate disease-associated SNPs with a
resolution of about 50-100Kb (where a Kb is 1000 nucleotide bases).

In the second scenario, we assume that the disease-associated SNPs we wish to
identify are already known to lie within some small region of the genome (50-100Kb).
This is the scenario that our biological collaborators are currently investigating.
Even in this case it is still not trivial to determine whether particular SNPs are
“significantly” associated with the disease. One reason is that complex genetic
diseases are influenced by both genetic and environmental factors (e.g. lifestyle).
The “causative” SNPs only affect the risk of getting the disease in question. Another
difficulty is due to the combinatorial nature of disease association with SNPs, which
has recently been observed in biological research. If we only examine each single
SNP locus, we might not find any significant association between each individual
SNP and the disease. However, a particular combination of several SNPs leads to
high disease risk. One possible explanation is that this particular combination of
several SNPs might be in high LD with another SNP, which is the real causative
SNP (but has not been measured - remember that it is not realistic at present to
screen a patient for all possible SNPs, even in a restricted region).

In this paper, we will focus on the second scenario in the context of a classical
clinical case-control study: given several candidate SNP loci within a small region,
and the SNP data observed from both cases (patients) and controls (healthy indi-
viduals), the problem is to identify the most significant SNP combination (motif)
that associates with the disease. Our biological collaborators currently perform this
task manually, and our aim is to develop efficient automated tools to do this job.

The rest of the paper is organized as follows. In Section 2, we formulate the prob-
lem as a combinatorial optimization problem. In Section 3 we show this problem
to be NP-hard, and develop both exact and heuristic approaches. Computational
results are presented in Section 4 for both simulated data and real data. In the final
section, we summarise our conclusions and discuss directions for future work.

2. Problem Formulation

Throughout this paper the input SNP data for an individual will be represented
in a standard way by a vector of m values over the alphabet {0, 1, 2}. The reason
this alphabet is usually adopted by biologists is that almost all (99%) of the SNPs
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in the human genome are bi-alleles, for example A/T. The standard practice is to
use “1” to denote the major allele (i.e. the one with the highest frequency in the
human population) and “2” to denote the minor allele. Some allele values may be
missing (unknown) due to experimental reasons, and these are denoted with “0”.

The SNP data from np patients (cases) and nh healthy individuals (controls)
will be represented by two matrices M

(p)
np×m and M

(h)
nh×m. Each row of such a matrix

represents the data for a single individual for the m SNPs under consideration. The
vector in row i of matrix M (x), i.e. the data for individual i, will be denoted M

(x)
i .

A SNP motif is an expression of the form “--11---2-”, where “-” means “don’t
care”. A convenient sparse representation for such a motif is to use two vectors, a
position vector P = (p1, p2, ..., pk), where 1 ≤ p1 < p2 < ... < pk ≤ m and a data
vector D = (d1, d2, ..., dk), where each di ∈ {1, 2}. These 2 vectors specify the motif
by requiring that the allele in each position pi should be di; for example, the motif
“--11---2-” is represented as P = (3, 4, 8), D = (1, 1, 2).

We now define a matching function between a motif (P,D) and an individual
data vector M

(x)
i , as follows:

Match((P,D),M (x)
i ) =

{
1, if ∀k, M

(x)
i,pk

= 0 or M
(x)
i,pk

= dk;

0, otherwise.

Using this function, the number of cases (a) and controls (b) that match a
motif (P,D) is given by the formula a =

∑np

i=1 Match((P, D),M (p)
i ) and b =∑nh

i=1 Match((P, D),M (h)
i ) respectively.

#Match #non-Match Total

#Cases a c = np − a np

#Controls b d = nh − b nh

Total e = a + b f = n− e n = nh + np

Figure 1. 2× 2 contingency table

To measure the significance of a motif, a standard method is to put these num-
bers into a 2×2 contingency table (see Figure 1) and perform a standard chi-squared
test. A convenient formula for calculating the value of the chi-squared statistic is:

χ2(a, b) =
n(ad− bc)2

efnpnh
=

n(anh − bnp)2

(a + b)(n− a− b)npnh
. (1)

Our search problem can now be formulated as finding a motif (P ∗, D∗) which
yields the maximal possible value for χ2, given the data matrices M

(p)
np×m and

M
(h)
nh×m. This problem will be called the SNP motif identification problem.
We believe that this formulation of the problem captures essential aspects of

current biological research in this area, including the fact that SNP motifs may
be only weakly associated with the occurrence of disease, and yet may be biolog-
ically significant. By seeking to maximise a statistical measure of association our
formulation is also able to cope with noisy data and missing values.
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3. Methods

3.1. NP-hardness

In this section, we will show that the SNP motif identification problem is NP-hard,
by constructing a reduction from the standard MAX-SAT problem. The MAX-SAT
(Maximum Satisfiability) problem is a well-known NP-hard problem 2, which can
be stated as follows. Let x1, x2, ..., xm be m boolean variables. A clause Ci is a
disjunction of |Ci| literals, i.e. Ci =

∨|Ci|
j=1 li,j , where each literal li,j is either of the

form xj or x̄j . Given a conjunction of n clauses
∧n

i=1 Ci, the MAX-SAT problem
is to find an assignment of boolean values to the variables x1, x2, ..., xm, such that
the number of satisfied (true) clauses is maximized.

To reduce MAX-SAT to our SNP motif identification problem we proceed as fol-
lows. As a first step, given any instance of MAX-SAT, we construct a corresponding
instance of the SNP motif identification problem by the following procedure:
1. Let the m boolean variables of the MAX-SAT instance correspond to m SNPs.
2. Construct the matrix M (h) by transforming each clause Ci to the vector M

(h)
i :

M
(h)
i,j =

{
1 if xj occurs in clause Ci;
2 if x̄j occurs in clause Ci;
0 otherwise.

3. Let the matrix M (p) consist of a single row containing only zeros.
We will now show that an optimal solution to this artificial instance always

corresponds to an optimal solution to the original MAX-SAT instance. Since the
matrix M (p) only contains a single line with all zeros, which will match any motif,
we will always have the number of matches a = 1 for any motif. Therefore, the ob-

jective function (Equation (1)) becomes χ2(1, b) =
(nh − b)
(1 + b)nh

, which is a decreasing

function with increasing b. This means that an optimal solution to the artificial
instance is one which minimizes b, i.e. a motif (P ∗, D∗) which matches the least
number of lines in M (h). Note that we can assume that P ∗ = (1, 2, 3, ..., m) (oth-
erwise, we could add some extra position, which would not increase b). We can
transform (P ∗, D∗) to a solution X∗ of the original MAX-SAT instance by setting
x∗j = true if d∗j = 2, and x∗j = false if d∗j = 1.

If the motif (P ∗, D∗) does not match line i in M (h), then there is some position
j such that M

(h)
i,j 6= 0 and M

(h)
i,j 6= d∗j . There are two cases:

1. M
(h)
i,j = 1 and d∗j = 2. In this case M

(h)
i,j = 1 means that clause Ci contains

xj while d∗j = 2 means x∗j = true, so clause Ci is satisfied.

2. M
(h)
i,j = 2 and d∗j = 1. In this case M

(h)
i,j = 2 means that clause Ci contains

x̄j while d∗j = 1 means x∗j = false, so clause Ci is again satisfied.
Hence, if motif (P ∗, D∗) does not match line i in M (h), then clause Ci is satisfied

by assignment X∗. A similar argument shows that the converse is also true. Since
(P ∗, D∗) is a motif which matches the least number of lines in M (h) (minimizes b),
this means that the number of lines that motif (P ∗, D∗) does not match is maxi-
mized. Therefore, the number of clauses that assignment X∗ satisfies is maximized,
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i.e. X∗ is an optimal solution for the original MAX-SAT problem.
In this way, we have reduced the MAX-SAT problem to our problem of finding

a motif (P ∗, D∗) with the maximal value for χ2. Since MAX-SAT is known to be
NP-hard, it follows that the SNP motif identification problem is also NP-hard.

3.2. Exact Algorithm

A straight-forward exhaustive search algorithm needs to explore O(3m) motifs, and
for each motif it takes O((np + nh)m) time to test matching and hence compute a

and b. In this section, we will develop an effective exact algorithm using a branch-
and-prune tree search technique, which dramatically reduces the search space.

3.2.1. Search Tree Representation.

We will search for the motif (P,D) in a sequence of steps. At step j, we enumerate
the possible choices of pj and dj .

Each node at level j in the tree determines a motif (P, D), P = (p1, p2, ..., pj),
D = (d1, d2, ..., dj), where the values for each pi and di can be retrieved by tracing
the path from the root node to the given node. To speed up the calculation of
χ2 objective function and allow the search tree to be pruned, we will associate
each node with a triple (j, S+, S−), where S+ is the set of lines in M (p) which
match motif (P,D), i.e. S+ = {i | Match((P,D),M (p)

i ) = 1} and S− = {i |
Match((P,D),M (h)

i ) = 1}.
The root node is associated with the triple (j = 0, S+ = {1, 2, ..., np}, S− =

{1, 2, ..., nh}). Given a node with associated triple (j, S+, S−), its child node along
the branch (pj+1, dj+1), has associated triple (j + 1, S′+, S′−), where

S′+ = {i | i ∈ S+ and M
(p)
i,pj+1

= dj+1}, and (2)

S′− = {i | i ∈ S− and M
(h)
i,pj+1

= dj+1}. (3)

Hence, generating a new node with its associated triple, can be done in O(np +nh)
time. Since a = |S′+| and b = |S′−|, we can calculate the χ2 objective function for
that node in O(np + nh) as well. Hence by storing the information in the triples
at each node we have reduced the time complexity of the calculations at each node
from O((np + nh)m) to O(np + nh).

3.2.2. Branching Strategy and Pruning Rules.

We use a Depth-First-Search strategy to minimise the storage requirements. Two
pruning rules are applied to reduce the search space:

1. Absorption Rule : When we generate a child node of a node with triple
(j, S+, S−) following branch (pj+1 = p∗, dj+1 = d∗), as shown in Figure 2, if the
child node has the associated triple (j+1, S′+, S′−), where S′+ = S+ and S′− = S−,
then this child node can be “absorbed”, and therefore the whole subtree T ′ rooted
at the child node can be pruned, as we will now explain.
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Recall the calculation of S′+ and S′− in Equations (2) and (3). If S′+ = S+

and S′− = S−, then we have that ∀i ∈ S+,M
(p)
i,p∗ = d∗ and ∀i ∈ S−,M

(h)
i,p∗ = d∗. In

other words, for both cases and controls, all the remaining individuals have the same
allele d∗ in the SNP locus p∗, so adding position p∗ to the motif does not provide
any more information. This implies that subtree T ′ and subtree T in Figure 2 are
identical, so we can prune subtree T ′ and explore subtree T only.

2. Sibling Rule : Suppose that we generate a child node of a node with
associated triple (j, S+, S−), following branch (pj+1 = p∗, dj+1 = d∗), and assume
that the original node has a sibling node which follows branch (pj = p∗, dj = d∗)
from its parent, as shown in Figure 3. If the child node has associated triple
(j, S′+, S′−), and the sibling node has associated triple (j, S′′+, S′′−), where S′′+ =
S′+ and S′′− = S′−, then the child node can be pruned, as we will now explain.

It follows from their relative positions in the search tree that the child node
and the sibling node only differ in one SNP locus: p∗j . The equations S′′+ = S′+

and S′′− = S′− imply that adding position p∗j does not provide more information.
In other words, for any node in the subtree T ′′ obtained by following the path
(pj = p∗, dj = d∗), (pj+1 = p∗j+1, dj+1 = d∗j+1), ..., (pk = p∗k, dk = d∗k), there exists a
corresponding node in the subtree T ′, matching the same cases and controls, which
is obtained by following the path (pj = p∗j , dj = d∗j ), (pj+1 = p∗, dj+1 = d∗), (pj+2 =
p∗j+1, dj+2 = d∗j+1), ..., (pk+1 = p∗k, dk+1 = d∗k), and vice versa. Hence, subtree T ′

and subtree T ′′ are identical, and we only need to explore one of them.

3.3. Heuristic Approach

Our heuristic approach includes two stages: a search stage and a refinement stage.
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The search stage is adapted from the exact search algorithm described in the
previous section by extending the absorption rule. In Figure 2, a child node with
triple (j+1, S′+, S′−) is absorbed by its parent node with triple (j, S+, S−) if S′+ =
S+ and S′− = S−, because adding position p∗ does not provide more information.
Now we extend this rule: a child node with triple (j + 1, S′+, S′−) will be absorbed
by its parent node with triple (j, S+, S−) if S′+ is highly similar to S+ and S′− is
highly similar to S−. Keeping in mind that S′+ ⊂ S+ and S′− ⊂ S−, the similarity
conditions can be formulated as follows: |S′+| ≥ 0.95 |S+| and |S′−| ≥ 0.95 |S−|.

Using this rule, when we generate the children of a node we prune those branches
which do not provide “enough” new information. This pruning is very effective
because it makes use of the statistical relationship between different SNP loci, i.e.
Linkage Disequilibrium.

In the refinement stage, all motifs in the candidate list obtained from the search
stage are refined by a local search procedure, and the most significant motif obtained
is returned as the final result.

4. Results

We have tested our algorithms on both simulated and real clinical data. All experi-
ments were performed on an IBM Pentium 1.5GHz laptop with 512MB of memory.
We set the time limit of running each single testcase to be 5 minutes.

4.1. Simulated Data with Realistic Linkage Disequilibrium

At present the best model for Linkage Disequilibrium between SNP loci is still
unclear, but it is unreasonable to simply generate random SNP data without at-
tempting to model the Linkage Disequilibrium. To provide a suitable test set for
our computational tools we therefore had to develop a novel way to generate simu-
lated data with realistic Linkage Disequilibrium between SNP at different loci. The
procedure is briefly described as follows:

Step 1: Obtain raw data from the HapMap Project10. The HapMap raw data
(release 14) contains 60 unrelated Caucasian (CEU) individuals, 60 Yoruba indi-
viduals, 45 unrelated individuals from Tokyo (Japan) and 45 unrelated individuals
from Beijing (China). We randomly select m + 1 consecutive SNP loci.

Step 2: Estimate haplotype frequency using a popular program SNPHAP 1

Step 3: Generate a population of 100000 individuals according to the frequency
table obtained from SNPHAP.

Step 4: Simulate an unknown disease and remove the causative SNP. We first
randomly assume one SNP locus p∗ among the m+1 loci to be the disease causative
SNP. Then we assign a disease risk r1 = 0.001 and r2 = 0.01 respectively to allele
“1” and “2” in SNP locus p∗, and randomly simulate whether each individual gets
the disease or not according to that risk. Finally we remove the column of the
disease causative SNP, locus p∗, and only use the remaining m SNP loci.
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Step 5: Simulate a clinical scenario. A classical case-control study samples the
same number of cases and controls. Here we consider all individuals in our simulated
population sample who get the disease to be cases. Then we randomly sample the
same number of healthy individuals from the whole population to be controls.

4.1.1. Exact Search vs. Heuristic

We first carried out experiments with the number of SNPs, m, set to 7 different
values ranging from 20 to 50. For each value of m, we did 100 simulations to
generate 100 testcases from 10 different genomic regions. Both exact and heuristic
approaches were then tested on these 7 × 100 = 700 testcases. The results are
reported in Table 1. Each row presents the average result over the 100 testcases
with the same m. The first column is the average number of nodes that the exact
search algorithm explores. The second column is the average CPU time that the
exact search algorithm takes. The third column is the number of testcases solved
within 5 minutes. Similarly, the fourth, fifth and sixth columns are for the heuristic
approach. The last column shows for how many testcases the solution that the
heuristic returns is optimal, i.e. the same solution as the exact algorithm returns.

Table 1. Results for Simulated Data (7× 100 = 700 testcases in total)

Exact Search Heuristic

average average average average
m nodes time(sec) #solved nodes time(sec) #solved #optimal

20 16988.0 0.62 100 7110.3 0.24 100 100
25 47166.3 3.34 100 16533.1 0.88 100 100
30 161205.8 21.54 97 41637.1 4.13 100 ≥97
35 - - 85 77899.7 11.23 100 ≥85
40 - - - 124126.4 29.16 100 -
45 - - - 187257.0 67.38 97 -
50 - - - - - 83 -

These results show that our exact algorithm using a branch-and-prune strategy
is considerably more efficient than a brute-force approach: the number of nodes
explored is much smaller than 3m, as shown in Table 1, because a large number are
pruned. The results also indicate that our heuristic method can provide high quality
motifs using less time. In fact, for all of the 382 testcases that we can compare, the
motifs that the heuristic method provides are always optimal.

4.1.2. Are the Motifs Found Real Signals?

More specifically, what if the disease is not associated with any SNP? Under our
simulation framework, We simulated this “no association” scenario by setting dis-
ease risk r1 = r2 = 0.005. We did 100 simulations to generate 100 testcases with
m = 40 SNPs to test our heuristic approach. We compare the results with the
100 testcases (m = 40) from previous experiments. Figure 4 shows the histogram
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for both scenarios (wider bars for the association scenario and narrower bars for
non-association). The x-axis represents the χ2 value of the motif we found, and the
y-axis represents the number of testcases.
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Figure 4. Histogram (Non-association vs. association)

Figure 4 shows that if the disease is not associated with any SNP, then the χ2

value of the motif that our algorithm returns is very low (less than 20). On the
other hand, if the disease has a causative SNP, even though this causative SNP is
not directly observed, our algorithm finds a motif with much higher χ2 value (above
40). This indicates that if our algorithm find motifs with high χ2 value, then the
motifs are very likely to be real biological signals.

4.2. Clinical Data

Finally, we obtained a real clinical testcase from the biological laboratory. (Due to
privacy policy and copyright restrictions, we cannot give full details of the clinical
background to this dataset.) This clinical testcase contains m = 19 SNP loci,
np = 1362 patients and nh = 914 controls. Table 2 shows the computational
results. As mentioned before, currently the identification of disease-associated SNP
motifs is done manually by experienced biologists. The first row of Table 2 shows
the result that was obtained in the biological laboratory using this manual process.

As shown in Table 2, the motifs obtained by our methods are very similar to those
obtained by the current labour-intensive manual process. For this particular dataset
the resulting χ2 value (22.22) is not high enough to conclude with confidence that the
SNP motif is significantly associated with the disease. However, we have successfully
automated the process of finding the best possible motif, and this approach can now
be used to support ongoing biological research.

Table 2. Real Clinical Data

Motif #cases #controls χ2 value

Manual Result 11-2----2--------2- 93 113 19.69
Exact Search 11-2----2-11-----21 89 112 22.22
Heuristic 11-2----2-11-----21 89 112 22.22
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5. Conclusions and Future Work

In this paper, we studied the problem of identifying disease-associated SNP motifs.
We formulated it as a combinatorial optimization problem and showed it to be
NP-hard. Both exact and heuristic approaches for this problem were developed
and tested on both simulated and real data. The results demonstrate that these
computational approaches can support ongoing biological research.

For simplicity of problem description in this paper we haven’t made the distinc-
tion between “haplotype” data and “genotype” data. In fact, our approach deals
with SNP haplotype data. To infer haplotype data from genotype data is another
very active research topic. In this paper, we have used the SNPHAP program 1 as
a preprocessor to obtain estimated haplotype data. Our plan for the next stage of
this research is to develop algorithms which can deal directly with the unphased
genotype SNP data to identify significant SNP motifs.
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