October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

AN EFFICIENT BICLUSTERING ALGORITHM FOR FINDING GENES WITH
SIMILAR PATTERNS IN TIME-SERIES EXPRESSION DATA *

SARA C. MADEIRA

INESC-ID / IST
University of Beira Interior
Rua Margiés DAvila e Bolama, 6200-001 Covi Portugal
E-mail: smadeira@di.ubi.pt

ARLINDO L. OLIVEIRA

INESC-ID/IST
Rua Alves Redol, 9, 1000-039 Lisbon, Portugal
E-mail: aml@inesc-id.pt

Biclustering algorithms have emerged as an important tool for the discovery of local patterns in gene
expression data. For the case where the expression data corresponds to time-series, efficient algorithms
that work with a discretized version of the expression matrix are known. However, these algorithms
assume that the biclusters to be found are perfect, in the sense that each gene in the bicluster exhibits
exactly the same expression pattern along the conditions that belong to it. In this work, we propose
an algorithm that identifies genes with similar, but not necessarily equal, expression patterns, over a
subset of the conditions. The results demonstrate that this approach identifies biclusters biologically
more significant than those discovered by other algorithms in the literature.

1. Introduction

Several non-supervised machine learning methods have been used in the analysis of gene
expression data. Recently, biclustering non-supervised approach that performs simulta-
neous clustering on the row and column dimensions of the data matrix, has been shown to
be remarkably effective in a variety of applications. The advantages of biclustering (when
compared to clustering) in the discovery of local expression patterns have been extensively
studied and documentéé1-6:19 These expression patterns can be used to identify rel-
evant biological processes involved in regulatory mechanisms. Although, in its general
form, biclustering is NP-complete, in the case of time-series expression data the interesting
biclusters can be restricted to those with contiguous columns leading to a tractable problem.
In this context, CCC-Biclusteriflg is a recent proposal of an algorithm that finds and
reports all maximal contiguous column coherent biclusters (CCC-Biclusters) in time lin-
ear on the size of the expression matrix by manipulating a discretized matrix using string

*This work was partially supported by projects POSI/SRI/47778/2002, BioGrid and POSI/EIA/57398/2004,
DBYeast, financed by FCT, Fundig para a Gincia e Tecnologia, and the POSI program.

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

processing techniques based on suffix trees. Each expression pattern shared by a group of
genes in a contiguous subset of time-points is a potentially relevant biological process.

However, discretization may limit the ability of the algorithm to discover biologically
relevant patterns due to the noise inherent to most microarray experiments. To overcome
this problem we present a new algoritheaCCC-Biclustering, that finds CCC-Biclusters
with up to a given number of errors per gene in their expression pa&€C-Biclusters).

These errors can, in general, be substitutions of a symbol in the expression pattern by other
symbols in the alphabet (measurement errors), or restricted to the lexicographically closer
discretization symbols (discretization errors).

We present results using a well known gene expression dataset that support the view
that allowing errors in CCC-Biclusters improves the ability of the algorithm to discover
more relevant biological processes, either by adding genes to the CCC-Bicluster that had
been excluded due to errors, or by adding columns (up to the number of errors allowed)
either at the left or at the right of the expression pattern of CCC-Bicluster.

The paper is organized as follows: Section 2 presents definitions needed to state the
problem and construct the algorithm, as well as related work on biclustering in time-series
expression data. Section 3 presents the algorithm and Section 4 describes the experimental
results. Finally, Section 5 states some conclusions and outlines future work.

2. Definitions and Related Work
2.1. Strings and Suffix Trees

This section revises basic concepts about strings and suffix trees that will be needed
throughout the paper.

Definition 2.1. A string S is an ordered list of symbols (over an alphabgritten con-
tiguously from left to right. For any stringS, S[i..j] is its (contiguousyubstring starting
at position: and ending at positiof. Thesuffix of S that starts at positionis S[i..|.S|].

Definition 2.2. The e-Neighborhood of a stringS of length|S| (e > 0) defined over the
alphabet:, N(e, S), is the set of strings;, such that].S| = |S;| andHamming(S, S;) <
e. This means that the Hamming distance betwgemd.S; is no more thar, that is, we
need at most substitutions to obtaif; from S. The e-Neighborhood of a strirt§jcontains
the following number of elements/(e, |S|) = >~7_, C;S|(|Z\ —1)7 < |S|e|%le.

Definition 2.3. A suffix tree of a stringsS is a rooted directed tree with exactly| leaves,
numbered! to |S|. Each internal node, other than the root, has at least two children. Each
edge is labeled with a nonempty substringSotedge-labe), and no two edges out of a
node have edge-labels beginning with the same character. Its key feature is that for any leaf
i, the label of the path from the root to the lep&th-label) spells out the suffix of' starting
at position:. Each leaf is identified by the starting position of the suffix it corresponds to.

In order to enable the construction of a suffix tree obeying this definition when one
suffix of S matches a prefix of another suffix 6f a character terminator, that does not
appear anywhere else in the string, is added to its end.

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

Definition 2.4. A generalized suffix treeis a suffix tree built for a set of strings;. Each

leaf is now identified by two numbers, one identifying the string and the other the suffix.
Suffix trees (generalized suffix trees) can be built in time linear on the size of the string

(sum of the sizes of the strings), using several algorithrutkkonen’s algorithn', used

in this work, usesuffix linksto achieve a linear time construction. An example of a gener-

alized suffix tree built for the set of strings that correspond to the rows of the right matrix

in Figure 1 is presented in Figure 2.

Definition 2.5. There is asuffix link from nodev to nodeu, (v, u), if the path-label of
nodew represents a suffix of the path-label of nadand the length of the path-label of
is equal to the length of the path-labelwofminus 1.

2.2. Gene Expression Data and Matrix Discretization

Let A’ be a gene expression matrix defined by its set of rows (gefgsind its set of
columns (conditions)C. In this context,A;j represents the expression level of géne
under conditionj, which is usually a real value corresponding to the logarithm of the
relative abundance of mRNA in geneéinder conditiory. Let A}, and A%, denote row:
and columry of matrix A’, respectively. Moreover, consider that is the number of rows
and|C| is the number of columns iA’.

In this work, we are interested in the case where the gene expression leyglsan
be discretized to a set of symbols of interést,that represent distinct activation levels.
In the simpler casey may contain only two symbols, one used foo-regulationand
other forregulation Another widely used possibility, is to consider a set of three symbols,
{D, N, U}, meaningdownRegulationNoChangeindUpRegulatiorin other applications,
the values in matrix4’ may be discretized to a larger set of symbols. After discretization,
A’ is transformed into matridl and A;; € ¥ represents the discretized value/qg.

Cl C2 C3 C4 Cs Cl C2 C3 C4 G5 Cl C2 C3 C4 G5
G1 | 0.07 0.73 -0.54 0.45 0.25 Gl N U D U N Gl| NI U2 D3 U4 NS5
G2 | -0.34 0.46 —0.38 0.76 —0.44 G2 D U D U D G2| DI U2 D3 U4 D5
G3| 022 0.17 -0.11 0.44 -0.11 G3 N N N U N G3| NI N2 N3 U4 N5
G41 0.70 0.71 -0.41 0.33 0.35 G4 U U D U U G4l Ul U2 D3 U4 Us

Figure 1. Toy example: (left) original expression matrix, (middle) discretized matrix and (right) discretized
matrix after alphabet transformation.

Figure 1 (middle) represents a possible discretization of the expression values in the
left matrix in the same figure. In this example, the alphabet {D, N, U} was used and
an expression level was considered\NaxChangef it falls in the range[—0.3, 0.3].

Consider now thealphabet transformation that consists, essentially, in appending
the column number to each symbol in the matrix. This corresponds to considering a new
alphabety = ¥ x {1,...,|C|}, where each elemer®’ is obtained by concatenating
one symbol inX and one number in the randé ... |C|}. In order to do this we use a

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

function f : 3 x {1,...,|C|} defined byf(a, k) = alk, wherea|k represents the char-
acter inY’ obtained by concatenating the symhoWith the numberk. For example, if
> ={D,N,U} and|C| = 3, thenX = {D1,D2,D3,N1,N2,N3,U1,U2,U3}. As
examplesf(D,2) = D2 andf(U,1) = U1l.

Consider also that is always given in lexicographic order. The functign: ¥ x {;}
defined byf;(a,j) = alj, wherea|j represents the character ¥ij; obtained by con-
catenating the symbal with the numberj, is used to define the possible alphabet for
a specific columnyj. Moreover,¥'[p] is defined as the element ofY. For instance,
¥, ={D1,N1,U1} is the possible set of symbols in column 1 &&id2] = N1.

In this setting, consider also tiset of stringsS; = {51, ..., S|} obtained by map-
ping each row A, in matrix A to string .S; such thatS;[j] = f(A;,j). Each stringS;
has exactlyC| symbols which correspond to the symbols in rdy. After this transfor-
mation, the middle matrix in Figure 1 becomes the right matrix in Figure 1.

2.3. Biclusters in Gene Expression Data

Consider now the matrix, corresponding to the discretized version of mattix This
matrix is defined by the discretized versions of the set of rows and the set of columns in
A" {Aic,1 <i<|R|} and{AR;,1 < j < |C|}. LetI C RandJ C C be subsets of the
rows and columns, respectively. Theh,; = (I, J) is a submatrix ofd that contains only

the elementsi;; belonging to the submatrix with set of rowisand set of columngd.

Definition 2.6. A bicluster is a subset of rows that exhibit similar behavior across a subset
of columns, and vice-versa. The biclustéf; is thus a subset of rows and a subset of
columns wherd = {iy,...,ix} is a subset of the rows iR (I C R andk < |RJ), and

J = {j1,...,4s} is a subset of the columns ifi (J C C ands < |C]). As such, the
biclusterA; ; can be defined asfaby s submatrix of matrixA.

Given this definition and a data matriA;, or its discretized versiord, the goal of bi-
clustering algorithms is to identify a set of biclustéts = (I, Ji) such that each bicluster
satisfies specific characteristics of homogeneity. These characteristics vary from approach
to approach enabling the discovery of many types of biclusters by analyzing directly the
values in matrix4 or using its discretized versidh In this paper we will deal with biclus-
ters that exhibit coherent evolutions, characterized by a specific property of the symbols in
the discretized matrix. We are interested in column coherent biclusters:

Definition 2.7. A CC-Bicluster, column coherent bicluster s, is a subset of row$ =
{i1,...,1;} and a subset of columns= {j,...,js} from the matrixA such that4,; =
A, foralli,l e ITandj € J.

2.4. Biclusters in Time-Series Gene Expression Data

When analyzing time-series gene expression data we can restrict the attention to biclusters
with contiguous columnd-'7-8, This leads us to the definition of CCC-Bicluster and other
relevant definitions related to it (already defined in previous Wyksuch as, trivial CCC-
Biclusters and row-maximal, left-maximal, right-maximal, and maximal CCC-Biclusters:

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

Definition 2.8. A CCC-Bicluster, contiguous column coherent biclustdr; ;, is a subset
of rowsT = {4y, ...,4x} and acontiguoussubset of columnd = {r,r +1,...,s— 1, s}
from matrix A such thatd,; = A;;,Vi,l € I andj € J.

In this settings, each CCC-Biclustdr;; defines a strings corresponding to a con-
tiguousexpression patternthat is common to every row in the CCC-Bicluster, between
columnsr ands of matrix A. This means there exists a strifg= S;[r...s],Vi € I.

Definition 2.9. A CCC-BiclusterA;; istrivial if it has only one row or only one column.

Definition 2.10. A CCC-BiclusterA;; is row-maximal if no more rows can be added to
its set of rowsl while maintaining the coherence property in Def. 2.8.

Definition 2.11. A CCC-BiclusterA;; isright-maximal if its expression patter cannot
be extended to the right by adding one more symbol at its end (the column contiguous to
the last column ofd;; cannot be added t® without removing genes fror).

Definition 2.12. A CCC-BiclusterA; ; is left-maximal if its expression patter§ cannot
be extended to the left by adding one more symbol at its beginning (the column contiguous
to the first column ofd; ; cannot be added té without removing genes from).

Given the three definitions above we can intuitively say that a maximal CCC-Bicluster
is a CCC-Bicluster that is row-maximal, left-maximal and right-maximal. This means that
no more rows or contiguous columns (either at right or at left) can be added to it while
maintaining the coherence property in Def. 2.8.

Definition 2.13. A CCC-BiclusterA;; is maximal if no other CCC-Bicluster exists that
properly contains it, that is, if for all other CCC-Biclustets ,;, I C LandJ C M =
I=LANJ=M.

Given these definitions we can now define the type of biclusters we are interested in
this work,e-CCC-Biclusters and maximatCCC-Biclusters:

Definition 2.14. An e-CCC-Bicluster, contiguous column coherent bicluster witlrrors,
Ay, is a CCC-Bicluster where all the stringsthat define the expression patterns of each
of the genes il are in thee-Neighborhood of an expression pattefrthat defines the
e-CCC-Bicluster, that isS; € N(e,|S|),Vi € I. The definition of0-CCC-Bicluster is
equivalent to the definition of a CCC-Bicluster (Def. 2.8).

Definition 2.15. An e-CCC-Bicluster,A; 7, ismaximal if it is row-maximal, left-maximal
and right-maximal. This means that no more rows or contiguous columns can be added to
it while maintaining the coherence property in Def. 2.14.

The goal of thee-CCC-Biclustering algorithm we propose in this work can now be
defined: find and report all maximelCCC-Biclusters given a discretized versidrof the
original gene expression matrix..

2.5. Related Work on Biclustering Algorithms for Time-Series Expression Data

Although several algorithms have been proposed to address the general problem of
biclustering®, to our knowledge, only three recent proposals have addressed this problem

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

in the specific case of time-series expression'data’.

Zhang et. a” proposed to modify the heuristic algorithm of Cheng and Chyrch
by restricting it to add and/or remove only columns that are contiguous to the partially
constructed bicluster thus forcing the resulting bicluster to have only contiguous columns.
Multiple biclusters are identified (as in the approach of Cheng and Church) by masking
the biclusters found so far with random values. This method has one strong limitation,
however. The greedy row and column addition and removal, that is already likely to find
sub-optimal biclusters in general expression data, does not work well in time-series gene
expression data. In fact, the restriction imposed on the columns that can be removed makes
the algorithm converge, in many cases, to a local minimum, from which it does not escape.

A different approach, from Ji and T&nalso works with a discretized data matrix.
As in CCC-Biclustering!, an O(|R||C|) algorithm that has been recently proposed and
that will be described in the end of this section) they are also interested in identifying bi-
clusters formed by consecutive columns. Therefore, their idea generates exactly the same
biclusters as the ones generated by CCC-Biclustering. With an appropriate implementa-
tion (not described by the authors) their sliding window approach can have its complexity
reduced toO(|R||C|?), a complexity that is still of the order | higher than that of
CCC-Biclustering. However, they propose to use a naive algorithm that, as made available
by the author§, requires time and space exponential on the number of columns, when ap-
plied to the generation of all CCC-Biclusters. In practice, it cannot be applied to generate
biclusters with more thaih0 or 11 time-points.

CCC-Biclustering!, finds and reports all CCC-Biclusters in time linear on the size of
the expression matrix by manipulating a discretized verdiarfi the original matrix4” and
using string processing techniques based on suffix treesT lbet the generalized suffix
tree obtained from the set of strin§btained after the matrix transformation explained in
Sec. 2.2. Leb be a node of” and letP(v) be thepath-length of v, that is, the number of
symbols in the string that labels the path from the root to nogbath-label). Additionally,
let E(v) be theedge-lengthof v, that is the number of symbols in the edge that leads to
v (edge-labe), and L(v) the number of leaves in the sub-tree rooted,ah casev is an
internal node. The CCC-Biclustering algorithm is based on the following theorem:

Theorem 2.1. Let v be a node in the generalized suffix tf€e If v is an internal node,
thenv corresponds to a maximal CCC-Bicluster Iifv) > L(u) for every nodeu such
that there is a suffix link from to v. If v is a leaf node, them corresponds to a maximal
CCC-Bicluster iff the path-length of, P(v), is equal to|.S;| and the edge-label of has
symbols other than the string terminator, that#s(v) > 1. Furthermore, every maximal
CCC-Bicluster in the matrix corresponds to a nadeatisfying one of these conditions.

Figure 2 illustrates that every node in the generalized suffix tree corresponds to one
CCC-Bicluster. However, the rules in Theorem 2.1 have to be applied to extract only the
maximal. In this case (no errors allowed) each CCC-Biclusteeigect in the sense of
having no errors, and is identified by exactly one node in the suffix-tree. We will see that
this is no longer true when our goal is to extra€€CC-Biclusters witke > 0.

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

3 N5 U4 N3N2
VaN2 ClC2 C3C4C5

G1
G2
G3
G4

B1=({ G1,G2,G4} {C2,C3,C4})
B2=({ G1,G3} {C4,C5})

Figure 2. (Left) Generalized suffix tree for the right matrix in Figure 1 used by CCC-Biclustering. The circles
identify the Maximal Non-Trivial CCC-Biclusters (B1 and B2). (Right) The CCC-Biclusters B1 and B2 are
showned in the matrix as subsets of rows and colu(ing). The stringsm =[U2 D3 U4] andm =[U4 N5]
correspond to the expression patterns of B1 and B2, respectively (called valid models/motifs in Section 3.1).

3. Finding and Reporting all Maximal e-CCC-Biclusters
3.1. Finding e-CCC-Biclusters and the Common Motifs Problem

SPELLERS? is an algorithm that extracts common motifs from a seNa$equences using

a generalized suffix tree. The motifs searched correspomebtds which occur with at

moste mismatches in < ¢ < N distinct sequences. The words representing the motifs

may not be present exactly in the sequences (see SPELLER for details). Asmuatii a

is seen as an “external” object and denoted by the teodel. In order to be considered a

valid model, a given modetn of length|m| has to verify theguorum constraint, that is, it

must belong to the-neighborhood of a word), N (e, w), in at leasy; distinct sequences.
Thecommon motifs problemis as follows?: given a set ofV sequences; (1 < i <

N), and two integers > 0 and2 < ¢ < N, wheree is the number of errors allowed and

is the required quorum, find all modeis that appear in at leastdistinct sequences &f;.
SPELLER solves the problem above starting by building a generalized suffi4'tree

of the sequenceS; and then, after some further preprocessing, using this tree to “spell”

the valid models. When = 0 spelling this models leads to a nodén 7" such thatZ(v)

is at leastg (similarly to CCC-Biclustering). When errors are allowed, spelling all the

occurrences of a model leads to a set of nodes,...v, in T for which Z?Zl L(vj;) is

at leastq'®. Since in SPELLER the occurrences of a modekre in fact nodes of the

generalized suffix tre@, they are called node-occurrences:

Definition 3.1. A node-occurrenceof a modelmn is a triple @, ve,, p), Wherev is a node
in the generalized suffix tree.... is the number of mismatches betweenand the path-
label from theroot to nodev andp identifies a position in the generalized suffix tree: if
p = 0, we are exactly at node if p > 0 we are at a point between two symbols itubel,,
(1 < p < |labely|), whereb is the edge between nodgsther, andv.

The goal of SPELLER is to identify all valid models by extending them in the gener-

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

alized suffix tree and to report the results using their set of node-occurrences. Note that in
SPELLER, a node-occurrence is defined by a paiv....) and not by a triplgv, vy, p)
(for simplicity, the algorithm was exemplified in an uncompacted version of the generalized
suffix tree, that is, a trie). However, as pointed out by the author, when using a generalized
suffix tree, as we do, we need to know whether we are at anodat edge between two
nodes. Moreover, when we traverBavith a symbola we also need to know if we get to
a nodew or if we stay inside an edge We usep to deal with these questions.

Consider thatn is a modelq is a symbol i, v is a node ifl", father, is its father,
b is the edge betweefuther, andv andlabel, is the edge-label df with length|iabel,|.
The algorithm we propose is based on the following Lemmas (adapted from SPELLER):

Lemma 3.1. (v, verr, 0) is @ node-occurrence of a model’ = ma, if, and only if: (1)

(fathery, verr, 0) is @ node-occurrence of andlabely, is « OF (v, Verr, |labelp| — 1) is @
node-occurrence ofi and the last symbol itubel, is o (match), (2) (father,, veq—1,0)

is a node-occurrence of. andlabely is 5 # a OF (v, Verr — 1, |labely] — 1) is @ node-
occurrence ofn and the last symbol itubel, is 3 # « (substitution)

Lemma 3.2. (v, verr, 1) is @ node-occurrence of a model’ = ma, if, and only if: (1)
(father,,verr,0) is a node-occurrence ofr and the first symbol itabel;, is o (match)
(2) (fathery,, ver» —1,0) is @ node-occurrence of. andlabel,[1] = 5 # « (substitution)

Lemma 3.3. (v, Verr, D), 2 < p < |labelp| is a node-occurrence of a model = ma, if,
and only if: (1) (v, verr, p — 1) is @ node-occurrence ofr andlabel,[p] = o (Match) (2)
(v,verr — 1,p — 1) is @ Nnode-occurrence of andlabely[p] = 8 # o (substitution)

SPELLER can be adapted to extract all right-maxim@ICC-Biclusters from the trans-
formed matrix A. In fact, given the set ofR| strings S; of Section 2.2,e > 0 and
1 < ¢ < |R|, what we want to find is the set of all models (identifying expression
patterns) that are present in at leastistinct rowsS; starting and ending at the same
columns The set of node-occurrences of each madeand the model itself identifies
onee-CCC-Bicluster with a maximum lengtf’|. Furthermore, it is possible to find all
maximale-CCC-Biclusters (without restricting the number of genes) by settitegl.

Figure 3 shows the generalized suffix tree used by SPELLER whenl ande = 1
and two maximall-CCC-Biclusters (B1 and B2) identified by two valid models. It is also
possible to observe this fact in the matrix in Figure 4 where it is also clear that a model can
be valid without being right/left maximal. Additionally, several valid models may identify
the same:-CCC-Bicluster, wher > 1. For examplem=[N1 U2 D3] is valid but it is not
right-maximal,m=[N2 D3 U4 N5] is also valid but it is not left-maximal, and finally the
modelsm = [D1 U2 D3 U4 D5] andn=[D1 U2 D3 U5 N5] are both valid but identify the
samel-CCC-Bicluster (B1). Similarlym = [U2 D3 U4 D5],m = [U2 D3 U4 N5] andm
=[U2 D3 U4 U5] are all valid models that represent B2.

The next section explains how SPELLER was adapted to extract exactly one valid
model for each maximad-CCC-Bicluster.

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

$3 N5 U4 N3 N2

no AN

PP

Figure 3. Generalized suffix tree for the right matrix in Figure 1 uses@TC-Biclustering whe > 0 (when
e = 0 the suffix tree used is in Figure 2). The circles B1 and B2 identify Iv@CC-Biclusters (see Figure 4)

Cl C2 C3 C4 C5 Cl1 C2 C3 C4 C5

Gl [N1 U2 D3 U4 N5 Gl N

G2 | D1 U2 D3 U4 D5 G2 D1 U2 D3 U4 D5

G3 N1 N2 N3 U4 N5 G3 N1 N2 N3 U4 N5

G4 Ul U2D3 U4 U5 G4 U
B1=({G1,G2} {C1,C2,C3,C4,C5}) B2=({G1,G2,G4} {C2,C3,C4,C5})

Figure 4. (Left) Maximall-CCC-Bicluster corresponding to the valid model/metif= [D1 U2 D3 U4 D5].
(Right) Maximal1-CCC-Bicluster corresponding to the valid model/maetif= [U2 D3 U4 D5]. Note that these
two 1-CCC-Biclusters correspond, respectively, to two and three node-occurrences (B1 and B2) in Figure 3.

3.2. Algorithm Description

This section presentssCCC-Biclustering (see Algorithm 1) and describes its main steps.

The first step stores all valid models, and its nhode-occurrence@¢c,,, that corre-
spond to right-maximad-CCC-Biclusters in the listrodelsOcc. In order to do this it uses
an adaptation of SPELLER with two basic changes:

(1) Check if a modein corresponds to a right-maximal CCC-Bicluster using the pro-
cedureCHECKRIGHTMAXIMALITY which works as follows: if one of the models that
result from the extension of a model with a symbola, ma, is also a valid model and
has as many genes in its node-occurrences as its fathénenm does not correspond
to a right maximal CCC-Bicluster. As such, it is removed from the stored models. In
order to compute the genes in the node-occurrences of a modieturned as a bit vec-
tor, genesOcc,,), the functioncoMPUTEGENESOce,,,) performs a bitwise or between
the bit vectorseolors, of all node-occurrences (v.,., p) of m in casee > 0, and uses
the functionNUMBEROFL EAVES(v) in casee = 0 (in this caseOcc,, has only one node-

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

10

occurrence). The functioRUMBEROFGENEYgenesOcc,,) is then used to compute the
number of genes.

(2) The extensionsExt,,, of a given modeln are restricted according to the level
of the model in the suffix tree. For exampleif = {D, N, U} and modelmn is being
extended descending from the roet,can only ben = D1, m = N1 orm = U1, and the
possible symbols with which it can be extended ta« are inX, = {D2, N2, U2}.

Algorithm 1 : Algorithm to Find and Report all Maximal e-CCC-Biclusters

input: A, 3, e, q

S e—{S1,....Sir}, Sild] = f(Aij,5), 1 <i < |Rland 1 < j < |C]
Tright «— CONSTRUCTGENERALIZEDSUFFIXTREE (S)
ADDNUMBEROFLEAVES(Tign) //Adds L(v) to each node in T.;gn¢.
m «— " [Imodel m is a string[my....m;,]
length,, «— 0
fathery, «——*" Il father, is a string[my...mn,|—1]
numberO fGenesOccyather,, +— 0
Ocep, «— {ROOT(T}ignt),0,0)} //Set of node-occurrences of model
modelsOcc «— {} lIList of (m, Ocey,, genesOcey,, numberO fGenesOccy,).
if e =0then

Ext,, — {}

forall edges leaving NnodeROOT(T;; 41) dO

if labely[1] is not a string terminatothen
Ext,, «— Ext,, Ulabely[1] IExt,, is the set of possible symbalsto

extend the modeh.
else

ADDCOLORARRAY(1yi4n:) ITAddscolors, to each node in 1.ign:
lleolors,[i] = 1, if there is a leaf in the subtree rootedvethat is a suffix ofS;.
llcolors,[i] = 0, otherwise.

Ext,, «— Y’
SPELLMODELS (%, e, q, length,,, m, Occy,, Ext,,, father,,,

numberO fGenesOccather,, , modelsOcc)

DELETEMODELSNOTLEFTMAXIMAL BICLUSTERYmodelsOcc)

if e > 0then
DELETEMODELSREPRESENTINGSAMEBICLUSTERYmodelsOcc)

REPORTMAXIMAL BICLUSTERYmodelsOcc)

The second step removes from the models storeebidel sOcc (right-maximale-CCC-
Biclusters) those not corresponding to left maxire@l CC-Biclusters. Non left-maximal
biclusters are removed by first building a trie with the reversed patterns of all medels
and storing the number of genesGiic,, in its corresponding node in the trie. After this,
it is sufficient to mark as non-maximal any node in the trie that has at least one child

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

11

with as many genes as itself. This is easily achieved by performing a DFS of the trie and
computing, for each node, the maximum value of all its children.

In the case where errors are allowed, different models may identify the same e-CCC-
Bicluster. The third step uses an hash tree to remove framklsOcc (maximale-CCC-
Biclusters) repeated-CCC-biclusters. The idea is that all modetswith equal first and
last columns and set of genes represent the same maximal CCC-Bicluster.

Finally, all maximale-CCC-Biclusters innodelsOcc are reported.

3.2.1. e-CCC-Biclustering with Restricted Errors

The e-CCC-Biclustering algorithm presented above allows general errors, that is substitu-
tions of the symbols4;; of the CCC-BiclustetB = (I, J) by any of the symbols in the
alphabetzg exceptA;;. This kind of errors are specially relevant to identify measure-
ment errors that occurred during the microarray experiments. However, if we are specially
interested in identifying discretization errors we can consider restricted errors, that is, sub-
stitutions of the symbolsl;; by the lexicographically closer symbols if.

For example, when general errors are allowgd; {D, N,U}, andm = [U2 D3 U4
D5], symbol D5 can be substituted by N5 and US3if leading to thel-CCC-Bicluster
B2=({G1,G2,G4,{C2,C3,C4,C5) in Figure 3 and Figure 4(b). However, if only restricted
errors were allowed, symbol D5 could only be substituted by N5 leading té-tb€C-
Bicluster B={G1,G2,{C2,C3,C4,C5).

In general, when restricted errors are considered, the allowed substitutions for any sym-
bol A4;; are inZQR"‘St ={¥p—-1],.... % p -2, ¥ [p+1],..., % [p + 2]}, wherep is
the position ofA;; in ¥ andz € {1,...,|C|}. If z = [C| then the errors are not restricted.

It is easy to modify Algorithm 1 to restrict the allowed errors.

3.2.2. Complexity Analysis

The construction off.;,,; and the computation of(v) for all its nodes takeD(|R||C)

time each, using the Ukkonen'’s algorithm with appropriate data structures, and a DFS,

respectively. Adding the color array to all nodeglin,;. (needed only whea > 0) takes

O(|R|?|C]) time, and the remaining procedures in the algorithm @kgR|?|C|1T¢|X|¢)

time each. Therefore, the complexity @CCC-Biclustering isO(| R|?|C|**¢|X|¢), when

general errors are allowed, aod| R|?|C|'T¢|xEest|¢), in the case of restricted errors.
Whene = 0, Theorem 2.1 and CCC-Biclusteriligcan be used to obtaid(| R||C|).

4. Experimental Results

In order to validate the quality of the results of th€ CC-Biclustering algorithm we used
the yeast cell-cycle dataset publicly availahigescribed by Tavazoie et &l.and processed
by Cheng and Churéh This dataset contains the expression profiles of more ¢han
yeast genes measured 1at time-points over two complete cell cycles. We usig4
genes selected by Cheng and Chdr@s in Tavazoie et dF) and removed the genes with
missing values. The matrix with the remaini2gt8 genes was discretized usingegual

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

12

frequency intervalsWe have also usesimnoothingas a preprocessing step to discretization
with a window of size 5 and the set of weightts = {0.05,0.2,0.5,0.2,0.05}.

Aij = z;u_w ﬂj—‘rkA;;(j_,_k) (1)

Smoothing has been used by a number of authors in order to reduce the effect of exper-
imental errors in the gene expression le¥éls. In order to minimize these errors each
expression valuel;; in matrix A" is smoothed using Equation (1), whe¥e + 1 is the
window size. The values;, are the weights given to the expressions values aroljnh
a window of sizew + 1. These values control how much smoothing is applied to the data.

After the discretization process, we applie€€CC-Biclustering withe = 1 with re-
stricted errors and = 1 (see Section 3.2.1) to the discretized matrix described above.
We have also computed the results wleea 0. We argue that allowing errors in the pat-
tern of the0-CCC-biclusters found b@-CCC-Biclustering should improve the biological
significance of the biclusters by minimizing the effect of possible discretization errors. In
fact, in the specific case of allowingerror in the pattern of & CCC-Bicluster one of
the following three situations can happen: (1) 1hR€ CC-Bicluster remains equal to the
CCC-Bicluster; (2) one or more genes excluded from@&CC-Bicluster (due to a single
error) could be added to theCCC-Bicluster; or (3) the pattern of tleeCCC-Bicluster
could be extended by adding one column either at its beginning or at its end (leading to a
1-CCC-Bicluster with as many genes as (RECC-Bicluster but with one more column).

In order to validate the biological relevance of te€CC-Biclusters discovered we
used the Gene Ontology (GO) annotations and associations files together with Ontologizer
2.0'2. The goal was to evaluate the biological significance by computing p-values obtained
when the hyper-geometric distribution is used to model the probability of observing at least
k genes, from a CCC-Bicluster witli| genes, by chance, in a GO category containing
genes from the total number of genéB|) in each dataset. We used the functions from the
three GO categories, biological process, molecular function and cell component.

We used the following procedure to validate the thesis that allowing errors in the CCC-
Biclusters can improve the quality of the results: for eBgDCC-Bicluster with at least 4
genes and 2 conditions, we computed the humber of GO functions enriched, in a statisti-
cally significant way, after Bonferroni correction, and stored this value together with the
p-value of the most enriched function, that is, the lower GO p-value CTBEC-Biclusters
were sorted according to their statistical significance. This significance was computed by
evaluating the probability that a bicluster of that size appeared by chance in a matrix where
the symbols are generated by a Markov chain, whose transition probabilities are obtained
from the values in the matrix. Biclusters that were redundant, since their similémity
biclusters already reported was above 50%, were removed from the analysis. We have then
computed thd-neighborhood of the pattern of the top A CC-Biclusters’

aThe similarity was measured by the number of common genes and conditions.
bThis computation, although simple, is not described in this paper, since the purpose of this analysis is to evaluate
the relative quality oD-CCC-Biclusters and-CCC-Biclusters regarding their biological significance.

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in

apbc221

13

Table 1. Comparison between the top@CCC-Bicluster (sorted according to the statistical p-value) and the best
1-CCC-Bicluster found by the 1-CCC-Biclustering algorithm whose patternlisiaighbor of the CCC-Bicluster
without errors. Column 6 shows the best p-value computed using the hypergeometric distribution and the Gene
Ontology, column 7 shows the Bonferroni correction of the previous value and finally column 8 shows the number of
GO functions that are significantly enriched after Bonferroni correction (corrected p-value smaller or equal to 0.01).

ID | e PATTERN CONDITIONS #GENES PVALUE CORRECTION #FUNCTIONS
2237 | 0 DDNNNDD 11-17 164 2.8E-12 2.6E-9 11
58537 | 1 DDNNDDD 11-17 531 1.1E-16 1.2E-17 17
767 | O UNDDDNNNDD 8-17 81 2.2E-11 1.5E-8 9
18544 | 1 UUDDDNNNDD 8-17 108 1.7E-14 1.3E-11 15
3041 | O NNNDD 13-17 340 1.2E-11 1.2E-8 9
63752 | 1 DNNNDD 12-17 343 3.5E-16 4.8E-13 17
260 | 0 | UUUNDDDNNNDD 6-17 57 1.4E-8 1.7E.7 7
11361 | 1 | UUUNDDDNNNDD 6-17 144 6.1E-13 5.2E-10 12
3220 | O NDD 15-17 772 3.5E-8 7.1E-5 3
68222 | 1 DDD 15-17 1321 2.2E-10 5.4E-7 7
3071 | O UNNDD 13-17 164 1.0E-5 1.1E-1 0
63773 | 1 DUNNDD 12-17 249 1.1E-9 1.4E-6 12
3035 | 0 NDDDD 13-17 161 3.6E-4 3.7E-1 0
66652 | 1 NNDDD 13-17 608 2.2E-9 4.0E-6 11
3217 | O DDD 15-17 492 2.2E-4 3.9E-1 0
68222 | 1 DDD 15-17 1321 2.2E-10 5.4E-7 7
627 | O NNDDDNNNDD 8-17 65 8.1E-4 4.1E-1 0
24875 | 1 NNDDDNNNDD 8-17 165 6.5E-14 6.0E-11 14
3191 | O UUND 14-17 183 1.0E-3 9.3E-1 0
66883 | 1 UUUND 13-17 311 4.6E-7 5.9E4 6

Table 1 reports these results. Each row contains®e@€C-Bicluster followed by the
best1-CCC-Bicluster, as measured by the number of GO functions enriched. These results
show that the-CCC-Biclusters tend to have higher biological significance, since their sets
of genes are more significantly enriched than those of the®EsEC-Biclusters. Even
in cases where th@ CCC-Bicluster does not pass the statistical test for biological signifi-
cance, there existslaCCC-Bicluster in itsl-neighborhood that has biological significance.

For lack of space, we do not report here additional results that support the view that
e-CCC-Biclusters are biologically more relevant than perfect CCC-Biclusters.

5. Conclusions and Future Work

In this work, we presented and analyzed a new algoritts@CC-Biclustering, for the
identification of groups of genes that exhibit similar activities in a subset of conditions, in
time-series expression data. The algorithm finds and reports, in time polynomial on the

October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

14

size of the matrix, ale-CCC-Biclusters that correspond to these groups of genes. By se-
lecting thee-CCC-Biclusters that are statistically more significant, it is possible to identify
potentially relevant biological processes. The algorithm avoids the limitations that previous
methods exhibit since they cannot consider genes that have small deviations from the cen-
tral pattern of expression. Moreover, the results demonstrate that this approach identifies
biclusters that are biologically more significant than those identified by existing algorithms.
In future work, we plan to build a graphical user interface40CC-Biclustering, make

it available to the scientific community, and use the algorithm to identify regulatory mod-
ules (sets of co-regulated genes that share a common function) in gene regulatory networks.

References

1. A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene expression
data: The order—preserving submatrix problenPtac. of the 6th International Conference on
Computacional Biologypages 49-57, 2002.

2. T.Chen, V. Filkov, and S. Skiena. Identifying gene regulatory networks from experimental data.
In Proceedings of the 3rd International Conference on Research in Computational Molecular
Biology, pages 99-103, 1999.

3. Y. Cheng and G. M. Church. Biclustering of expression data - supplementary information.
http://arep.med.harvard.edu/biclustering/, [July 15, 2006].

4. Y. Cheng and G. M. Church. Biclustering of expression dat&ruc. of the 8th International
Conference on Intelligent Systems for Molecular Biolqgages 93-103, 2000.

5. D. Gusfield.Algorithms on strings, trees, and sequend@smputer Science and Computational
Biology Series. Cambridge University Press, 1997.

6. P.De Boeck I. Van Mechelen, H. H. Bock. Two-mode clustering methods: a structured overview.
Statistical Methods in Medical Researd8(5):979-981, 2004.

7. L.Jiand K. Tan. Identifying time-lagged gene clusters using gene expression data - supplemen-
tary information. http://www.comp.nus.edu.sgiliping/p2.htm, [July 15, 2006].

8. L.Jiand K. Tan. Identifying time-lagged gene clusters using gene expressiomBatatéormat-
ics, 21(4):509-516, 2005.

9. A. Kwon, H. Hoos, and R. Ng. Inference of transcriptional regulation relationships from gene
expression data&ioinformatics 19(8):905-912, 2003.

10. S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: a survey.
IEEE/ACM Transactions on Computational Biology and Bioinformati€s):24-45, 2004.

11. S. C. Madeira and A. L. Oliveira. A linear time biclustering algorithm for time series expression
data. InProc. of 5th Workshop on Algorithms in Bioinformatipmages 39-52. Springer Verlag,
LNCS/LNBI 3692, 2005.

12. U. Bohme B. Beattie P. N. Robinson, A. Wollstein. Ontologizing gene-expression microarray
data: characterizing clusters with gene ontold@jginformatics 20(6):979-981, 2004.

13. M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tréeodn of
Latin'98, pages 111-127. Springer Verlag, LNCS 1380, 1998.

14. A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene ex-
pression dataBioinformatics 18(1):136—144, 2002.

15. S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic determina-
tion of genetic network architecturBature Genetics22:281-285, 1999.

16. E. Ukkonen. On-line construction of suffix treédgorithmica 14:249-260, 1995.

17. Y. Zhang, H. Zha, , and C. H. Chu. A time-series biclustering algorithm for revealing co-
regulated genes. IAroc. of the 5th IEEE International Conference on Information Technology:
Coding and Computingpages 32—-37, 2005.

