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It is known that folding a protein chain into the cubic ladtis an NP-complete problem. We consider
a seemingly easier problem, given a 3D fold of a protein cf@iordinates of it€’, atoms), we want

to find the closest lattice approximation of this fold. Thisiplem has been studied under names such
as “lattice approximation of a protein chain”, “the proteimain fitting problem” and “building protein
lattice models”. We show that this problem is NP-completettie cubic lattice with side 3/8and the
coordinate root mean-square deviation.

1. Introduction

A protein is a linear sequence of amino acids which when plate a solvent forms a 3D
structure (fold). One of the main problems in proteomic®isdmputationally determine
the structure of a protein given a sequence of amino acids.prbblem appears extremely
hard even when very simplified models are considered. Ftarigs in Dill's HP-modé,

it is assumed that the “centers” of amino acids, @toms) of the protein structure occupy
vertices of a given lattice. A fold of a protein then can berespnted as a path in the
lattice. The second simplification, is the energy functibthe fold. Instead of considering
all forces affecting the folding process, only hydrophabteractions between amino acids
neighboring in the lattice are considered. It was shown ifs Reand 4 that protein folding
is NP-complete even in this simplified model.

Even though protein folding in lattice models is NP-comg]étis more computation-
ally feasible than in the general non-lattice models asdtteé significantly limits the de-
gree of freedom. In fact, lattice models are widely used wetigation of folding kinetics
and thermodynamiés and for computer investigation of protein foldifig®. However,
even if the optimal (native) fold in a certain lattice modetound it could be quite far from
the real fold of the protein. ldentifying lattice models whihave a potential to produce
folds close to real 3D structures is an important questiostinctural proteomics studied
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in handful of papers!':10:19:18:16,17,12,14 14 cite a few.

To measure the accuracy of representation of lattice mpithel$ollowing procedure is
commonly used: (1) select a test set of proteins with knowstBiicture (for instance from
PDB?); (2) find the closest lattice representation of each pnoeinimizing the overall
distance of the lattice representation to the exact strecas measured by the coordinate
root mean squared deviation (c-RMS) or by the distance rmgtien (d-RMS); (3) cal-
culate average of the c-RMS (d-RMS) values over all protiirtbe test set. The crucial
part of this procedure is the computation of the closesti&tepresentation (of the chain)
of a given protein structure. This problem is also refermedd “the discretization of a pro-

tein backbone”, “lattice approximation of 3D structure aftein molecule”, “constructing
lattice models of protein chains”, “modeling protein stires on a lattice”, “discrete state
model fitting to X-ray structures” or “fitting of a protein cinao a lattice”. In this paper, we
call the problenprotein chain lattice fitting problenthe PCLF problem). Also note that
an algorithm for the PCLF problem is an essential part of iepeotein folding algorithm,
cf. Ref. 17.

The first algorithm for the PCLF problem proposed in Ref. 3raatates all possible
conformations and picks the best one. Dynamic programmésgdb algorithms were pre-
sented in several papers, cf. Refs. 19, 18 and 17. A greedypaqpkeeping about 500
“best” lattice folds was used in Ref. 16 and another greegly@arh was used in Ref. 14. A
completely different approach using the self-consistezdmifield theory was presented in
Ref. 12. All these algorithms either exhaustively enurmesgdit conformations, which can
be applied only on very short proteins, or produce approtéraalutions. Itis questionable
how reliable is the comparison of accuracy of various latibased on an approximate
algorithm. A chosen approximation algorithm might have tidseapproximation ratio for
certain types of lattices which would consequently shovhaigaccuracy for those lattice
than other ones. Therefore, it would be highly desirablestzetbp a fast (polynomial) and
exact algorithm solving the protein chain fitting problem.

In this paper, we show that the protein chain lattice fittimghgem is NP-complete
for the cubic lattice with side 38and c-RMS deviation. Although this result does not
immediately imply that the problem is intractable for othettices as well, it would be
very unlikely if it is not the case.

2. Formalization of the problem

Given is a protein as a sequence of 3D points and a regularelainbedded into space
(each lattice vertex is a 3D point). The goal is to map eveiytaf the protein to a lattice
point such that consecutive protein points are mapped ticdatpoints connected by an
edge, the mapping is injective and the “distance” betweerséguences of protein points
and mapped points is minimized. The following propertiepmfteins whose structure is
available in PDB are well known:

e the distances between consecutive points of a protein agylittle from 3.8%;
¢ the distances between non-consecutive points of a prateiniéast 38
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We will assume that the lengths of the edges of the latticequal to 3.8 We can then
easily scale the whole setting so that the distances bete@®secutive protein points and
between two neighboring lattice points are one. Hence, wdaranalize the protein chain
fitting problem as follows:

Protein Chain Lattice Fitting (PCLF) Problem
Instance:Equilateral latticel. with side1, a sequence of poings= p1, ..., P, such that

(P1) d(p;,pix1) = 1, foreveryl <i < n,and
(P2) d(p;,pj) > 1forevery2 <i+1<j<mn,

a distance measureon the sequence of points, and a numker
Question:ls there a path= I, ...,[, in L such thatx(p,l) < K?

a(p,l) represents the quality of the lattice representation olargprotein structure.
Two most common distance measures used to measure thig/gualthecoordinate root
mean square deviatiofe-RMS) and thedistance root mean square deviati¢stx RMS),
defined as follows

> ldpispy) —d(li,15)]?

1<i<j<n

n(n —1)/2

> d*(pi, i)
i=1

n

d-RMS(p, 1) =

c-RMS(p,l) =

We show that the PCLF problem is NP-complete for the cubtkatnd the c-RMS
measure. We would like to point out that the assumptionitkat,, ..., 1, is apathin the
lattice is a crucial assumption. In fact it can be proved thats awalkin the lattice, the
problem can be solved in polynomial tifheWe use a reduction from a special variant of
the satisfiability problem shown to be NP-complete in Ref. 13

Var-linked planar 3-SAT (VLP-3-SAT)
Instance:A formula ¢ with a setC of clauses over a set of variables in a conjunctive
normal form such that:

(S1) Every clause contains at most three variables.

(S2) The setX of variables allows a linear orderingy, ..., z, such that the graph
Ge =(CUX,{zc;x €eceCor—x €ce CtU{zizip1;i=1,...,n})is
planar (here:, 1 = x1).

Question:ls @ satisfiable?

Note that for a different variant of planar 3-SAT, in whiclagkes are linked in a circled
chain instead of variables (clause-linked), it was showReh 8 that it can be assumed that
each variable occurs in exactly three clauses, once negatetlvice positive. A similar
assumption for the var-linked version of the planar 3-SAdhem simplifies our proof.
We provide the justification for this assumption in the nextggraph.

Consider an instance of the VLP-3-SAT problem. It is posstbldrawGg in a way
that all the variables inX lie on one vertical line, and clauses lie either to the leftcor
the right of this line and connect directly to the variableéthaut crossing the vertical line.
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Henceforth, we distinguish between left and right claubksy, similar to the construction

in Ref. 8, we replace every variablewhich does not have exactly 3 occurrences such that
at least one of them is positive and one negative, with veesb, .. ., [, andry, ... rpy,
wherex was connected to left clausés, ..., L, and right clause®y, ..., R,,. Obvi-
ously, we can assume that+ m > 2. Figure 1 shows the connections before and after
the replacement. Note that we have introduced new claiises—l;11), (I V —7m),
(rix1 V —r;) and(ry vV =ly), which guarantees that all new the variables have the same
value in any satisfiable assignment. Therefore, the newB{8nula is satisfiable if and
only if the original one was, and every variable has at least positive and at least one
negative occurrence. Finally, replacing the variable$witgative occurrences by their
negations we obtain a var-linked planar 3-SAT formula §tig the following condition:

(S3) Every variable occurs in exactly three clauses, ongated and twice positive.
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Figure 1. Replacement of variabtewith sequence of variables: (a) the original configuratif);a new con-
figuration in casé:, m > 0; (c) a new configuration in case = 0.

3. NP-completeness of the PCLF problem for the cubic lattice and thec-RM S
measure

To prove the NP-completeness of the PCLF problem, we consjieial instances of the
problem. Next we give a simple lower bound on the c-RMS of girosequence and
its lattice approximatio. For everyp;, let L(p;) denote the set of lattice vertices which
are the closest tp. Let d; be the distance of; from L(p;), i.e., d; = d(pi,q), where

q € L(p;). LetD = Z":TldQ Obviously, for any lattice path c-RMS(p,1) > D. In
the special instances we sktto D, i.e., we get an affirmative answer to the instance if
and only if there is a pathin the lattice such thd; € L(p;). We show that this happens
if and only if the formula® for which we built the instance is satisfiable. Since the cubi
lattice L is equilateral, we can assume that the verticespfare all integral points, i.e.,
V(LD) = {[xsyvz]; T,y,z € Z} andE(LD) = {([T;Uvz]; [mlvylvzl]); ‘T - '7"’| + |U -
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y'|+|z—2z'| = 1}. A pointp for which L(p) is not a singleton will be calledféexiblepoint.
Obviously, flexible points will play an important role in tieenstruction. It is sufficient to
prove the following lemma.

Lemma 3.1. It is NP-complete to decide whether for a given sequence witpp =
p1,...,pp thereisapatid = 1y,...,10,in Lg suchthatforevery=1,...,n,l; € L(p;).

Proof. We establish the NP-completeness by a reduction from the-34JAT problem.

Let ® be a formula and74 a planar drawing oft such that every variable occurs twice
positive and once negated (cf. the definition of VLP-3-SAT éime discussion after the
definition). We construcp in two phases. In the first phase, we construct several subse-
guences op lying either in or close to (within distance 3 from) the plane= 0, each
ending inL-points. These sub-sequences closely follow the planavidggGs. In the
second phase, these subsequence are connected to onesgqLsémg onlyL-points not

lying in the planez = 0. Obviously, this can be done without any problem and in aty-so
tion they have to be mapped to the same points, therefore viteloerexplicit description

of the second phase.

gk 9
Adr-1

q2

Qﬂh
(a) (b) (€) (d)

Figure 2. lllustration of a “wire”: (a) a real subsequencdi@ance between two consecutive points is 1); (b) a

schematic drawing of subsequence (the gray edges will kellysumitted); (c) 5 possible lattice approximations

of the subsequence (depicted with dotted lines); (d) puliire wire on the left hand side forces a unique state of
the wire.

The first basic building block of the construction iswife”, cf. Figure 2(a). The end
points of the wireg; andg; are lattice points, as required. The middle poiats . ., gx 2
are flexible points, each having four choices for the clotatite point, since they lie
in the centers of square faces of plane= 0, i.e., in the setl,,, = [1/2,1/2,0] +
V(Lg). The second and the penultimate poings,andg;_1, lie neither inL nor in
L, », as they connect lattice points to flexible points. We will sach pointsconnecting
points Even though they do not lie directly in the lattice, theibsz#st lattice points sets
L(g2) andL(gx—1) are singletons, i.e., in every solution, they are uniqueipped to the
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lattice points. Therefore, in our schematic drawing, thé paints of the wire are usually
omitted and the connecting points are shifted to the laptaiats to which they are uniquely
mapped, cf. Figure 2(b).

Next we show that the connecting points satisfying condgi¢P1) and (P2) do exist.
WIlog assume thaf; = [1, 0] and the leftmost flexible point i§/2, 3/2] theng, = [3/4 +
V15/20,5/4 — 3v/15/20] = [0.9436, 0.669]. It can be verified thag. obeys the distance
constraints (P1) and (P2).

Figure 2(c) shows all the possible ways a “wire” can be mappetie lattice points
sequence forming a path ;. An important property of a wire is that forcing the first
(leftmost) flexible point (by some other gadget of the carcdton) to position 1, as depicted
in Figure 2(d), yields a unique state of the wire, and mostartgmtly, makes the last
flexible point to map into position 1 as well (which can affetdte of another gadget on
this end of wire). One can imagine that the wire is sendinggaaifrom left to the right
(or symmetrically, from right to the left). More formallypasider two boolean variables
andt. Lets = 1 iff the first flexible point of the wire is in position 1 and let= 1 iff the
last flexible pointis in position 1. Then in every solutiore Waves —> t.

1

(@) (b) (c)

Figure 3. lllustration of a “flipper”: (a) a real subsequen(® a schematic drawing (the gray edges will be
usually omitted); (c) two possible states of the subsecienc

The second basic building block is #ipper’, cf. Figure 3(a). Note that the distance
between two connecting points of the subsequen%i& % > 1, i.e., condition (P2)
is satisfied. In the schematic drawing we again omit the endt@and shift the second
and the second last point to positions where they are uniquapped, cf. Figure 3(b).
Figure 3(c) shows all the possible states for a flipper.

To model the graplirs we replace each vertex (claused C by a “clause gadget” and
every vertex (variable) € X with a “variable gadget”. We will use two different types
of gadgets for clauses depending on the number of literat$ saveral different types of
gadgets for variables depending on occurrences of vasabl¢éhe formula® (positive
or negative, in left or right clauses, as well as their reiatirder). The variable gadgets
are placed vertically on top of each other and there are noemions between them as
in Gg. For each edge between a clause and a variable, we have aomineating the
corresponding clause and variable gadgets. It is not alwagsible to drawZs in a way
that all clause-variable edges are horizontal. Therefoeeneed a wire which bends and
correctly sends a signal from one end to the other. Such wé&ese constructed using only
two bends. Figure 4 shows how using two flippers we can acleraetly this. Consider
Figure 4(a), if the top part of the wire is forced to be in stafpulled to the top) then the
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bottom part of is also pulled. If the top part of the wire is tate0, then the top flipper is
in O state, this forces the bottom flipper to beLirstate, this forces the bottom part of the
wire to be in stat®.

(@) (b)

Figure 4. lllustration of a wire which is shifted from one trzantal line to another: (a) down shift; (b) up shift.
The dotted line shows the unique state when the first flexibietjis forced to position 1.

Consider a left clause € C (for right clauses, we would use a symmetrical design).
First, assume that the clause contains two literals. Thgefddr such a clause is depicted
in Figure 5. The poing, common to the two wires which appears as a lattice pointén th
schematic drawings (a)—(c) has to be shifted off the lattigel/4 in both coordinates) as
shown in Figure 5(d), otherwise the connecting pojm@ndr would be closer to each
other thanl which would violate condition (P2). Enumerating all the gibdlities (using a
computer program), we found out that there are 42 statedifogadget, 2 states with the
upper wire pulled (the blue arrow is in position 1) and thedowire not pulled (position
0), cf. Figure 5(a) for one of them, 2 states with the reverstadhtion of the wires, cf.
Figure 5(b), and the remaining have both wires are pulledsiglure 5(c) for instance. K
andt are boolean variables representing the position of thdltagble point of the wires,
then in any solution, we haweV t is satisfiable, and vice versa, for any values aihdt
such that V ¢ is satisfied, there is a solution with these values. Congiidecase when the
gadget in Figure 5 has both the top and the bottom wires ir 8tatot pulled). The state
of the bottom wire forces the bottom flipper to beLirstate, and the flipper in the middle
to be inM state. The state of the top wire forces the top flipper to be Btate, but point
g can be occupied by only one flipper, this leads to a contriaticHence, both the wires
cannot be ir) state.

Next, assume that the clause contains three literals. We twatesign a gadget with
3 wires coming out of it such that it allows all and only thosses in which at least one
of the wires is pulled. It seems hard to design such a plandgegatherefore we use a
3D-version of the flipper depicted in Figure 6(a). Note thatagain need two connecting
pointsg, andgs on left end of the sequence. Poigtsandgs are exactly above each other
at distance 1. Ifj; were placed on a lattice vertex, it would be too close to thatpg
on the other end of the subsequence. Figure 6(b) shows aihp@states of the flipper.
Observe that in each state, the mapped sequence goes tleaaily one of the points,

q, . Two of them p andgq lie directly in the plane = 0. For pointr, we use one vertically
placed flipper to transfer information thats occupied to plane = 0, cf. Figure 7(a—b).



October 8, 2006 0:21 Proceedings Trim Size: 9.75in x 6.5in bcap6a

-

i
{

(@) (b) (© (d)

Figure 5. lllustration of a 2-clause gadget: (a) a state wherupper wire is pulled; (b) a state when the lower
wire is pulled; (c) a state when both wires are pulled; (d)rérs@ sequence around the point where the two wires
meet (upper left corner). The two wires coming out of it (oe tight) would end in corresponding variable
gadgets (after possible shifts).

(b)

Figure 6. lllustration of a 3D-flipper: (a) a real subseqen(®) 5 possible states of the 3D-flipper. The grey
area indicates the plane= 0 where the ordinary gadgets are placed.

Figure 7(a) shows the unique state of the vertical flippenédase when the 3D-flipper
is in the state using poimt Obviously, in this case pointg andr,, both lying in the plane
z = 0 are used. In any other state of the 3D-flipper, the verticapéi can be in either
of the two states. Figure 7(b) shows an example, when it ikénstate not using points
r1 andrs. Figure 7(c) shows five possible situations in the plane 0 caused by the
non-planar part of the 3-clause gadget. Observe that fooathe pointsp, ¢ andrs,, there
is a solution such that this point is occupied while the othagr are not. Giver wires,
and using several flippers it is possible to ensure that at lmae of the wires is pulled,
cf. Figure 7(d). Ifsy, s2, s3 are boolean variables representing positions of the rightm
flexible points of the three wires, then in any solution, weehg V s, V s3 is satisfiable,
and vice versa, for any values ef, so, s3 such thats; V ss V s3 is satisfied, there is a
solution with these values. Consider the case when all ez tvires are in stat@ then
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the flippers are forced to occupy poinpts;, r» but at least one of these points is needed by
the non-planar part of the 3-clause gadget, a contradic#dinthe other states are valid,
and again have been checked using a computer program.

T2 T2 T2
e Tp T
] ] ]
q q q
T2 T2
T T
] ]
q q
()
5
H
e 18 =~
r r
1
P\l
.
.
5
(d)

Figure 7. lllustration of a 3-clause gadget: (a—b) the p&the gadget outside of the plane= 0; (c) five
possible situations in the plare= 0 caused by the non-planar part of the gadget (two larger ldatkmark the
places where the subsequence of the 3D-flipper crossesathezpt= 0); (d) the planar part of the gadget.

Finally, we construct the variable gadgets. Recall thaheae X occurs in exactly 3
clauses, twice positive and once negated. Figure 8 shotveathses (up to symmetries) of
how the neighborhood of a variableoccurring in 3 clauses looks like in a planar drawing
of Go.

All variable gadgets are variations of the gadget depictdddure 9(a). There are 2439
states for this gadget. Let, s», s3, s4 be boolean variables whose values depend on the
positions of flexible points at the end of wires as depictethanfigure. Ifs; is in statel,
the flippers forces, into state). Symmetrically, ifs, is in statel, then the flippers force
s3 to be in staté). Also note that ifs; is in statel thenss is in state0, and symmetrically
if so isin statel thens, is in state). Therefore in any solution for the gadget we have that
the formula(s; V s4) @ (s2 V s3) is satisfied, and vice versa, for any satisfiable assignment
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Figure 8. Neighborhood of a variable € X in a planar drawing of7s. For negated occurrence we put the
symbol— on the edge connecting the clause and

of the formula there is a valid state for the gadget. Onceragdli the valid states for the
variable gadget have been verified using a computer program.

Now, consider the occurrence of some variahl&or every positive occurrence ofin
a clause: € C, connect the wire coming out of the gadget-db the end of wire marked
with s; or s4 (depending on whether it is a left or right clause), and fargwnegative
occurrence, to the end marked withor sz, cf. Figure 9(b). Obviously, this strategy can
be directly applied in the case (c) depicted in Figure 8. Nlo&t one wire coming out of
the variable gadget stays unused, and remains unconnedas tlause.

Given a solution to the PCLF problem, we determine value émiablez in a satisfiable
assignment as follows: #; = 1 orsy = 1thenz = 1;if s, = 1 0rs3 = 1thenxz = 0;
otherwise (allsy, s2, s3, s4 have 0 values), the value farcan be chosen arbitrarily. Note
that this assignment to variabl@sbased on any solution to the PCLF problem, guarantees
that every clause is satisfied. Indeed, in every clause gadigast one of the wires is
in state1 (pulled) this correponds to a literal in the corresponditayse to be true (by
construction).

On the other hand, for every satisfiable assignment to Vagab X of the formula®,
set each clause gadget to the state in which they are pubicly wire which corresponds
to a literal satisfied by the assignment, and set each vargdaget to the state in which
s1 = s4 = 1ifthe corresponding variabte has value 1, o, = s3 = 1 otherwise.

Finally, for the remaining cases of the neighborhoocd ptf. Figure 8(a)(b)(d), we
need to bend one wire from the right hand side of the configurab the left hand side.
For the case (a), the complete variable gadget is depicteidime 10. For other two cases,
the construction is analogous.

It follows by the construction that the formudais satisfiable if and only if there exists
a solution to the constructed PCLF problem. It is also clbat the construction can be
done in polynomial time and space. Therefore, the PCLF proli$ NP-complete. O

4. Conclusions

We have proved that the protein chain lattice fitting problemIP-complete for the cu-
bic lattice with side 3.8 and the coordinate root mean square deviation (c-RMS) as th
distance measure. From the theoretical point of view it Wdié very interesting to fur-
ther investigate the complexity for the 2D square latticthwgide 3.8.The proof of NP-
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Figure 9. (a) Acommon substructure to all variable gadgeisExample of a connection between a left 2-clause
gadget fore = —x V y and the variable gadget for.
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Figure 10. A variant of the variable gadget used in the capddpicted in Figure 8. Note that if the wire is
pulled at positions/;, it is also pulled at position.

completeness presented in this paper mostly uses one glére3D cubic lattice £ = 0)
and is based on the planar 3-SAT problem. However, it canaatdplied directly to the
square lattice for two reasons: (1) we were unable to desigrBiclause gadget without
using the third dimension; (2) connecting the gadgets inmprotein string without using
the third dimension seems to be a nontrivial task.

From the practical point view, the questions whether owrltepplies to different types
of lattices or cubic lattices with sides different from &.8r d-RMS used as the distance
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measure between two 3D structures are more important. Ibeashown that a greedy
algorithm can perform arbitrary bad for constructed seqasiof points (although, the per-
formance on proteins from PDB is better). It would be inténgsto study whether the
existing DP-based algorithms have bounded performani® m@tto design a new algo-
rithm with constant performance ratio.
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