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A variety of pattern-based methods have been exploited to extract biological relations from 
literatures. Many of them require significant domain-specific knowledge to build the patterns by 
hand, or a large amount of labeled data to learn the patterns automatically. In this paper, a semi-
supervised model is presented to combine both unlabeled and labeled data for the pattern learning 
procedure. First, a large amount of unlabeled data is used to generate a raw pattern set. Then it is 
refined in the evaluating phase by incorporating the domain knowledge provided by a relatively 
small labeled data.  Comparative results show that labeled data, when used in conjunction with the 
inexpensive unlabeled data, can considerably improve the learning accuracy. 

1. Introduction 

Knowledge extraction from bioscience texts has become an emerging field for both 
Information Extraction and Natural Language Processing communities. These tasks 
include recognizing biological named entities [10, 21], extracting relations between 
entities [4, 12, 19], and identifying biological events and scenarios [20]. The major 
challenges come from the fact that biomedical literatures contain abundant domain-
specific knowledge, inconsistent terminologies, and complicated syntactic structures or 
expressions.  

In this paper, the work is focused on extracting relations between biological entities, 
such as protein-protein interactions (PPI). Various methods and systems have been 
proposed. The most prevalent methods are rule-based or pattern-based. Such methods 
adopt hand-coded rules or automated patterns and then use pattern matching techniques 
to capture relations. Hand-coded patterns are widely used in the early stage of this 
research. For example, Ono [11] manually constructed lexical patterns to match linguistic 
structures of sentences for extracting protein-protein interactions. Such methods 
contribute high accuracy but low coverage. Moreover, the construction of patterns is 
time-consuming and requires much domain expertise.  

Systems which can learn patterns automatically for general relation extraction 
include AUTOSLOG [14], CRYSTAL [17], SRV [6], RAPIER [1], ONBIRES [7, 8], 
and so forth. Most of them take annotated texts as input, and then learn patterns semi-

                                                           
†The two authors have equal contributions 
*Corresponding author: zxy-dcs@tsinghua.edu.cn Tel: 86-10-62796831 Fax: 86-10-
62771138 

1 

mailto:dingsl@gmail.com
mailto:minlie.huang@hotmail.com


2 

automatically or automatically. But effective evaluation of these patterns remains a major 
unsolved problem. Moreover, most pattern-based applications require a well-annotated 
corpus for training [2, 5]. 

Since data annotation is expensive and time-consuming, the major problem in 
pattern-based methods is how to automatically learn patterns efficiently and effectively, 
with limited annotated data available. Unsupervised principle is preferable with the 
ability to exploit huge amount of unlabeled texts in biomedical domain. The crucial 
problem here is that patterns generated from unlabeled data may be erroneous or 
redundant. Therefore, pattern evaluation algorithm is indispensable. A systematic 
methodology based on ranking functions is widely used by most methods [3, 15, 18]. 
Such algorithms assign a score to each pattern according to the ranking functions and 
then keep the top n best patterns (n is a pre-specified threshold). In such algorithms, each 
pattern is evaluated independently. Thus, the redundancy among patterns is difficult to 
reduce. 

To solve these problems, a semi-supervised [16, 22] model is proposed, combining 
both unlabeled and labeled data. A pattern generation algorithm is first implemented to 
mine relevant pattern structures from unlabeled data, where sentences are pairwise 
aligned by dynamic programming to extract identical parts as the pattern candidates. 
Since the generation algorithm does not require any annotation in the corpus, pattern 
evaluation algorithms with labeled information are then integrated to complete the 
learning procedure. Two types of pattern evaluation algorithms are investigated. The first 
is a ranking function based algorithm, which evaluates the effectiveness of every single 
pattern independently and delete the ones that have no contribution to the performance. 
The second is heuristic evaluation algorithm (HEA), which aims to search the optimal 
pattern set in a heuristic manner. Compared to the first method, the deletion of a pattern 
is determined by the current pattern set, not only itself. Comparative results show that our 
ranking function outperforms other prevalent ones and HEA exhibits advantages over 
ranking function based algorithms. 

The paper is organized as follows. The first part of semi-supervised learning, pattern 
generation method with unlabeled data, is presented in Section 2. Then pattern evaluation 
method which relies on labeled data to curate the learning result is explained in Section 3. 
The experiments and conclusions are discussed in Section 4 and 5.  

2. Pattern Generation 

First of all, several definitions are presented here:  
• A Sentence is a sequence of word-tag pairs: STN = WTP1,2,…,N, where each WTPi is a 

word-tag pair (wi,ti). Here wi is a word and ti is the part-of-speech (POS) tag of wi. 
• Sentence Structure is defined as SS = {prefix, NE1, infix, NE2, suffix}. NE1 and NE2 

are semantic classes of the named entities. The prefix, infix, and suffix are sequences 
of WTPs before NE1, between NE1 and NE2, and behind NE2, respectively.  

• A pattern is defined as PTN={pre-filler, NE1, mid-filler, NE2, post-filler}. The fillers 
are sequences of WTPs before NE1, between NE1 and NE2, and behind NE2. 
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Examples for these definitions are shown in Table 1. 
Table 1. Examples for sentences and patterns 

 Examples 

STN Several/JJ recent/JJ studies/NNS have/VBP implicated/VBN P_00172/NN in/IN 
the/DT signaling/NN pathway/NN induced/VBN by/IN P_00006/NN ./. 

WTP induced/VB ; P_00172/NN 

 
 

SS 

{{prefix:         {Several/JJ recent/JJ studies/NNS have/VBP implicated/VBN}} 
{NE1:              {PROTEIN/NN}} 
{infix:             {in/IN the/DT signaling/NN pathway/NN induced/VBN by/IN}} 
{NE2:              {PROTEIN/NN}} 
{suffix:            {NULL}}} 

 
 

PTN 

{{pre-filler:    {NULL}} 
{NE1:              {PROTEIN/NN}} 
{mid-filler:     {induced/VBN by/IN}} 
{NE2:              {PROTEIN/NN}} 
{post-filler:     {NULL}}} 

Sequence alignment algorithm is adopted to generate patterns by aligning pairwise 
sentences in training corpus. The identical parts in aligned sentences are extracted as 
pattern candidates. More formally, given two SSs: (prefixi, NE1

i
, infixi, NE2

i, suffixi) and 
(prefixj, NE1

j, infixj, NE2
j, suffixj), the sequence alignment algorithm is carried out on 

three pairs – (prefixi, prefixj), (infixi
, infixj), and (suffixi, suffixj) – to extract identical 

WTPs and form the three fillers of a PTN. The algorithm is shown in Figure 1. 

This al
have been i
is almost un
online, and 

3. Patter

The pattern
information
Input: A sentence structure set S = {SS1, SS2, ..., SSn} 
Output: A set of patterns: P 
1. For every pair in S: (SSi, SSj)∈S (i ≠ j), do 
2. if SSi.NE1 !=SSj.NE1 or SSi.NE2 != SSj.NE2, then go to 1;  
3. else do 
4. NE1 = SSi.NE1, NE2 = SSij.NE2 
5. do alignment for SSi.prefix and SSj.prefix;  
6. extract the identical WTPs to form the pre-filler of a candidate pattern p.  
7. do the same operations in step 5 and 6 to form mid-filler and post- filler,. 
8. if p already exists in P, then increase the count of p with 1. 
9. else add p to P with a count of 1; 
10. Output P 
Figure 1. Pattern learning algorithm 

gorithm automatically learns patterns from sentences whose named entities 
dentified by a dictionary-based method and requires no further annotation. It 
supervised which is able to make better use of the enormous data available 

release domain experts from the heavy burden of creating annotated corpora.  

n Evaluation 

 generation algorithm discussed in Section 2 does not require supervised 
. It may produce erroneous patterns such as (“”, PROTEIN, “shown to be”, 
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PROTEIN, “”), which will match many false positive instances. Previous works usually 
depended on rule-based methods or manual selection to screen out the best patterns. 

To automate the relation extraction system, we developed a pattern evaluation 
algorithm to assess patterns by a small annotated corpus. Here we discuss two types of 
evaluation algorithms: the first one utilizes ranking functions and the second one is a 
heuristic evaluation algorithm. 

3.1. Ranking Function Based Algorithm 

Ranking function based evaluation algorithms assess each pattern independently. They 
assign a score to each pattern by ranking functions, and then filter out those patterns with 
lower scores than a threshold. Previous pattern-based systems have adopted various 
ranking functions, which take into consideration the number of instances that are 
correctly or incorrectly matched by a pattern. Two ranking functions are surveyed here:  

The first one is proposed by Cohen in their system RIPPER [3]: 
. .( )
. .

p positive p negativeRipper p
p positive p negative

−
=

+  
(1) 

where p.negative indicates the number of false instances matched by the pattern p and 
p.positive denotes the number of correct instances. In essence, this function only takes 
into consideration the ratio of p.positive to p.negative (p/n for short). The second 
function is proposed by Riloff [15], with two factors – p/n and p.positive: 

2
.( ) *log ( . )

. .
p positiveRiloff p p positive

p positive p negative
=

+  
(2) 

The critical issue about these ranking functions presented above is that only two 
factors, p/n and p.positive, are considered. However, other factors should be considered, 
such as p+n. Ripper can not distinguish a pattern with 50 true positives and 50 negatives 
(50/50 for short) from (1/1) pattern, while the former pattern apparently contributes more 
to precision and recall. Although Riloff function works well for the two patterns by 
introducing the log(p.positive) term, it does not work for such 4 patterns: (1/4), (2/8), 
(3/12) and (4/16). These patterns, whose p.positive is larger, will have a higher rank by 
Riloff function. However, since p/n is very low, it is reasonable to determine that patterns 
with larger (p+n) are worse. Riloff function fails to handle the case. To involve more 
factors for pattern evaluation, we propose a novel ranking function as follows:    

2
. 0.5( ) ( log )*ln( . . 1)
. 0.5

p positiveHD p p positive p negative
p negative

β +
= + + +

+  
(3) 

where the parameter β is a threshold that controls p/n. If , HD is an increasing 
function of (p+n), which means if several patterns have the same p/n that exceeds 2

β−> 2/ np
β− , a 

pattern with larger (p+n) has a higher rank. If , the first term is negative, 
which means a pattern with larger (p+n) will have a lower rank. Thus different ranking 
strategies are used when different p/n are met. Experiments in Section 4.3 will illustrate 
how HD outperforms other functions, where the parameter β is set to 0.5 empirically.  

β−< 2/ np
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3.2. Heuristic Evaluation Algorithm (HEA) 

Ranking function based algorithms assess each pattern independently. It is not difficult to 
delete erroneous patterns by these algorithms. However, redundancy among patterns, 
which heavily impose computational burden on relation extraction tasks, can not be 
reduced effectively. For example, there are two patterns (“”, PROTEIN, “bind to”, 
PROTEIN, “”) and (“”, PROTEIN, “to bind to”, PROTEIN, “”). Apparently, the second 
pattern is redundant since all instances it matches will also be captured by the first one. 
However, it cannot be filtered because its score is almost the same as the first ones. To 
remove erroneous and redundant patterns, we propose a heuristic evaluation algorithm 
(HEA), which aims to obtain the optimal pattern set in a heuristic manner. 

Formally, given an evaluation corpus S and a pattern set P, we define an 
optimization function which maps the pattern set P to its performance on S:   

 
),(

:),(
PSMP

RSM
a

→∑⋅                 (4) 

where Σ denotes the space of all possible pattern sets and R is the real number space. 
Starting from the initial pattern set P0, we aim to obtain the optimal set P* by maximizing 
M(S,P) in a heuristic manner. The iterative procedure follows formula (5): 

    ),(arg1 k
Pp

kk PSMPP
ki

∇−=
∈

+
                   (5) 

where )},(}){,({max
),(

),( kikPp
k

k
k PSMpPSM

P
PSM

PSM
ki

−−=
∂

∂
=∇

∈

is the gradient of M(S,Pk) in k-th step. 

The algorithm is shown in Figure 2. In practice, we store and index all possible matching 
results produced by the whole pattern set P0 by preprocessing. Thus, for each iteration, 
evaluating the pattern set Pk is carried out by finding the results in the index (excluding 
all the patterns that are not in Pk), without a whole re-running of the program. This 
method makes the iterative procedure computationally feasible. 

Figure 2. Heuristic Evaluation Algorithm (HEA) 

Input: an initial pattern set P0= {p1, p2,..., pn }, the training set S, the testing set T , an 
optimization function M(S,P) 
Output: the optimal pattern set P*

1． k=0, Pk= P0 
2． Calculate the gradient: 

)},(}){,({max),( kikPpk PSMpPSMPSM
ki

−−=∇
∈

 

3． Find the “worst” pattern to be deleted: 
),(arg k

Pp
m PSMp

ki

∇=
∈

 

4． If ∇  then do 
thkPSM ∆≥),(

5． }){,(),( 1 mkk pPSMPSM −=+
 

6．  
mkk pPP −=+1

7． Evaluate the performance of the pattern set Pk+1 on the testing corpus T 
8． k=k+1, go to  2 
9． else output P* = Pk 
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In this algorithm, an optimization function M(S,P) has to be determined. Note that 
the goal of HEA is to achieve the optimal pattern set out of an initial set. Thus, the direct 
target of F1 score can be taken as an optimization function. 

4. EXPERIMENT 

Corpora used in the experiments are introduced in Section 4.1. Experiments of pattern 
generation on unlabeled data and pattern evaluation on labeled data are discussed in 
detail in Section 4.2 and 4.3. These sections are aimed to investigate the effectiveness of 
the semi-supervised learning model.  

4.1. Data Preparation 

The first corpus used for protein-protein interaction extraction is downloaded from 
http://www.biostat.wisc.edu/~craven/ie/ [13]. This corpus consists of 2,430 sentences 
gathered from Munich Information Centre for Protein Sequences (MIPS). This corpus is 
used for pattern generation. 

The second is collected from the GENIA corpus [9] which consists of 2000 abstracts 
from MEDLINE. We have manually annotated the protein-protein interactions, and 
finally obtained a corpus with 4,221 PPIs in 2,561 sentences. 

4.2. Semi-supervised Learning Model 

In this section, we discuss the effectiveness of semi-supervised learning model by 
comparing the performance of refined patterns with that of original patterns. 

First, 2,480 patterns are initially obtained from MIPS by the generation algorithm. 
Their performance is set as the baseline. Then the GENIA corpus with annotated 
relations is randomly partitioned to five parts for 5-fold cross-validation, one of the five 
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parts for testing and the remainder for pattern evaluation. For the two evaluation methods, 
the top 100 patterns are preserved to extract relations from the testing corpus.  

Experiment results are shown in Figure 3 over different user-specified thresholds on 
the testing corpus. It shows that 1) the raw pattern set generated without labeled 
information is poor in accuracy, but has promising recall (about 45% to 50%). 2) Our 
proposed ranking function HD and HEA method both achieve significant improvements. 
The precision is improved by over 25% with little loss in recall, results in improvement 
of F1 score by 16% to 19%. These results indicate that the pattern generation algorithm 
does extract useful patterns from unlabeled data, and pattern evaluation algorithm greatly 
improves the accuracy with labeled information. 

4.3. Pattern Evaluation With Labeled Data 

In this section, we discuss the difference among different evaluation algorithms, which is 
crucial in semi-supervised learning. The GENIA corpus is used in the same way as 
before for 5-fold cross-validation. The raw pattern set is also taken from the previous 
experiment. In this experiment, the pattern deletion order in ranking function based 
methods, including Ripper, Riloff, and HD, is determined by the corresponding functions. 
In other words, patterns with lower ranks (worse patterns) will be removed earlier. In 
HEA, which pattern to be deleted is determined dynamically as before. To provide a 
complete comparison, we delete all of the patterns in each algorithm, which means the 
parameter ∆th in HEA could be set to a very small numerical value. 
 

Table 2. Performance of optimal pattern sets determined by ranking function based algorithms and HEA 
Method Patterns Precision Recall F1 score Impr. of F1

Baseline (raw) 2480 19.0% 46.5% 27.0% – 

Ripper 1626 41.0% 40.8% 40.9% +49.3% 

Riloff 88 40.8% 44.5% 42.6% +55.5% 

HD 92 52.5% 38.8% 44.5% +62.4% 

HEA 72 43.5% 45.9% 45.5% +66.1% 

 
Table 2 shows the performance and cardinality of the optimal pattern sets achieved 

by different methods. The smallest pattern set and the best system performance are 
achieved by HEA, which means HEA can reduce redundancy maximally and guarantee 
the best system performance at the same time.  Although the performance of HD and 
HEA is only slightly better than that of Ripper and Riloff function, further studies in 
Figure 4 will demonstrate why HD and HEA outperform the other two methods. 

When the 2,480th~1,600th  patterns determined by Ripper function are deleted, the 
performance is enhanced dramatically. However, when it starts to delete 50 more patterns, 
the performance degrades extremely. These patterns include (“”, NE1, “inhibit”, NE2), 
(“”, NE1, “induce”, NE2, “”) with both large p.positive and large p.negative (79/142 and 
308/220 in our experiment), but the p/n is not large enough (compared to the 3/1 or 7/3 



8 

patterns), which directly leads to low ranks. Therefore, Ripper function that involves 
only the p/n factor can not assess patterns properly. 

Riloff function is also unable to evaluate patterns adequately. Firstly, the “worst” 900 
patterns ranked by Riloff function are not the worst in fact, because deleting these 
patterns does not lead to remarkable improvements. However, deleting the 900th ~100th  
patterns results in significant improvements. Hence these patterns should have much 
lower ranks. Secondly, although the best result (42.6% with 88 patterns) is very 
promising, the curve keeps rising until it reached the optimal point at a very narrow peak. 
Thus it is very difficult to determine the number of patterns to hold in practice (The 
system performance is very sensitive to the threshold).  

In comparison, HD function exhibits advantages over traditional ranking functions. 
The HD curve shows that it removes the most undesirable patterns at position 2,460th

 ~1,700th , with 16 percentages improvement of F1 score. And then the curve rises slowly, 
when deleting “medium” patterns, until it reaches the optimal point (44.5% with 92 
patterns). After that point, deleting any pattern will cause a remarkable decline in the 
performance. This curve shows that HD ranks the patterns more precisely. And it also 
has a much broader “safe” area (from the 500th to 100th  patterns). Thus the number of 
patterns to hold is much easier to set, compared to the narrow peak in Riloff curve.  
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Figure 4. Comparison between ranking function based algorithm and HEA 

In addition, the curve of HEA has almost the same trend as that of HD, which means 
HEA is also effective to remove incorrect and redundant patterns. The cardinality of the 
optimal pattern set obtained is smaller than that by HD, which means that HEA is more 
capable to reduce redundancy among patterns. From this figure, we can see that HEA 
outperforms other methods significantly.  

The comparative experiments show that 1) algorithms based on traditional ranking 
functions fail to evaluate the contribution of the entire pattern set effectively because 
they take into account each pattern independently, while HD function is more reasonable 
by involving more factors; 2) HEA can remove erroneous and redundant patterns 
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effectively and consequently achieves a highest F1 score (45.5%) with the smallest 
pattern set (72 patterns). Thus, the semi-supervised learning procedure can be carried out 
effectively and achieves a state-of-art performance. 

5. CONCLUSION 

Pattern-based methods have been widely used for the task of relation extraction from 
bioscience texts. However, most of these methods either construct patterns manually, or 
require a well-annotated training corpus to learn patterns. In this paper, we have 
proposed a semi-supervised model to automatically learn patterns with unlabeled and 
labeled data. Little domain expertise is required and vast texts available in biomedical 
domain can be fully exploited. Moreover, two types of pattern evaluation algorithms 
based on labeled information are proposed to remove erroneous and redundant patterns. 
The first one is based on a novel ranking function HD which takes into account more 
factors than prevalent ranking functions. Experimental results show that HD function 
exhibits advantages over other ranking functions. The second one is a heuristic 
evaluation algorithm, which aims to obtain the optimal pattern set in iterative steps. This 
algorithm contributes improvement over ranking function based algorithms.  

We also note that the major bottleneck of pattern-based IE systems is whether they 
have an effective NLP module to handle complex syntactic structures in the bioscience 
texts. Currently we have a shallow parsing module to enhance the results; however, the 
future work will still focus on developing more competitive NLP techniques. 
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