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Phylogenetic analysis often produce a large number of candidate evolutionary trees, each a hypothesis
of the ”true” tree. Post-processing techniques such as strict consensus trees are widely used to sum-
marize the evolutionary relationships into a single tree. However, valuable information is lost during
the summarization process. A more elementary step is to produce estimates of the topological differ-
ences that exist among all pairs of trees. We design a new randomized algorithm, called Hash-RF,
that computes the all-to-all Robinson-Foulds (RF) distance—the most common distance metric for
comparing two phylogenetic trees. Our approach uses a hash table to organize the bipartitions of a
tree, and a universal hashing function makes our algorithm randomized. We compare the performance
of our Hash-RF algorithm to PAUP*’s implementation of computing the all-to-all RF distance matrix.
Our experiments focus on the algorithmic performance of comparing sets of biological trees, where
the size of each tree ranged from 500 to 2,000 taxa and the collection of trees varied from 200 to 1,000
trees. Our experimental results clearly show that our Hash-RF algorithm is up to 500 times faster than
PAUP*’s approach. Thus, Hash-RF provides an efficient alternative to a single tree summary of a col-
lection of trees and potentially gives researchers the ability to explore their data in new and interesting
ways.

1. Introduction

The objective of a phylogenetic analysis is to infer the evolutionary relationships for a
given set of organisms (or taxa). Since the true evolutionary history is unknown, many
phylogenetic techniques use stochastic search algorithms to solve NP-hard optimization
criteria such as maximum likelihood and maximum parsimony. Under these criteria, trees
that have better scores are believed to be better approximations of the truth. A typical
phylogenetic search results in t trees (i.e., hundreds to thousands of trees can be found),
each representing a hypothesis of the ”true” tree. Afterwards, post-processing techniques
often use consensus methods to transform the rich output of a phylogenetic heuristic into
a single summary tree 2. Yet, much information is lost by summarizing the evolutionary
relationships between the t trees into a single consensus tree 7,14.

Given a set of t input trees, we design a randomized hash-based algorithm, called Hash-
RF, that outputs a t × t matrix representing the topological distances between every pair
of trees. The t × t distance matrix provides a more information-rich approach for sum-
marizing t trees. The most popular distance measure used to compare two trees is the
Robinson-Foulds (RF) distance 12. Under RF, the distance between two trees is based on
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the edges (or bipartitions) they share. It is a widely used measure and can be computed in
O(n) time using Day’s algorithm 5, where n is the number of taxa. Very few algorithms
have been designed specifically to compute the all-to-all RF distance. Notable exceptions
include PAUP* 15, Phylip 6, and Split-Dist 9a. Pattengale and Moret provide an approxima-
tion algorithm 10, which provides with high probability a (1 + ε) approximation of the true
RF distance matrix. Given that Pattengale and Moret’s approach provides an approximation
of the RF distance, we do not compare our approach to their algorithm.

Our experimental results compare the performance on biological trees of our Hash-RF
algorithm to the all-to-all RF algorithm embodied in PAUP*, a widely-used commercial
application for inferring and interpreting phylogenetic trees. Here, n ranges from 500 to
2,000 taxa and t varies from 200 to 1,000 trees. The results clearly demonstrate that our ap-
proach outperforms PAUP*, where greater performance is achieved with increasing values
of n and t. On the largest dataset (n = 2, 000 and t = 1, 000), our algorithm is 500 times
faster than PAUP*. We also compared our approach to Phylip and Split-Dist, but Phylip is
tremendously slow even on our smallest dataset. Performance comparisons with Split-Dist
followed the same trends as those shown with PAUP* (not shown). Thus, our Hash-RF al-
gorithm provides an efficient alternative to consensus approaches for summarizing a large
collection of trees.

2. Background

2.1. Phylogenetic trees

The leaves of an evolutionary tree are always labeled with the taxa, and permuting the labels
on a tree with fixed topology generally produces a different evolutionary tree. Internal
nodes—the hypothetical ancestors—are generally unlabeled. Phylogenies may be rooted or
unrooted, and edges may be weighted or unweighted. Order is unimportant. For example,
for a node in a rooted tree, swapping the left and the right child does not change the tree.

It is useful to represent evolutionary trees in terms of bipartitions. Removing an edge e

from a tree separates the leaves on one side from the leaves on the other. The division of the
leaves into two subsets is the bipartition Bi associated with edge ei. In Figure 1, T2 has two
bipartitions: AB|CDE and ABD|CE. An evolutionary tree is uniquely and completely
defined by its set of O(n) bipartitions. For ease of computation, many algorithms represent
each bipartition as a bit-string. At each internal node, those taxa whose subset includes a
specified taxon are represented by the bit value ’0’. For example, in Figure 1, those taxa
that are in the subset of taxon A, are labeled ’0’. All other taxa are labeled ’1’. Thus, the
bipartition, AB|CDE is represented as the bit-string 00111 and ABD|CE is represented
as 00101.

aActually, these approaches compute the symmetric distance between two trees. Dividing the symmetric distance
by two easily converts it into the RF distance.
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Figure 1. Two phylogenetic trees, T1 and T2, and their respective bipartitions. Internal edges are represented
by the labels e1 through e4.

2.2. Robinson-Foulds distance

The Robinson-Foulds (RF) distance between two trees is the number of bipartitions that
differ between them. Let Σ(T ) be the set of bipartitions defined by all edges in tree T . The
RF distance between trees T1 and T2 is defined as:

dRF (T1, T2) =
|Σ(T1) − Σ(T2)| + |Σ(T2) − Σ(T1)|

2
(1)

Figure 1 depicts how the RF distance between two trees is calculated. Trees T1 and T2

consist of five taxa, and each tree has two non-trivial bipartitions (or internal edges). In this
example, the trees are binary and thus you can find dRF (T1, T2) is same with dRF (T2, T1).
By equation (1), the RF distance between the two trees in Figure 1 is equal to 1.

2.3. Hashing

A set abstract data type (set ADT) is an abstract data type that maintains a set S under the
following three operations:

(1) Insert(x): Add the key x to the set.
(2) Delete(x): Remove the key x from the set.
(3) Search(x): Determine if the key x is contained in the set, and if so, return x.

Hash tables are the most practical and widely used methods of implementing the set ADT
and perform the three set ADT operations in O(1) expected time.

The main idea behind all hash table implementations is to store a set of k = |S| ele-
ments in an array (the hash table) of length m ≥ k. Hence, we require a function that maps
any element x (also called the hash key) to an array location. This function is called a hash
function h and the value h(x) is called the hash value of x. That is, the element x gets
stored at the array location H [h(x)]. Given two distinct elements x1 and x2, a collision
occurs if h(x1) = h(x2). Ideally, one would be interested in a perfect hash function, which
guarantees no collisions. However, this is only possible when the set of keys are known a
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priori (e.g., compiler keywords). Thus, most hash table implementations must explicitly
handle collisions—especially since the performance of the underlying implementation is
dependent upon the operations used to resolve the collision.

3. The Hash-RF Algorithm

We were inspired by the work of Amenta et al. 1 to use a hash table as a mechanism for
organizing tree bipartitions. Although their algorithm computes a majority consensus tree,
we incorporate many of their ideas into our approach. Our Hash-RF algorithm consists of
two major steps. The first step requires collecting all of the bipartitions from the evolution-
ary trees and hashing them into the hash table. Once all of the bipartitions are hashed into
the table, the pairwise RF distances can be computed quite quickly. Algorithm 1 presents
our hash-based approach. In the following subsections, we explain each of these major
steps in detail.

3.1. Populating the hash table

Figure 2 provides an overview of the steps required in placing a tree’s bipartitions into the
hash table. As each input tree, Ti is traversed in post-order, each of its bipartitions is fed
through two hash functions, h1 and h2. Hash function h1 is used to generate the location
needed for storing a bipartition in the hash table, H . h2 is responsible for creating a unique
identifier for each unique bipartition. For each bipartition, its associated hash table record
contains its bipartition ID (BID) along with the index of the tree from where it originated.

For every hash function h, there exists bad sets S, where all distinct keys hash to the
same address. To get around this difficulty, we need a collection of hash functions from
which we can choose the one that works well for S. Even better would be a collection of
hash functions such that, for any given S, most of the hash functions work well. Then, we
could randomly pick one of the functions and have a good chance of it working well.

We employ the use of universal hash functions, where A = (a1, ..., an) is a list of
random integers in (0, ..., m1−1) and B = (b1, ..., bn) is a bipartition. Our h1 and h2 hash
functions are defined as follows:

h1(B) =
∑

biai mod m1 (2)

h2(B) =
∑

biai mod m2 (3)

Using these universal hash functions, the probability that any two distinct bipartitions Bi

and Bj collide (i.e., h1(Bi) = h1(Bj)) is 1

m1

3,4. We call this a Type II collision. (Colli-
sions are described in more detail in the following subsection.) If we choose m1 > tn, the
expected number of Type II collisions is O(tn). A double collision (i.e., h1(Bi) = h1(Bj)

and h2(Bi) = h2(Bj)) occurs with probability 1

m1m2

. Since the size of m2 has no impact
on the hash table size, m2 can be made arbitrarily large to avoid double collisions with
high probability. We provide more detail on how we detect double collisions (i.e., Type III
collisions) below.
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Algorithm 1 The Hash-RF algorithm
Require: A set of T1, T2, ..., Tt binary trees

1: for i = 1 to t do
2: Traverse tree Ti in post order
3: for all bipartition Bj ∈ Ti do
4: Determine collision type at hash table H [h1(Bj)].
5: if Type I collision then
6: Increment count at KeyMap[Bj]
7: Insert h2(Bj) and tree index i into H [h1(Bj)]

8: else if Type III collision then
9: Terminate and restart algorithm

10: else
11: Insert h1(Bj), h2(Bj) and Bj into KeyMap[Bj]
12: Increment count at KeyMap[Bj]
13: Insert h2(Bj) and tree index i into H [h1(Bj)]

14: end if
15: end for
16: end for
17: for all KeyMap[i].count ≥ 2 do
18: Retrieve the linked list li of tree ids (TIDs) from H [i]

19: for all TID pairs j, k ∈ li do
20: if BID(j) = BID(k) then
21: Increment SIM [j][k]

22: end if
23: end for
24: end for
25: for all i < j ≤ t do
26: RF [i][j] = (n − 3) − SIM [i][j]

27: end for

Table 1. Collision types in the Hash-RF algorithm.

Collision Type Bi = Bj? h1(Bi) = h1(Bj)? h2(Bi) = h2(Bj)?

Type I Yes Yes Yes
Type II No Yes No
Type III No Yes Yes

3.2. Handling collisions

Given two bipartitions Bi and Bj , there are three types of collisions in the algorithm.
Table 1 provides a summary of the different collision types. The first collision type, which
we call Type I, occurs as a result of identical bipartitions Bi and Bj appearing in two
different trees. Hence, the record for each of these bipartitions at h1(Bi) will differ in the
tree index part of their hash record. In a standard hash implementation, collisions occur
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Figure 2. Populating the hash table with the bipartitions from trees T1 and T2, which are shown in Fig. 1.
Bipartitions B1 and B2 define T1, and B3 and B4 are from T2. Each bipartition is fed to the hash functions h1

and h2. For each bipartition, its associated hash table record contains its bipartition ID (BID) along with the
associated tree index (TID).

between two different keys hashing to the same location. For our implementation, we keep
track of all trees that contain bipartition Bi in order to compute the all-to-all RF distance.
Trees that contain bipartition Bi are chained together at location h1(Bi). Therefore, we
consider this situation a collision in our algorithm.

We use an additional data structure, called a KeyMap, which is a map container from
the C++ Standard Template Library, for collision detection. The KeyMap table is used to
store key/value pairs, where the keys are logically maintained in sorted order. Each unique
bipartition from the set of t trees is given an entry in the KeyMap table. Our KeyMap table
contains four fields for each unique bipartition Bi: h1(Bi), h2(Bi), Bi, and the frequency
of Bi. To detect if Bi causes a Type I collision at h1(Bi), we search for h1(B1) in the
KeyMap table. If an entry is found, a collision has occurred. If the bipartition at this
location is equal to Bi, we have a Type I collision. Otherwise, if no entry for KeyMap[Bi]
is found, Bi is a new bipartition, and a new entry is created in the KeyMap table.

For a Type II collision, h1(Bi) = h1(Bj) and h2(Bi) 6= h2(Bj). Hash function
h2 is used to generate a bipartition identifier (BID), which attempts to distinguish Bi

from the other unique bipartitions. Let Bj represent the bipartition field of the entry
KeyMap[h1(Bi)]. If h2(Bi) 6= h2(Bj), then a Type II collision has occurred. Hence,
two different bipartitions hash to the same location in the hash table. (We note that this is
the standard definition of collision in hash table implementations.) Otherwise, there is a
double collision (or Type III collision), that is, the bipartitions Bi and Bj are different, but
they have the same h1 and h2 values. In our algorithm, this is a critical collision, and the
algorithm must be restarted with a different set of random integers for the set A.

3.3. Computing the pairwise RF distances

Once all of the bipartitions are organized in the hash table, then the RF distance can be
calculated. First, we search the KeyMap table to identify bipartitions that have occurred
two or more times. Bipartitions that have occurred can be ignored when computing the
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RF distance matrix. We update the similarity matrix (SIM ) for all pairs of trees in the
linked list at H [i]. Suppose the linked list consists of trees T1, T3, and T11. The Hash-RF
algorithm uses their tree ids or indexes (TIDs) 1, 3, and 11 to update the similarity matrix.
Here, we increment SIM [1, 3], SIM [1, 11], and SIM [3, 11] by one. We perform the
above operations for all of the bipartitions in the hash table. Since our algorithm assumes
binary trees, we subtract the similarity matrix entries from (n − 3) to obtain the all-pairs
RF distance (see lines 25–27 of Algorithm 1). Furthermore, we only compute the upper
diagonal of the RF matrix.

3.4. Analysis

In our algorithm, the hash table must be populated with nt bipartitions. Hence, this stage
of our algorithm requires O(nt log nt) time since each bipartition must be processed by the
KeyMap table to detect the collision type. However, the distribution of the bipartitions in
the hash table is responsible for the running time involved in calculating the RF distance
matrix. The best case running time of O(nt log nt+ t2) arises when each hash location has
one record, which occurs when there are no bipartitions shared among the input trees. The
worst case occurs when each of the nt bipartitions hash to the same location i. Here, the
size of the linked list at location i will be nt, which requires O(n2t2) time to compute the
RF distance matrix.

Our worst case performance matches that of a brute-force all-pairs RF algorithm. Con-
sider computing the RF distance between trees Ti and Tj . We compare each edge in Ti

with O(n) edges in Tj . Hence, the RF distance between Ti and Tj requires O(n2) time.
Using this algorithm, we can compute the all-pairs RF matrix in O(n2t2) time. Although
there is no documentation describing the tree distance algorithm in PAUP*, we suspect it
is using the above brute-force algorithm.

4. Our Collection of Biological Trees

Since the performance of our algorithm is dependent upon the distribution of the nt bipar-
titions, our experiments consider the behavior of our Hash-RF algorithm between the best
and worst running time bounds. Our experimental approach is to explore the performance
of the algorithm on biological trees produced from a phylogenetic search. Since phylo-
genetic search techniques operate within a defined neighborhood of the search space, the
resulting output tree tends to share many bipartitions among the t trees.

The biological trees used in this study were obtained by running the Recursive-Iterative
DCM3 (Rec-I-DCM3) algorithm 13, one of the best algorithms for obtaining maximum par-
simony trees. We used the following molecular datasets to obtain phylogenetic trees from
a Rec-I-DCM3 search: (1) a set of 500 aligned rbcL DNA sequences (1,398 sites) 11; (2) a
set of 1,127 aligned large subunit ribosomal RNA sequences (1,078 sites) obtained from the
Ribosomal rRNA database 16; and (3) a set of 2,000 aligned Eukaryotic sRNA sequences
(1,251 sites) obtained from the Gutell Lab at the Institute for Cellular and Molecular Biol-
ogy, The University of Texas at Austin. Thus, n ranged from 500 to 2,000 taxa.
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For each of the above datasets, a single run of the Rec-I-DCM3 algorithm produced
1,000 trees (i.e., the Rec-I-DCM3 was run for 1,000 iterations). From these 1,000 trees, we
created five sets consisting of 200, 400, 600, 800, and 1,000 trees. Hence, t ranged from
200 to 1,000 trees. Overall, we performed five runs of the Rec-I-DCM3 algorithm on each
of the biomolecular datasets leading to 75 different collections of biological trees. Since
there are five sets of trees for each pairing of n and t, our experimental results show the
average performance of the algorithms on the five tree collections for each pair of n and t.

5. Experimental Results

We ran a series of experiments to study the performance of Hash-RF and PAUP* on the
collection of biological trees described in the previous section. All experiments were run
on an Intel Pentium platform with 3.0GHz dual-core processors and a total of 2GB of
memory. Since our biological trees are binary, we can simply compute the upper triangle
of the RF distance matrix as shown in Algorithm 1. However, since PAUP* computes the
full matrix, our algorithm does the same to ensure a fair comparison of the algorithms.

Figure 3 compares the performance of the Hash-RF algorithm with PAUP* in terms of
running time and speedup. The Hash-RF algorithm requires a minimum of 1.58 seconds
on the smallest dataset (n = 500, t = 200) and a maximum of 93.65 seconds on the largest
dataset (n = 2, 000 and t = 1, 000). For the same datasets, PAUP* requires 31.09 seconds
and 13.94 hours, respectively. Hence, on our largest dataset, the Hash-RF algorithm is
over 500 times faster than PAUP*’s all-to-all RF distance algorithm. Moreover, the results
demonstrate that even greater speedups can be expected with larger collections of biological
trees.

For n = 2, 000, Table 2 provides information on the number of hash locations where
|li| = t, which implies that bipartition Bi is shared among the t trees. A large number
of locations with |li| = t in the hash table will result in a slowdown in the performance
of the Hash-RF algorithm since it will require O(|li|

2) time to process the linked list at
location i. The number of edges in an unrooted binary tree with n taxa is n − 3, which
also represents the maximum number of distinct bipartitions that can be shared across the
t trees. Shared bipartitions among the t trees compose the strict consensus tree. Table 2
shows that the average number of bipartitions shared among the trees range from 43.77% to
45.62%, when n = 2, 000. When n = 500, the resolution of the strict consensus tree ranges
from 68.21% to 71.23% (not shown). So, even under diverse conditions of overlap among
the bipartitions, the Hash-RF algorithm performs quite well in comparison to PAUP*.

6. Conclusions and Future Work

Phylogenetic search methods can produce large numbers of candidate trees as approxima-
tions to the ”true” evolutionary tree. Such trees provide a powerful data-mining opportunity
for examining the evolutionary relationships that exist among them. Post-processing meth-
ods such as strict consensus trees are the most common methods for providing a single
tree that summarizes the information contained in the candidate trees. We advocate a more
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Figure 3. Performance of Hash-RF and PAUP* on the collection of biological trees. (a) provides the running
time required by the algorithms to compute the all-to-all RF distance matrix for various values of n and t. (b)
shows the speedup of the Hash-RF approach over PAUP*.

Table 2. For n = 2,000, the number of identical bi-
partitions shared between the t trees and resulting
resolution of the strict consensus tree.

# hash locations strict consensus
t where |li| = t tree resolution (%)

200 911 45.62
400 908 45.47
600 884 44.27
800 882 44.17

1,000 874 43.77

information-rich approach to analyzing the trees returned from a phylogenetic search. As a
step in this direction, we present a fast randomized algorithm that calculates the Robinson-
Foulds (RF) distance between each pair of evolutionary trees that in the best and worst case
require O(nt log nt + t2) and O(n2t2) running times, respectively.

Our experiments explore the behavior of our approach within these two boundaries. We
compared the performance of our Hash-RF algorithm to PAUP*—a popular, commercially-
available software package for inferring and interpreting phylogenetic trees—on large col-
lections of biological trees. Our Hash-RF algorithm is up to 500 times faster than PAUP*’s
approach. We also compared our approach to Phylip and Split-Dist, but Phylip is extremely
slow and Split-Dist performed similarly to PAUP* (not shown). The experiments with bi-
ological trees share between 43.77% and 71.23% of their bipartitions among the t trees.
Given the diverse distributions of bipartition sharing among the biological trees, the results
clearly demonstrate the performance gain achieved by using a hash-based approach for
computing the RF distance between each pair of trees. Moreover, fast algorithms such as
Hash-RF will enable users to perform interactive analyses of large tree collections in such
applications as Mesquite 8.
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Our work can be extended in many different directions. One immediate source of im-
provement would be a better mechanism for detecting collisions in our Hash-RF algorithm.
Additional experiments will include randomly-generated trees (i.e, to control the degree of
bipartition sharing among the t trees) and larger tree collections. Using Day’s O(n) algo-
rithm to compute the RF distance between two trees, it is possible theoretically to compute
the all-pairs RF distance in O(nt2) time. We plan on implementing Day’s algorithm and
comparing its performance in practice to our Hash-RF approach. Finally, we are extending
our algorithm for use with multifurcating trees.
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