
October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

AN EFFICIENT BICLUSTERING ALGORITHM FOR FINDING GENES WITH
SIMILAR PATTERNS IN TIME-SERIES EXPRESSION DATA ∗

SARA C. MADEIRA

INESC-ID / IST
University of Beira Interior

Rua Marqûes D’Ávila e Bolama, 6200-001 Covilhã, Portugal
E-mail: smadeira@di.ubi.pt

ARLINDO L. OLIVEIRA

INESC-ID / IST
Rua Alves Redol, 9, 1000-039 Lisbon, Portugal

E-mail: aml@inesc-id.pt

Biclustering algorithms have emerged as an important tool for the discovery of local patterns in gene
expression data. For the case where the expression data corresponds to time-series, efficient algorithms
that work with a discretized version of the expression matrix are known. However, these algorithms
assume that the biclusters to be found are perfect, in the sense that each gene in the bicluster exhibits
exactly the same expression pattern along the conditions that belong to it. In this work, we propose
an algorithm that identifies genes with similar, but not necessarily equal, expression patterns, over a
subset of the conditions. The results demonstrate that this approach identifies biclusters biologically
more significant than those discovered by other algorithms in the literature.

1. Introduction

Several non-supervised machine learning methods have been used in the analysis of gene
expression data. Recently, biclustering4, a non-supervised approach that performs simulta-
neous clustering on the row and column dimensions of the data matrix, has been shown to
be remarkably effective in a variety of applications. The advantages of biclustering (when
compared to clustering) in the discovery of local expression patterns have been extensively
studied and documented4,14,1,6,10. These expression patterns can be used to identify rel-
evant biological processes involved in regulatory mechanisms. Although, in its general
form, biclustering is NP-complete, in the case of time-series expression data the interesting
biclusters can be restricted to those with contiguous columns leading to a tractable problem.

In this context, CCC-Biclustering11 is a recent proposal of an algorithm that finds and
reports all maximal contiguous column coherent biclusters (CCC-Biclusters) in time lin-
ear on the size of the expression matrix by manipulating a discretized matrix using string

∗This work was partially supported by projects POSI/SRI/47778/2002, BioGrid and POSI/EIA/57398/2004,
DBYeast, financed by FCT, Fundação para a Cîencia e Tecnologia, and the POSI program.

1



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

2

processing techniques based on suffix trees. Each expression pattern shared by a group of
genes in a contiguous subset of time-points is a potentially relevant biological process.

However, discretization may limit the ability of the algorithm to discover biologically
relevant patterns due to the noise inherent to most microarray experiments. To overcome
this problem we present a new algorithm,e-CCC-Biclustering, that finds CCC-Biclusters
with up to a given number of errors per gene in their expression pattern (e-CCC-Biclusters).
These errors can, in general, be substitutions of a symbol in the expression pattern by other
symbols in the alphabet (measurement errors), or restricted to the lexicographically closer
discretization symbols (discretization errors).

We present results using a well known gene expression dataset that support the view
that allowing errors in CCC-Biclusters improves the ability of the algorithm to discover
more relevant biological processes, either by adding genes to the CCC-Bicluster that had
been excluded due to errors, or by adding columns (up to the number of errors allowed)
either at the left or at the right of the expression pattern of CCC-Bicluster.

The paper is organized as follows: Section 2 presents definitions needed to state the
problem and construct the algorithm, as well as related work on biclustering in time-series
expression data. Section 3 presents the algorithm and Section 4 describes the experimental
results. Finally, Section 5 states some conclusions and outlines future work.

2. Definitions and Related Work

2.1. Strings and Suffix Trees

This section revises basic concepts about strings and suffix trees that will be needed
throughout the paper.

Definition 2.1. A string S is an ordered list of symbols (over an alphabetΣ) written con-
tiguously from left to right5. For any stringS, S[i..j] is its (contiguous)substring starting
at positioni and ending at positionj. Thesuffix of S that starts at positioni is S[i..|S|].
Definition 2.2. Thee-Neighborhoodof a stringS of length|S| (e ≥ 0) defined over the
alphabetΣ, N(e, S), is the set of stringsSi, such that:|S| = |Si| andHamming(S, Si) ≤
e. This means that the Hamming distance betweenS andSi is no more thane, that is, we
need at moste substitutions to obtainSi fromS. The e-Neighborhood of a stringS contains
the following number of elements:ν(e, |S|) =

∑e
j=0 C

|S|
j (|Σ| − 1)j ≤ |S|e|Σ|e.

Definition 2.3. A suffix tree of a stringS is a rooted directed tree with exactly|S| leaves,
numbered1 to |S|. Each internal node, other than the root, has at least two children. Each
edge is labeled with a nonempty substring ofS (edge-label), and no two edges out of a
node have edge-labels beginning with the same character. Its key feature is that for any leaf
i, the label of the path from the root to the leaf (path-label) spells out the suffix ofS starting
at positioni. Each leaf is identified by the starting position of the suffix it corresponds to.

In order to enable the construction of a suffix tree obeying this definition when one
suffix of S matches a prefix of another suffix ofS, a character terminator, that does not
appear anywhere else in the string, is added to its end.



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

3

Definition 2.4. A generalized suffix treeis a suffix tree built for a set of stringsSi. Each
leaf is now identified by two numbers, one identifying the string and the other the suffix.

Suffix trees (generalized suffix trees) can be built in time linear on the size of the string
(sum of the sizes of the strings), using several algorithms5. Ukkonen’s algorithm16, used
in this work, usessuffix linksto achieve a linear time construction. An example of a gener-
alized suffix tree built for the set of strings that correspond to the rows of the right matrix
in Figure 1 is presented in Figure 2.

Definition 2.5. There is asuffix link from nodev to nodeu, (v, u), if the path-label of
nodeu represents a suffix of the path-label of nodev and the length of the path-label ofu

is equal to the length of the path-label ofv minus 1.

2.2. Gene Expression Data and Matrix Discretization

Let A′ be a gene expression matrix defined by its set of rows (genes),R, and its set of
columns (conditions),C. In this context,A′ij represents the expression level of genei

under conditionj, which is usually a real value corresponding to the logarithm of the
relative abundance of mRNA in genei under conditionj. Let A′iC andA′Rj denote rowi

and columnj of matrixA′, respectively. Moreover, consider that|R| is the number of rows
and|C| is the number of columns inA′.

In this work, we are interested in the case where the gene expression levels inA′ can
be discretized to a set of symbols of interest,Σ, that represent distinct activation levels.
In the simpler case,Σ may contain only two symbols, one used forno-regulationand
other forregulation. Another widely used possibility, is to consider a set of three symbols,
{D, N, U}, meaningDownRegulation, NoChangeandUpRegulationIn other applications,
the values in matrixA′ may be discretized to a larger set of symbols. After discretization,
A′ is transformed into matrixA andAij ∈ Σ represents the discretized value ofA′ij .

G1

G4

G3

G2

C1 C2 C3 C5C4

N U D U N

D U D U D

N N N U N

U U D U U

G1

G4

G3

G2

C1 C2 C3 C5C4

0.07 0.73 −0.54 0.45 0.25

−0.34 0.46 −0.38 0.76 −0.44

0.22 0.17 −0.11 0.44 −0.11

0.70 0.71 −0.41 0.33 0.35

G1

G4

G3

G2

C1 C2 C3 C5C4

N1 U2 D3 U4 N5

D1 U2 D3 U4 D5

N1 N2 N3 U4 N5

U1 U2 D3 U4 U5

Figure 1. Toy example: (left) original expression matrix, (middle) discretized matrix and (right) discretized
matrix after alphabet transformation.

Figure 1 (middle) represents a possible discretization of the expression values in the
left matrix in the same figure. In this example, the alphabetΣ = {D, N, U} was used and
an expression level was considered asNoChangeif it falls in the range[−0.3, 0.3].

Consider now thealphabet transformation that consists, essentially, in appending
the column number to each symbol in the matrix. This corresponds to considering a new
alphabetΣ′ = Σ × {1, . . . , |C|}, where each elementΣ′ is obtained by concatenating
one symbol inΣ and one number in the range{1 . . . |C|}. In order to do this we use a



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

4

function f : Σ × {1, . . . , |C|} defined byf(a, k) = a|k, wherea|k represents the char-
acter inΣ′ obtained by concatenating the symbola with the numberk. For example, if
Σ = {D, N, U} and |C| = 3, thenΣ′ = {D1, D2, D3, N1, N2, N3, U1, U2, U3}. As
examples,f(D, 2) = D2 andf(U, 1) = U1.

Consider also thatΣ is always given in lexicographic order. The functionfj : Σ× {j}
defined byfj(a, j) = a|j, wherea|j represents the character inΣ′j obtained by con-
catenating the symbola with the numberj, is used to define the possible alphabet for
a specific columnj. Moreover,Σ′j [p] is defined as thep element ofΣ′j . For instance,
Σ′1 = {D1, N1, U1} is the possible set of symbols in column 1 andΣ′1[2] = N1.

In this setting, consider also theset of stringsSi = {S1, . . . , S|R|} obtained by map-
ping each rowAiC in matrix A to string Si such thatSi[j] = f(Aij , j). Each stringSi

has exactly|C| symbols which correspond to the symbols in rowAiC . After this transfor-
mation, the middle matrix in Figure 1 becomes the right matrix in Figure 1.

2.3. Biclusters in Gene Expression Data

Consider now the matrixA, corresponding to the discretized version of matrixA′. This
matrix is defined by the discretized versions of the set of rows and the set of columns in
A′: {AiC , 1 ≤ i ≤ |R|} and{ARj , 1 ≤ j ≤ |C|}. Let I ⊆ R andJ ⊆ C be subsets of the
rows and columns, respectively. Then,AIJ = (I, J) is a submatrix ofA that contains only
the elementsAij belonging to the submatrix with set of rowsI and set of columnsJ .

Definition 2.6. A bicluster is a subset of rows that exhibit similar behavior across a subset
of columns, and vice-versa. The biclusterAIJ is thus a subset of rows and a subset of
columns whereI = {i1, ..., ik} is a subset of the rows inR (I ⊆ R andk ≤ |R|), and
J = {j1, ..., js} is a subset of the columns inC (J ⊆ C ands ≤ |C|). As such, the
biclusterAIJ can be defined as ak by s submatrix of matrixA.

Given this definition and a data matrix,A′, or its discretized version,A, the goal of bi-
clustering algorithms is to identify a set of biclustersBk = (Ik, Jk) such that each bicluster
satisfies specific characteristics of homogeneity. These characteristics vary from approach
to approach enabling the discovery of many types of biclusters by analyzing directly the
values in matrixA or using its discretized version10. In this paper we will deal with biclus-
ters that exhibit coherent evolutions, characterized by a specific property of the symbols in
the discretized matrix. We are interested in column coherent biclusters:

Definition 2.7. A CC-Bicluster, column coherent bicluster,AIJ , is a subset of rowsI =
{i1, . . . , ik} and a subset of columnsJ = {j1, . . . , js} from the matrixA such thatAij =
Alj , for all i, l ∈ I andj ∈ J .

2.4. Biclusters in Time-Series Gene Expression Data

When analyzing time-series gene expression data we can restrict the attention to biclusters
with contiguous columns11,17,8. This leads us to the definition of CCC-Bicluster and other
relevant definitions related to it (already defined in previous work11), such as, trivial CCC-
Biclusters and row-maximal, left-maximal, right-maximal, and maximal CCC-Biclusters:



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

5

Definition 2.8. A CCC-Bicluster, contiguous column coherent bicluster,AIJ , is a subset
of rowsI = {i1, . . . , ik} and acontiguoussubset of columnsJ = {r, r + 1, . . . , s− 1, s}
from matrixA such thatAij = Alj , ∀i, l ∈ I andj ∈ J .

In this settings, each CCC-BiclusterAIJ defines a stringS corresponding to a con-
tiguousexpression patternthat is common to every row in the CCC-Bicluster, between
columnsr ands of matrixA. This means there exists a stringS = Si[r...s],∀i ∈ I.

Definition 2.9. A CCC-BiclusterAIJ is trivial if it has only one row or only one column.

Definition 2.10. A CCC-BiclusterAIJ is row-maximal if no more rows can be added to
its set of rowsI while maintaining the coherence property in Def. 2.8.

Definition 2.11. A CCC-BiclusterAIJ is right-maximal if its expression patternS cannot
be extended to the right by adding one more symbol at its end (the column contiguous to
the last column ofAIJ cannot be added toJ without removing genes fromI).

Definition 2.12. A CCC-BiclusterAIJ is left-maximal if its expression patternS cannot
be extended to the left by adding one more symbol at its beginning (the column contiguous
to the first column ofAIJ cannot be added toJ without removing genes fromI).

Given the three definitions above we can intuitively say that a maximal CCC-Bicluster
is a CCC-Bicluster that is row-maximal, left-maximal and right-maximal. This means that
no more rows or contiguous columns (either at right or at left) can be added to it while
maintaining the coherence property in Def. 2.8.

Definition 2.13. A CCC-BiclusterAIJ is maximal if no other CCC-Bicluster exists that
properly contains it, that is, if for all other CCC-BiclustersALM , I ⊆ L andJ ⊆ M ⇒
I = L ∧ J = M .

Given these definitions we can now define the type of biclusters we are interested in
this work,e-CCC-Biclusters and maximale-CCC-Biclusters:

Definition 2.14. An e-CCC-Bicluster, contiguous column coherent bicluster withe errors,
AIJ , is a CCC-Bicluster where all the stringsSi that define the expression patterns of each
of the genes inI are in thee-Neighborhood of an expression patternS that defines the
e-CCC-Bicluster, that is,Si ∈ N(e, |S|), ∀i ∈ I. The definition of0-CCC-Bicluster is
equivalent to the definition of a CCC-Bicluster (Def. 2.8).

Definition 2.15. An e-CCC-Bicluster,AIJ , is maximal if it is row-maximal, left-maximal
and right-maximal. This means that no more rows or contiguous columns can be added to
it while maintaining the coherence property in Def. 2.14.

The goal of thee-CCC-Biclustering algorithm we propose in this work can now be
defined: find and report all maximale-CCC-Biclusters given a discretized versionA of the
original gene expression matrixA′.

2.5. Related Work on Biclustering Algorithms for Time-Series Expression Data

Although several algorithms have been proposed to address the general problem of
biclustering10, to our knowledge, only three recent proposals have addressed this problem



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

6

in the specific case of time-series expression data17,8,11.
Zhang et. al17 proposed to modify the heuristic algorithm of Cheng and Church4,

by restricting it to add and/or remove only columns that are contiguous to the partially
constructed bicluster thus forcing the resulting bicluster to have only contiguous columns.
Multiple biclusters are identified (as in the approach of Cheng and Church) by masking
the biclusters found so far with random values. This method has one strong limitation,
however. The greedy row and column addition and removal, that is already likely to find
sub-optimal biclusters in general expression data, does not work well in time-series gene
expression data. In fact, the restriction imposed on the columns that can be removed makes
the algorithm converge, in many cases, to a local minimum, from which it does not escape.

A different approach, from Ji and Tan8, also works with a discretized data matrix.
As in CCC-Biclustering11, anO(|R||C|) algorithm that has been recently proposed and
that will be described in the end of this section) they are also interested in identifying bi-
clusters formed by consecutive columns. Therefore, their idea generates exactly the same
biclusters as the ones generated by CCC-Biclustering. With an appropriate implementa-
tion (not described by the authors) their sliding window approach can have its complexity
reduced toO(|R||C|2), a complexity that is still of the order of|C| higher than that of
CCC-Biclustering. However, they propose to use a naive algorithm that, as made available
by the authors7, requires time and space exponential on the number of columns, when ap-
plied to the generation of all CCC-Biclusters. In practice, it cannot be applied to generate
biclusters with more than10 or 11 time-points.

CCC-Biclustering11, finds and reports all CCC-Biclusters in time linear on the size of
the expression matrix by manipulating a discretized versionA of the original matrixA′ and
using string processing techniques based on suffix trees. LetT be the generalized suffix
tree obtained from the set of stringsS obtained after the matrix transformation explained in
Sec. 2.2. Letv be a node ofT and letP (v) be thepath-length of v, that is, the number of
symbols in the string that labels the path from the root to nodev (path-label). Additionally,
let E(v) be theedge-lengthof v, that is the number of symbols in the edge that leads to
v (edge-label), andL(v) the number of leaves in the sub-tree rooted atv, in casev is an
internal node. The CCC-Biclustering algorithm is based on the following theorem:

Theorem 2.1. Let v be a node in the generalized suffix treeT . If v is an internal node,
thenv corresponds to a maximal CCC-Bicluster iffL(v) > L(u) for every nodeu such
that there is a suffix link fromu to v. If v is a leaf node, thenv corresponds to a maximal
CCC-Bicluster iff the path-length ofv, P (v), is equal to|Si| and the edge-label ofv has
symbols other than the string terminator, that is,E(v) > 1. Furthermore, every maximal
CCC-Bicluster in the matrix corresponds to a nodev satisfying one of these conditions.

Figure 2 illustrates that every node in the generalized suffix tree corresponds to one
CCC-Bicluster. However, the rules in Theorem 2.1 have to be applied to extract only the
maximal. In this case (no errors allowed) each CCC-Bicluster isperfect, in the sense of
having no errors, and is identified by exactly one node in the suffix-tree. We will see that
this is no longer true when our goal is to extracte-CCC-Biclusters withe > 0.



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

7

U1 U2 D3 U4 U5 $4$3 N5 U4 N3 N2

$4
 U

5 D
5 $2

$4
 U

5

D
5 $2

U
4 

D
3 

U
2

U
2 D

3 U
4 N

5 $1

$3
 N

5 
U

4 
N

3 
N

2

U
4 N5

D1 U2 D3 U4 D5 $2D5 $2

2

3

2
3

D
3 U

4
N

5 $1

$1
 N

5

N1

$4 U5$3 N5 U4 N3

N
5

$2
 D

5
$1

$3

$3$1

$4
 U

5 B2

B1 4

2

N1 U2 D3 U4 N5

D1 U2 D3 U4 D5

N2 N3 U4 N5

U1 U2 D3 U4 U5

G1

G2

G3

G4

C1 C3 C4 C5C2

N1

B1=({G1,G2,G4},{C2,C3,C4})

B2=({G1,G3},{C4,C5})

Figure 2. (Left) Generalized suffix tree for the right matrix in Figure 1 used by CCC-Biclustering. The circles
identify the Maximal Non-Trivial CCC-Biclusters (B1 and B2). (Right) The CCC-Biclusters B1 and B2 are
showned in the matrix as subsets of rows and columns(I, J). The stringsm =[U2 D3 U4] andm =[U4 N5]
correspond to the expression patterns of B1 and B2, respectively (called valid models/motifs in Section 3.1).

3. Finding and Reporting all Maximal e-CCC-Biclusters

3.1. Finding e-CCC-Biclusters and the Common Motifs Problem

SPELLER13 is an algorithm that extracts common motifs from a set ofN sequences using
a generalized suffix tree. The motifs searched correspond towordswhich occur with at
moste mismatches in1 ≤ q ≤ N distinct sequences. The words representing the motifs
may not be present exactly in the sequences (see SPELLER for details). As such amotif
is seen as an “external” object and denoted by the termmodel. In order to be considered a
valid model, a given modelm of length|m| has to verify thequorum constraint, that is, it
must belong to thee-neighborhood of a wordw, N(e, w), in at leastq distinct sequences.

Thecommon motifs problem is as follows13: given a set ofN sequencesSi (1 ≤ i ≤
N ), and two integerse ≥ 0 and2 ≤ q ≤ N , wheree is the number of errors allowed andq

is the required quorum, find all modelsm that appear in at leastq distinct sequences ofSi.
SPELLER solves the problem above starting by building a generalized suffix treeT

of the sequencesSi and then, after some further preprocessing, using this tree to “spell”
the valid models. Whene = 0 spelling this models leads to a nodev in T such thatL(v)
is at leastq (similarly to CCC-Biclustering). When errors are allowed, spelling all the
occurrences of a modelm leads to a set of nodesv1,...,vk in T for which

∑k
j=1 L(vj) is

at leastq13. Since in SPELLER the occurrences of a modelm are in fact nodes of the
generalized suffix treeT , they are called node-occurrences:

Definition 3.1. A node-occurrenceof a modelm is a triple (v, verr, p), wherev is a node
in the generalized suffix tree,verr is the number of mismatches betweenm and the path-
label from theroot to nodev andp identifies a position in the generalized suffix tree: if
p = 0, we are exactly at nodev, if p > 0 we are at a pointp between two symbols inlabelb
(1 ≤ p < |labelb|), whereb is the edge between nodesfatherv andv.

The goal of SPELLER is to identify all valid models by extending them in the gener-



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

8

alized suffix tree and to report the results using their set of node-occurrences. Note that in
SPELLER, a node-occurrence is defined by a pair(v, verr) and not by a triple(v, verr, p)
(for simplicity, the algorithm was exemplified in an uncompacted version of the generalized
suffix tree, that is, a trie). However, as pointed out by the author, when using a generalized
suffix tree, as we do, we need to know whether we are at a nodev or at edgeb between two
nodes. Moreover, when we traverseT with a symbolα we also need to know if we get to
a nodev or if we stay inside an edgeb. We usep to deal with these questions.

Consider thatm is a model,α is a symbol inΣ′, v is a node inT , fatherv is its father,
b is the edge betweenfatherv andv andlabelb is the edge-label ofb with length|labelb|.
The algorithm we propose is based on the following Lemmas (adapted from SPELLER):

Lemma 3.1. (v, verr, 0) is a node-occurrence of a modelm′ = mα, if, and only if: (1)
(fatherv, verr, 0) is a node-occurrence ofm andlabelb is α or (v, verr, |labelb| − 1) is a
node-occurrence ofm and the last symbol inlabelb is α (match); (2) (fatherv, verr−1, 0)
is a node-occurrence ofm and labelb is β 6= α or (v, verr − 1, |labelb| − 1) is a node-
occurrence ofm and the last symbol inlabelb is β 6= α (substitution).

Lemma 3.2. (v, verr, 1) is a node-occurrence of a modelm′ = mα, if, and only if: (1)
(fatherv, verr, 0) is a node-occurrence ofm and the first symbol inlabelb is α (match);
(2) (fatherv, verr−1, 0) is a node-occurrence ofm andlabelb[1] = β 6= α (substitution).

Lemma 3.3. (v, verr, p), 2 ≤ p < |labelb| is a node-occurrence of a modelm′ = mα, if,
and only if: (1) (v, verr, p− 1) is a node-occurrence ofm and labelb[p] = α (match); (2)
(v, verr − 1, p− 1) is a node-occurrence ofm andlabelb[p] = β 6= α (substitution).

SPELLER can be adapted to extract all right-maximale-CCC-Biclusters from the trans-
formed matrixA. In fact, given the set of|R| stringsSi of Section 2.2,e ≥ 0 and
1 ≤ q ≤ |R|, what we want to find is the set of all modelsm (identifying expression
patterns) that are present in at leastq distinct rowsSi starting and ending at the same
columns. The set of node-occurrences of each modelm and the model itself identifies
onee-CCC-Bicluster with a maximum length|C|. Furthermore, it is possible to find all
maximale-CCC-Biclusters (without restricting the number of genes) by settingq to 1.

Figure 3 shows the generalized suffix tree used by SPELLER whenq = 1 ande = 1
and two maximal1-CCC-Biclusters (B1 and B2) identified by two valid models. It is also
possible to observe this fact in the matrix in Figure 4 where it is also clear that a model can
be valid without being right/left maximal. Additionally, several valid models may identify
the samee-CCC-Bicluster, whene ≥ 1. For example,m=[N1 U2 D3] is valid but it is not
right-maximal,m=[N2 D3 U4 N5] is also valid but it is not left-maximal, and finally the
modelsm = [D1 U2 D3 U4 D5] andm=[D1 U2 D3 U5 N5] are both valid but identify the
same1-CCC-Bicluster (B1). Similarly,m = [U2 D3 U4 D5],m = [U2 D3 U4 N5] andm
= [U2 D3 U4 U5] are all valid models that represent B2.

The next section explains how SPELLER was adapted to extract exactly one valid
model for each maximale-CCC-Bicluster.



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

9

U1 U2 D3 U4 U5 $4$3 N5 U4 N3 N2

$4
 U

5 D
5 $2

$4
 U

5
D

5 $2

U
4 

D
3 

U
2

U
2 D

3 U
4 N

5 $1

$3
 N

5 
U

4 
N

3 
N

2

U
4 N5

D1 U2 D3 U4 D5 $2D5 $2

D
3 U

4
N

5 $1

$1
 N

5

N1

$4 U5$3 N5 U4 N3

N
5

$2
 D

5
$1

$3

$3$1

$4
 U

5

[1101] [1111]

[1010]

[1010]

[1101]

B1

B1

B2

B2
B2

[1010]

Figure 3. Generalized suffix tree for the right matrix in Figure 1 used ine-CCC-Biclustering whene > 0 (when
e = 0 the suffix tree used is in Figure 2). The circles B1 and B2 identify two1-CCC-Biclusters (see Figure 4)

N1 U2 D3 U4

D1 U2 D3 U4 D5

N1 N2 N3 U4 N5

U1 U2 U4 U5

G1

G2

G3

G4

C1 C3 C4 C5C2

D3

N5

B1=({G1,G2},{C1,C2,C3,C4,C5})

N1 U2 D3 U4

D1 U2 D3 U4 D5

N1 N2 N3 U4 N5

U1 U2 U4 U5

G1

G2

G3

G4

C1 C3 C4 C5C2

D3

N5

B2=({G1,G2,G4},{C2,C3,C4,C5})

Figure 4. (Left) Maximal1-CCC-Bicluster corresponding to the valid model/motifm = [D1 U2 D3 U4 D5].
(Right) Maximal1-CCC-Bicluster corresponding to the valid model/motifm = [U2 D3 U4 D5]. Note that these
two 1-CCC-Biclusters correspond, respectively, to two and three node-occurrences (B1 and B2) in Figure 3.

3.2. Algorithm Description

This section presentse-CCC-Biclustering (see Algorithm 1) and describes its main steps.
The first step stores all valid models,m, and its node-occurrences,Occm, that corre-

spond to right-maximale-CCC-Biclusters in the listmodelsOcc. In order to do this it uses
an adaptation of SPELLER with two basic changes:

(1) Check if a modelm corresponds to a right-maximal CCC-Bicluster using the pro-
cedureCHECKRIGHTMAXIMALITY which works as follows: if one of the models that
result from the extension of a modelm with a symbolα, mα, is also a valid model and
has as many genes in its node-occurrences as its fatherm, thenm does not correspond
to a right maximal CCC-Bicluster. As such, it is removed from the stored models. In
order to compute the genes in the node-occurrences of a modelm (returned as a bit vec-
tor, genesOccm), the functionCOMPUTEGENES(Occm) performs a bitwise or between
the bit vectorscolorsv of all node-occurrences (v, verr, p) of m in casee > 0, and uses
the functionNUMBEROFLEAVES(v) in casee = 0 (in this caseOccm has only one node-



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

10

occurrence). The functionNUMBEROFGENES(genesOccm) is then used to compute the
number of genes.

(2) The extensions,Extm, of a given modelm are restricted according to the level
of the model in the suffix tree. For example, ifΣ = {D, N, U} and modelm is being
extended descending from the root,m can only bem = D1, m = N1 or m = U1, and the
possible symbolsα with which it can be extended tomα are inΣ′2 = {D2, N2, U2}.

Algorithm 1 : Algorithm to Find and Report all Maximal e-CCC-Biclusters

input : A, Σ, e, q

S ←− {S1, . . . , S|R|}, Si[j] = f(Aij , j), 1 ≤ i ≤ |R| and 1 ≤ j ≤ |C|
Tright ←− CONSTRUCTGENERALIZEDSUFFIXTREE (S)
ADDNUMBEROFLEAVES(Tright) //AddsL(v) to each nodev in Tright.
m ←− “” //model m is a string[m1...m|m|]
lengthm ←− 0
fatherm ←− “” // fatherm is a string[m1...m|m|−1]
numberOfGenesOccfatherm ←− 0
Occm ←− {ROOT(Tright), 0, 0)} //Set of node-occurrences of modelm.
modelsOcc ←− {} //List of (m, Occm, genesOccm, numberOfGenesOccm).
if e = 0 then

Extm ←− {}
forall edgesb leaving nodeROOT(Tright) do

if labelb[1] is not a string terminatorthen
Extm ←− Extm ∪ labelb[1] //Extm is the set of possible symbolsα to
extend the modelm.

else
ADDCOLORARRAY(Tright) //Addscolorsv to each nodev in Tright

//colorsv[i] = 1, if there is a leaf in the subtree rooted atv that is a suffix ofSi.
//colorsv[i] = 0, otherwise.
Extm ←− Σ′

SPELLMODELS (Σ, e, q, lengthm, m, Occm, Extm, fatherm,
numberOfGenesOccfatherm , modelsOcc)
DELETEMODELSNOTLEFTMAXIMAL BICLUSTERS(modelsOcc)
if e > 0 then

DELETEMODELSREPRESENTINGSAMEBICLUSTERS(modelsOcc)
REPORTMAXIMAL BICLUSTERS(modelsOcc)

The second step removes from the models stored inmodelsOcc (right-maximale-CCC-
Biclusters) those not corresponding to left maximale-CCC-Biclusters. Non left-maximal
biclusters are removed by first building a trie with the reversed patterns of all modelsm

and storing the number of genes inOccm in its corresponding node in the trie. After this,
it is sufficient to mark as non-maximal any node in the trie that has at least one child



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

11

with as many genes as itself. This is easily achieved by performing a DFS of the trie and
computing, for each node, the maximum value of all its children.

In the case where errors are allowed, different models may identify the same e-CCC-
Bicluster. The third step uses an hash tree to remove frommodelsOcc (maximale-CCC-
Biclusters) repeatede-CCC-biclusters. The idea is that all modelsm with equal first and
last columns and set of genes represent the same maximal CCC-Bicluster.

Finally, all maximale-CCC-Biclusters inmodelsOcc are reported.

3.2.1. e-CCC-Biclustering with Restricted Errors

Thee-CCC-Biclustering algorithm presented above allows general errors, that is substitu-
tions of the symbolsAij of the CCC-BiclusterB = (I, J) by any of the symbols in the
alphabetΣ′j exceptAij . This kind of errors are specially relevant to identify measure-
ment errors that occurred during the microarray experiments. However, if we are specially
interested in identifying discretization errors we can consider restricted errors, that is, sub-
stitutions of the symbolsAij by the lexicographically closer symbols inΣ′j .

For example, when general errors are allowed,Σ = {D,N,U}, andm = [U2 D3 U4
D5], symbol D5 can be substituted by N5 and U5 inΣ′5 leading to the1-CCC-Bicluster
B2=({G1,G2,G4},{C2,C3,C4,C5}) in Figure 3 and Figure 4(b). However, if only restricted
errors were allowed, symbol D5 could only be substituted by N5 leading to the1-CCC-
Bicluster B=({G1,G2},{C2,C3,C4,C5}).

In general, when restricted errors are considered, the allowed substitutions for any sym-
bol Aij are inΣ′Rest

j = {Σ′j [p− 1], . . . , Σ′j [p− z], Σ′j [p + 1], . . . , Σ′j [p + z]}, wherep is
the position ofAij in Σ′j andz ∈ {1, ..., |C|}. If z = |C| then the errors are not restricted.

It is easy to modify Algorithm 1 to restrict the allowed errors.

3.2.2. Complexity Analysis

The construction ofTright and the computation ofL(v) for all its nodes takeO(|R||C|)
time each, using the Ukkonen’s algorithm with appropriate data structures, and a DFS,
respectively. Adding the color array to all nodes inTright (needed only whene > 0) takes
O(|R|2|C|) time, and the remaining procedures in the algorithm takeO(|R|2|C|1+e|Σ|e)
time each. Therefore, the complexity ofe-CCC-Biclustering isO(|R|2|C|1+e|Σ|e), when
general errors are allowed, andO(|R|2|C|1+e|ΣRest|e), in the case of restricted errors.

Whene = 0, Theorem 2.1 and CCC-Biclustering11 can be used to obtainO(|R||C|).

4. Experimental Results

In order to validate the quality of the results of thee-CCC-Biclustering algorithm we used
the yeast cell-cycle dataset publicly available3, described by Tavazoie et al.15 and processed
by Cheng and Church4. This dataset contains the expression profiles of more than6000
yeast genes measured at17 time-points over two complete cell cycles. We used2884
genes selected by Cheng and Church4 (as in Tavazoie et al.15) and removed the genes with
missing values. The matrix with the remaining2268 genes was discretized using 3equal



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

12

frequency intervals. We have also usedsmoothingas a preprocessing step to discretization
with a window of size 5 and the set of weightsβk = {0.05, 0.2, 0.5, 0.2, 0.05}.

Aij =
∑+w

k=−w βj+kA′i(j+k) (1)

Smoothing has been used by a number of authors in order to reduce the effect of exper-
imental errors in the gene expression levels2,9,11. In order to minimize these errors each
expression valueA′ij in matrix A′ is smoothed using Equation (1), where2w + 1 is the
window size. The valuesβk are the weights given to the expressions values aroundA′ij in
a window of size2w +1. These values control how much smoothing is applied to the data.

After the discretization process, we appliede-CCC-Biclustering withe = 1 with re-
stricted errors andz = 1 (see Section 3.2.1) to the discretized matrix described above.
We have also computed the results whene = 0. We argue that allowing errors in the pat-
tern of the0-CCC-biclusters found by0-CCC-Biclustering should improve the biological
significance of the biclusters by minimizing the effect of possible discretization errors. In
fact, in the specific case of allowing1 error in the pattern of a0-CCC-Bicluster one of
the following three situations can happen: (1) the1-CCC-Bicluster remains equal to the0-
CCC-Bicluster; (2) one or more genes excluded from the0-CCC-Bicluster (due to a single
error) could be added to the1-CCC-Bicluster; or (3) the pattern of the0-CCC-Bicluster
could be extended by adding one column either at its beginning or at its end (leading to a
1-CCC-Bicluster with as many genes as the0-CCC-Bicluster but with one more column).

In order to validate the biological relevance of thee-CCC-Biclusters discovered we
used the Gene Ontology (GO) annotations and associations files together with Ontologizer
2.012. The goal was to evaluate the biological significance by computing p-values obtained
when the hyper-geometric distribution is used to model the probability of observing at least
k genes, from a CCC-Bicluster with|I| genes, by chance, in a GO category containingc

genes from the total number of genes (|R|) in each dataset. We used the functions from the
three GO categories, biological process, molecular function and cell component.

We used the following procedure to validate the thesis that allowing errors in the CCC-
Biclusters can improve the quality of the results: for each0-CCC-Bicluster with at least 4
genes and 2 conditions, we computed the number of GO functions enriched, in a statisti-
cally significant way, after Bonferroni correction, and stored this value together with the
p-value of the most enriched function, that is, the lower GO p-value. The0-CCC-Biclusters
were sorted according to their statistical significance. This significance was computed by
evaluating the probability that a bicluster of that size appeared by chance in a matrix where
the symbols are generated by a Markov chain, whose transition probabilities are obtained
from the values in the matrix. Biclusters that were redundant, since their similaritya to
biclusters already reported was above 50%, were removed from the analysis. We have then
computed the1-neighborhood of the pattern of the top 100-CCC-Biclusters.b

aThe similarity was measured by the number of common genes and conditions.
bThis computation, although simple, is not described in this paper, since the purpose of this analysis is to evaluate
the relative quality of0-CCC-Biclusters and1-CCC-Biclusters regarding their biological significance.



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

13

Table 1. Comparison between the top 100-CCC-Bicluster (sorted according to the statistical p-value) and the best
1-CCC-Bicluster found by the 1-CCC-Biclustering algorithm whose pattern is a1-neighbor of the CCC-Bicluster
without errors. Column 6 shows the best p-value computed using the hypergeometric distribution and the Gene
Ontology, column 7 shows the Bonferroni correction of the previous value and finally column 8 shows the number of
GO functions that are significantly enriched after Bonferroni correction (corrected p-value smaller or equal to 0.01).

ID e PATTERN CONDITIONS #GENES P-VALUE CORRECTION #FUNCTIONS

2237 0 DDNNNDD 11-17 164 2.8E-12 2.6E-9 11

58537 1 DDNNDDD 11-17 531 1.1E-16 1.2E-17 17

767 0 UNDDDNNNDD 8-17 81 2.2E-11 1.5E-8 9

18544 1 UUDDDNNNDD 8-17 108 1.7E-14 1.3E-11 15

3041 0 NNNDD 13-17 340 1.2E-11 1.2E-8 9

63752 1 DNNNDD 12-17 343 3.5E-16 4.8E-13 17

260 0 UUUNDDDNNNDD 6-17 57 1.4E-8 1.7E.7 7

11361 1 UUUNDDDNNNDD 6-17 144 6.1E-13 5.2E-10 12

3220 0 NDD 15-17 772 3.5E-8 7.1E-5 3

68222 1 DDD 15-17 1321 2.2E-10 5.4E-7 7

3071 0 UNNDD 13-17 164 1.0E-5 1.1E-1 0

63773 1 DUNNDD 12-17 249 1.1E-9 1.4E-6 12

3035 0 NDDDD 13-17 161 3.6E-4 3.7E-1 0

66652 1 NNDDD 13-17 608 2.2E-9 4.0E-6 11

3217 0 DDD 15-17 492 2.2E-4 3.9E-1 0

68222 1 DDD 15-17 1321 2.2E-10 5.4E-7 7

627 0 NNDDDNNNDD 8-17 65 8.1E-4 4.1E-1 0

24875 1 NNDDDNNNDD 8-17 165 6.5E-14 6.0E-11 14

3191 0 UUND 14-17 183 1.0E-3 9.3E-1 0

66883 1 UUUND 13-17 311 4.6E-7 5.9E-4 6

Table 1 reports these results. Each row contains one0-CCC-Bicluster followed by the
best1-CCC-Bicluster, as measured by the number of GO functions enriched. These results
show that the1-CCC-Biclusters tend to have higher biological significance, since their sets
of genes are more significantly enriched than those of the best0-CCC-Biclusters. Even
in cases where the0-CCC-Bicluster does not pass the statistical test for biological signifi-
cance, there exists a1-CCC-Bicluster in its1-neighborhood that has biological significance.

For lack of space, we do not report here additional results that support the view that
e-CCC-Biclusters are biologically more relevant than perfect CCC-Biclusters.

5. Conclusions and Future Work

In this work, we presented and analyzed a new algorithm,e-CCC-Biclustering, for the
identification of groups of genes that exhibit similar activities in a subset of conditions, in
time-series expression data. The algorithm finds and reports, in time polynomial on the



October 9, 2006 21:2 Proceedings Trim Size: 9.75in x 6.5in apbc221

14

size of the matrix, alle-CCC-Biclusters that correspond to these groups of genes. By se-
lecting thee-CCC-Biclusters that are statistically more significant, it is possible to identify
potentially relevant biological processes. The algorithm avoids the limitations that previous
methods exhibit since they cannot consider genes that have small deviations from the cen-
tral pattern of expression. Moreover, the results demonstrate that this approach identifies
biclusters that are biologically more significant than those identified by existing algorithms.

In future work, we plan to build a graphical user interface toe-CCC-Biclustering, make
it available to the scientific community, and use the algorithm to identify regulatory mod-
ules (sets of co-regulated genes that share a common function) in gene regulatory networks.

References

1. A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene expression
data: The order–preserving submatrix problem. InProc. of the 6th International Conference on
Computacional Biology, pages 49–57, 2002.

2. T. Chen, V. Filkov, and S. Skiena. Identifying gene regulatory networks from experimental data.
In Proceedings of the 3rd International Conference on Research in Computational Molecular
Biology, pages 99–103, 1999.

3. Y. Cheng and G. M. Church. Biclustering of expression data - supplementary information.
http://arep.med.harvard.edu/biclustering/, [July 15, 2006].

4. Y. Cheng and G. M. Church. Biclustering of expression data. InProc. of the 8th International
Conference on Intelligent Systems for Molecular Biology, pages 93–103, 2000.

5. D. Gusfield.Algorithms on strings, trees, and sequences. Computer Science and Computational
Biology Series. Cambridge University Press, 1997.

6. P. De Boeck I. Van Mechelen, H. H. Bock. Two-mode clustering methods: a structured overview.
Statistical Methods in Medical Research, 13(5):979–981, 2004.

7. L. Ji and K. Tan. Identifying time-lagged gene clusters using gene expression data - supplemen-
tary information. http://www.comp.nus.edu.sg/∼jiliping/p2.htm, [July 15, 2006].

8. L. Ji and K. Tan. Identifying time-lagged gene clusters using gene expression data.Bioinformat-
ics, 21(4):509–516, 2005.

9. A. Kwon, H. Hoos, and R. Ng. Inference of transcriptional regulation relationships from gene
expression data.Bioinformatics, 19(8):905–912, 2003.

10. S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: a survey.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1):24–45, 2004.

11. S. C. Madeira and A. L. Oliveira. A linear time biclustering algorithm for time series expression
data. InProc. of 5th Workshop on Algorithms in Bioinformatics, pages 39–52. Springer Verlag,
LNCS/LNBI 3692, 2005.

12. U. Bohme B. Beattie P. N. Robinson, A. Wollstein. Ontologizing gene-expression microarray
data: characterizing clusters with gene ontology.Bioinformatics, 20(6):979–981, 2004.

13. M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tree. InProc. of
Latin’98, pages 111–127. Springer Verlag, LNCS 1380, 1998.

14. A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene ex-
pression data.Bioinformatics, 18(1):136–144, 2002.

15. S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic determina-
tion of genetic network architecture.Nature Genetics, 22:281–285, 1999.

16. E. Ukkonen. On-line construction of suffix trees.Algorithmica, 14:249–260, 1995.
17. Y. Zhang, H. Zha, , and C. H. Chu. A time-series biclustering algorithm for revealing co-

regulated genes. InProc. of the 5th IEEE International Conference on Information Technology:
Coding and Computing, pages 32–37, 2005.


