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It is known that folding a protein chain into the cubic lattice is an NP-complete problem. We consider
a seemingly easier problem, given a 3D fold of a protein chain(coordinates of itsC� atoms), we want
to find the closest lattice approximation of this fold. This problem has been studied under names such
as “lattice approximation of a protein chain”, “the proteinchain fitting problem” and “building protein
lattice models”. We show that this problem is NP-complete for the cubic lattice with side 3.8̊A and the
coordinate root mean-square deviation.

1. Introduction

A protein is a linear sequence of amino acids which when placed into a solvent forms a 3D
structure (fold). One of the main problems in proteomics is to computationally determine
the structure of a protein given a sequence of amino acids. This problem appears extremely
hard even when very simplified models are considered. For instance in Dill’s HP-model6,
it is assumed that the “centers” of amino acids (C� atoms) of the protein structure occupy
vertices of a given lattice. A fold of a protein then can be represented as a path in the
lattice. The second simplification, is the energy function of the fold. Instead of considering
all forces affecting the folding process, only hydrophobicinteractions between amino acids
neighboring in the lattice are considered. It was shown in Refs. 1 and 4 that protein folding
is NP-complete even in this simplified model.

Even though protein folding in lattice models is NP-complete, it is more computation-
ally feasible than in the general non-lattice models as the lattice significantly limits the de-
gree of freedom. In fact, lattice models are widely used in investigation of folding kinetics
and thermodynamics5;7 and for computer investigation of protein folding15;20. However,
even if the optimal (native) fold in a certain lattice model is found it could be quite far from
the real fold of the protein. Identifying lattice models which have a potential to produce
folds close to real 3D structures is an important question instructural proteomics studied
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in handful of papers3;11;10;19;18;16;17;12;14 to cite a few.
To measure the accuracy of representation of lattice models, the following procedure is

commonly used: (1) select a test set of proteins with known 3Dstructure (for instance from
PDB2); (2) find the closest lattice representation of each protein minimizing the overall
distance of the lattice representation to the exact structure, as measured by the coordinate
root mean squared deviation (c-RMS) or by the distance rms deviation (d-RMS); (3) cal-
culate average of the c-RMS (d-RMS) values over all proteinsin the test set. The crucial
part of this procedure is the computation of the closest lattice representation (of the chain)
of a given protein structure. This problem is also referred to as “the discretization of a pro-
tein backbone”, “lattice approximation of 3D structure of achain molecule”, “constructing
lattice models of protein chains”, “modeling protein structures on a lattice”, “discrete state
model fitting to X-ray structures” or “fitting of a protein chain to a lattice”. In this paper, we
call the problemprotein chain lattice fitting problem(the PCLF problem). Also note that
an algorithm for the PCLF problem is an essential part of genetic protein folding algorithm,
cf. Ref. 17.

The first algorithm for the PCLF problem proposed in Ref. 3 enumerates all possible
conformations and picks the best one. Dynamic programming based algorithms were pre-
sented in several papers, cf. Refs. 19, 18 and 17. A greedy approach keeping about 500
“best” lattice folds was used in Ref. 16 and another greedy approach was used in Ref. 14. A
completely different approach using the self-consistent mean field theory was presented in
Ref. 12. All these algorithms either exhaustively enumerate all conformations, which can
be applied only on very short proteins, or produce approximate solutions. It is questionable
how reliable is the comparison of accuracy of various lattices based on an approximate
algorithm. A chosen approximation algorithm might have a better approximation ratio for
certain types of lattices which would consequently show higher accuracy for those lattice
than other ones. Therefore, it would be highly desirable to develop a fast (polynomial) and
exact algorithm solving the protein chain fitting problem.

In this paper, we show that the protein chain lattice fitting problem is NP-complete
for the cubic lattice with side 3.8̊A and c-RMS deviation. Although this result does not
immediately imply that the problem is intractable for otherlattices as well, it would be
very unlikely if it is not the case.

2. Formalization of the problem

Given is a protein as a sequence of 3D points and a regular lattice embedded into space
(each lattice vertex is a 3D point). The goal is to map every point of the protein to a lattice
point such that consecutive protein points are mapped to lattices points connected by an
edge, the mapping is injective and the “distance” between the sequences of protein points
and mapped points is minimized. The following properties ofproteins whose structure is
available in PDB2 are well known:� the distances between consecutive points of a protein vary very little from 3.8Å;� the distances between non-consecutive points of a protein is at least 3.8̊A.
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We will assume that the lengths of the edges of the lattice areequal to 3.8̊A. We can then
easily scale the whole setting so that the distances betweenconsecutive protein points and
between two neighboring lattice points are one. Hence, we can formalize the protein chain
fitting problem as follows:

Protein Chain Lattice Fitting (PCLF) Problem
Instance:Equilateral latticeL with side1, a sequence of pointsp = p1; : : : ; pn such that

(P1) d(pi; pi+1) = 1, for every1 � i � n, and
(P2) d(pi; pj) � 1 for every2 � i+ 1 < j � n,

a distance measure� on the sequence of points, and a numberK.
Question:Is there a pathl = l1; : : : ; ln in L such that�(p; l) � K?�(p; l) represents the quality of the lattice representation of a given protein structure.
Two most common distance measures used to measure this quality are thecoordinate root
mean square deviation(-RMS) and thedistance root mean square deviation(d-RMS),
defined as follows-RMS(p; l) =vuut nPi=1 d2(pi; li)n ; d-RMS(p; l) =vuut P1�i<j�n[d(pi; pj)� d(li; lj)℄2n(n� 1)=2 :

We show that the PCLF problem is NP-complete for the cubic lattice and the c-RMS
measure. We would like to point out that the assumption thatl = l1; : : : ; ln is apathin the
lattice is a crucial assumption. In fact it can be proved thatif l is awalk in the lattice, the
problem can be solved in polynomial time9. We use a reduction from a special variant of
the satisfiability problem shown to be NP-complete in Ref. 13.

Var-linked planar 3-SAT (VLP-3-SAT)
Instance:A formula� with a setC of clauses over a setX of variables in a conjunctive
normal form such that:

(S1) Every clause contains at most three variables.
(S2) The setX of variables allows a linear ordering,x1; : : : ; xn such that the graphG� = (C [ X; fx; x 2  2 C or:x 2  2 Cg [ fxixi+1; i = 1; : : : ; ng) is

planar (herexn+1 = x1).
Question:Is� satisfiable?

Note that for a different variant of planar 3-SAT, in which clauses are linked in a circled
chain instead of variables (clause-linked), it was shown inRef. 8 that it can be assumed that
each variable occurs in exactly three clauses, once negatedand twice positive. A similar
assumption for the var-linked version of the planar 3-SAT problem simplifies our proof.
We provide the justification for this assumption in the next paragraph.

Consider an instance of the VLP-3-SAT problem. It is possible to drawG� in a way
that all the variables inX lie on one vertical line, and clauses lie either to the left orto
the right of this line and connect directly to the variables without crossing the vertical line.
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Henceforth, we distinguish between left and right clauses.Now, similar to the construction
in Ref. 8, we replace every variablex which does not have exactly 3 occurrences such that
at least one of them is positive and one negative, with variablesl1; : : : ; lk andr1; : : : ; rm,
wherex was connected to left clausesL1; : : : ; Lk and right clausesR1; : : : ; Rm. Obvi-
ously, we can assume thatk + m � 2. Figure 1 shows the connections before and after
the replacement. Note that we have introduced new clauses(li _ :li+1), (lk _ :rm),(ri+1 _ :ri) and(r1 _ :l1), which guarantees that all new the variables have the same
value in any satisfiable assignment. Therefore, the new 3-SAT formula is satisfiable if and
only if the original one was, and every variable has at least one positive and at least one
negative occurrence. Finally, replacing the variables with negative occurrences by their
negations we obtain a var-linked planar 3-SAT formula satisfying the following condition:

(S3) Every variable occurs in exactly three clauses, once negated and twice positive.
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Figure 1. Replacement of variablex with sequence of variables: (a) the original configuration;(b) a new con-
figuration in casek;m > 0; (c) a new configuration in casem = 0.

3. NP-completeness of the PCLF problem for the cubic lattice and the c-RMS
measure

To prove the NP-completeness of the PCLF problem, we consider special instances of the
problem. Next we give a simple lower bound on the c-RMS of protein sequencep and
its lattice approximationl. For everypi, let L(pi) denote the set of lattice vertices which
are the closest top. Let di be the distance ofpi from L(pi), i.e., di = d(pi; q), whereq 2 L(pi). LetD = qPni=1 d2in . Obviously, for any lattice pathl, -RMS(p; l) � D. In
the special instances we setK to D, i.e., we get an affirmative answer to the instance if
and only if there is a pathl in the lattice such thatli 2 L(pi). We show that this happens
if and only if the formula� for which we built the instance is satisfiable. Since the cubic
latticeL� is equilateral, we can assume that the vertices ofL� are all integral points, i.e.,V (L�) = f[x; y; z℄; x; y; z 2 Zg andE(L�) = f([x; y; z℄; [x0; y0; z0℄); jx � x0j + jy �
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5y0j+jz�z0j = 1g. A pointp for whichL(p) is not a singleton will be called aflexiblepoint.
Obviously, flexible points will play an important role in theconstruction. It is sufficient to
prove the following lemma.

Lemma 3.1. It is NP-complete to decide whether for a given sequence of points p =p1; : : : ; pn there is a pathl = l1; : : : ; ln in L� such that for everyi = 1; : : : ; n, li 2 L(pi).
Proof. We establish the NP-completeness by a reduction from the VLP-3-SAT problem.
Let � be a formula andG� a planar drawing of� such that every variable occurs twice
positive and once negated (cf. the definition of VLP-3-SAT and the discussion after the
definition). We constructp in two phases. In the first phase, we construct several subse-
quences ofp lying either in or close to (within distance 3 from) the planez = 0, each
ending inL�-points. These sub-sequences closely follow the planar drawing G�. In the
second phase, these subsequence are connected to one sequencep using onlyL�-points not
lying in the planez = 0. Obviously, this can be done without any problem and in any solu-
tion they have to be mapped to the same points, therefore we omit the explicit description
of the second phase.

q1

q2

qk−1

qk

(a) (b) (c)

0

1

0

1

(d)

Figure 2. Illustration of a “wire”: (a) a real subsequence (adistance between two consecutive points is 1); (b) a
schematic drawing of subsequence (the gray edges will be usually omitted); (c) 5 possible lattice approximations
of the subsequence (depicted with dotted lines); (d) pulling the wire on the left hand side forces a unique state of
the wire.

The first basic building block of the construction is a “wire”, cf. Figure 2(a). The end
points of the wire,q1 andqk are lattice points, as required. The middle pointsq3; : : : ; qk�2
are flexible points, each having four choices for the closestlattice point, since they lie
in the centers of square faces of planez = 0, i.e., in the setL1=2 = [1=2; 1=2; 0℄ +V (L�). The second and the penultimate points,q2 and qk�1, lie neither inL� nor inL1=2, as they connect lattice points to flexible points. We will call such pointsconnecting
points. Even though they do not lie directly in the lattice, their closest lattice points setsL(q2) andL(qk�1) are singletons, i.e., in every solution, they are uniquely mapped to the
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lattice points. Therefore, in our schematic drawing, the end points of the wire are usually
omitted and the connecting points are shifted to the latticepoints to which they are uniquely
mapped, cf. Figure 2(b).

Next we show that the connecting points satisfying conditions (P1) and (P2) do exist.
Wlog assume thatq1 = [1; 0℄ and the leftmost flexible point is[5=2; 3=2℄ thenq2 = [3=4+p15=20; 5=4� 3p15=20℄ = [0:9436; 0:669℄. It can be verified thatq2 obeys the distance
constraints (P1) and (P2).

Figure 2(c) shows all the possible ways a “wire” can be mappedto the lattice points
sequence forming a path inL�. An important property of a wire is that forcing the first
(leftmost) flexible point (by some other gadget of the construction) to position 1, as depicted
in Figure 2(d), yields a unique state of the wire, and most importantly, makes the last
flexible point to map into position 1 as well (which can affectstate of another gadget on
this end of wire). One can imagine that the wire is sending a signal from left to the right
(or symmetrically, from right to the left). More formally, consider two boolean variabless
andt. Let s = 1 iff the first flexible point of the wire is in position 1 and lett = 1 iff the
last flexible point is in position 1. Then in every solution, we haves =) t.

(a) (b) (c)

Figure 3. Illustration of a “flipper”: (a) a real subsequence; (b) a schematic drawing (the gray edges will be
usually omitted); (c) two possible states of the subsequence.

The second basic building block is a “flipper”, cf. Figure 3(a). Note that the distance
between two connecting points of the subsequence is3p2 � p6p5 > 1, i.e., condition (P2)
is satisfied. In the schematic drawing we again omit the end points and shift the second
and the second last point to positions where they are uniquely mapped, cf. Figure 3(b).
Figure 3(c) shows all the possible states for a flipper.

To model the graphG� we replace each vertex (clause) 2 C by a “clause gadget” and
every vertex (variable)x 2 X with a “variable gadget”. We will use two different types
of gadgets for clauses depending on the number of literals, and several different types of
gadgets for variables depending on occurrences of variables in the formula� (positive
or negative, in left or right clauses, as well as their relative order). The variable gadgets
are placed vertically on top of each other and there are no connections between them as
in G�. For each edge between a clause and a variable, we have a wire connecting the
corresponding clause and variable gadgets. It is not alwayspossible to drawG� in a way
that all clause-variable edges are horizontal. Therefore,we need a wire which bends and
correctly sends a signal from one end to the other. Such wirescan be constructed using only
two bends. Figure 4 shows how using two flippers we can achieveexactly this. Consider
Figure 4(a), if the top part of the wire is forced to be in state1 (pulled to the top) then the



October 8, 2006 0:21 Proceedings Trim Size: 9.75in x 6.5in apbc226a

7

bottom part of is also pulled. If the top part of the wire is in state0, then the top flipper is
in A state, this forces the bottom flipper to be int state, this forces the bottom part of the
wire to be in state0.

0

1

(a)

0

1

(b)

Figure 4. Illustration of a wire which is shifted from one horizontal line to another: (a) down shift; (b) up shift.
The dotted line shows the unique state when the first flexible point is forced to position 1.

Consider a left clause 2 C (for right clauses, we would use a symmetrical design).
First, assume that the clause contains two literals. The gadget for such a clause is depicted
in Figure 5. The pointq, common to the two wires which appears as a lattice point in the
schematic drawings (a)–(c) has to be shifted off the lattice(by 1/4 in both coordinates) as
shown in Figure 5(d), otherwise the connecting pointsp andr would be closer to each
other than1 which would violate condition (P2). Enumerating all the possibilities (using a
computer program), we found out that there are 42 states for this gadget, 2 states with the
upper wire pulled (the blue arrow is in position 1) and the lower wire not pulled (position
0), cf. Figure 5(a) for one of them, 2 states with the reversedsituation of the wires, cf.
Figure 5(b), and the remaining have both wires are pulled, cf. Figure 5(c) for instance. Ifs
andt are boolean variables representing the position of the lastflexible point of the wires,
then in any solution, we haves _ t is satisfiable, and vice versa, for any values ofs andt
such thats_ t is satisfied, there is a solution with these values. Considerthe case when the
gadget in Figure 5 has both the top and the bottom wires in state 0 (not pulled). The state
of the bottom wire forces the bottom flipper to be int state, and the flipper in the middle
to be inu state. The state of the top wire forces the top flipper to be in� state, but pointq can be occupied by only one flipper, this leads to a contradiction. Hence, both the wires
cannot be in0 state.

Next, assume that the clause contains three literals. We want to design a gadget with
3 wires coming out of it such that it allows all and only those states in which at least one
of the wires is pulled. It seems hard to design such a planar gadget, therefore we use a
3D-version of the flipper depicted in Figure 6(a). Note that we again need two connecting
pointsq2 andq3 on left end of the sequence. Pointsq2 andq3 are exactly above each other
at distance 1. Ifq2 were placed on a lattice vertex, it would be too close to the point q7
on the other end of the subsequence. Figure 6(b) shows all possible states of the flipper.
Observe that in each state, the mapped sequence goes throughexactly one of the pointsp,q, r. Two of them,p andq lie directly in the planez = 0. For pointr, we use one vertically
placed flipper to transfer information thatr is occupied to planez = 0, cf. Figure 7(a–b).
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Figure 5. Illustration of a 2-clause gadget: (a) a state whenthe upper wire is pulled; (b) a state when the lower
wire is pulled; (c) a state when both wires are pulled; (d) thereal sequence around the point where the two wires
meet (upper left corner). The two wires coming out of it (on the right) would end in corresponding variable
gadgets (after possible shifts).
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Figure 6. Illustration of a 3D-flipper: (a) a real subsequence; (b) 5 possible states of the 3D-flipper. The grey
area indicates the planez = 0 where the ordinary gadgets are placed.

Figure 7(a) shows the unique state of the vertical flipper in the case when the 3D-flipper
is in the state using pointr. Obviously, in this case pointsr1 andr2, both lying in the planez = 0 are used. In any other state of the 3D-flipper, the vertical flipper can be in either
of the two states. Figure 7(b) shows an example, when it is in the state not using pointsr1 andr2. Figure 7(c) shows five possible situations in the planez = 0 caused by the
non-planar part of the 3-clause gadget. Observe that for anyof the pointsp, q andr2, there
is a solution such that this point is occupied while the othertwo are not. Given3 wires,
and using several flippers it is possible to ensure that at least one of the wires is pulled,
cf. Figure 7(d). Ifs1; s2; s3 are boolean variables representing positions of the rightmost
flexible points of the three wires, then in any solution, we have s1 _ s2 _ s3 is satisfiable,
and vice versa, for any values ofs1; s2; s3 such thats1 _ s2 _ s3 is satisfied, there is a
solution with these values. Consider the case when all the three wires are in state0, then
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the flippers are forced to occupy pointsp; q; r2 but at least one of these points is needed by
the non-planar part of the 3-clause gadget, a contradiction. All the other states are valid,
and again have been checked using a computer program.
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Figure 7. Illustration of a 3-clause gadget: (a–b) the part of the gadget outside of the planez = 0; (c) five
possible situations in the planez = 0 caused by the non-planar part of the gadget (two larger blackdots mark the
places where the subsequence of the 3D-flipper crosses the planez = 0); (d) the planar part of the gadget.

Finally, we construct the variable gadgets. Recall that each x 2 X occurs in exactly 3
clauses, twice positive and once negated. Figure 8 shows allthe cases (up to symmetries) of
how the neighborhood of a variablex occurring in 3 clauses looks like in a planar drawing
of G�.

All variable gadgets are variations of the gadget depicted in Figure 9(a). There are 2439
states for this gadget. Lets1; s2; s3; s4 be boolean variables whose values depend on the
positions of flexible points at the end of wires as depicted inthe figure. Ifs1 is in state1,
the flippers forces2 into state0. Symmetrically, ifs4 is in state1, then the flippers forces3 to be in state0. Also note that ifs1 is in state1 thens3 is in state0, and symmetrically
if s2 is in state1 thens4 is in state0. Therefore in any solution for the gadget we have that
the formula(s1 _ s4)� (s2 _ s3) is satisfied, and vice versa, for any satisfiable assignment
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Figure 8. Neighborhood of a variablex 2 X in a planar drawing ofG�. For negated occurrence we put the
symbol: on the edge connecting the clause andx.

of the formula there is a valid state for the gadget. Once again, all the valid states for the
variable gadget have been verified using a computer program.

Now, consider the occurrence of some variablex. For every positive occurrence ofx in
a clause 2 C, connect the wire coming out of the gadget of to the end of wire marked
with s1 or s4 (depending on whether it is a left or right clause), and for every negative
occurrence, to the end marked withs2 or s3, cf. Figure 9(b). Obviously, this strategy can
be directly applied in the case (c) depicted in Figure 8. Notethat one wire coming out of
the variable gadget stays unused, and remains unconnected to any clause.

Given a solution to the PCLF problem, we determine value for variablex in a satisfiable
assignment as follows: ifs1 = 1 or s4 = 1 thenx = 1; if s2 = 1 or s3 = 1 thenx = 0;
otherwise (alls1; s2; s3; s4 have 0 values), the value forx can be chosen arbitrarily. Note
that this assignment to variablesX based on any solution to the PCLF problem, guarantees
that every clause is satisfied. Indeed, in every clause gadget atleast one of the wires is
in state1 (pulled) this correponds to a literal in the corresponding clause to be true (by
construction).

On the other hand, for every satisfiable assignment to variables inX of the formula�,
set each clause gadget to the state in which they are pulling each wire which corresponds
to a literal satisfied by the assignment, and set each variable gadget to the state in whichs1 = s4 = 1 if the corresponding variablex has value 1, ors2 = s3 = 1 otherwise.

Finally, for the remaining cases of the neighborhood ofx, cf. Figure 8(a)(b)(d), we
need to bend one wire from the right hand side of the configuration to the left hand side.
For the case (a), the complete variable gadget is depicted inFigure 10. For other two cases,
the construction is analogous.

It follows by the construction that the formula� is satisfiable if and only if there exists
a solution to the constructed PCLF problem. It is also clear that the construction can be
done in polynomial time and space. Therefore, the PCLF problem is NP-complete.

4. Conclusions

We have proved that the protein chain lattice fitting problemis NP-complete for the cu-
bic lattice with side 3.8̊A and the coordinate root mean square deviation (c-RMS) as the
distance measure. From the theoretical point of view it would be very interesting to fur-
ther investigate the complexity for the 2D square lattice with side 3.8̊A. The proof of NP-
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Figure 9. (a) A common substructure to all variable gadgets.(b) Example of a connection between a left 2-clause
gadget for = :x _ y and the variable gadget forx.
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Figure 10. A variant of the variable gadget used in the case (a) depicted in Figure 8. Note that if the wire is
pulled at positions04, it is also pulled at positions4.

completeness presented in this paper mostly uses one plane of the 3D cubic lattice (z = 0)
and is based on the planar 3-SAT problem. However, it cannot be applied directly to the
square lattice for two reasons: (1) we were unable to design the 3-clause gadget without
using the third dimension; (2) connecting the gadgets into one protein string without using
the third dimension seems to be a nontrivial task.

From the practical point view, the questions whether our result applies to different types
of lattices or cubic lattices with sides different from 3.8Å or d-RMS used as the distance
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measure between two 3D structures are more important. It canbe shown that a greedy
algorithm can perform arbitrary bad for constructed sequences of points (although, the per-
formance on proteins from PDB is better). It would be interesting to study whether the
existing DP-based algorithms have bounded performance ratio, or to design a new algo-
rithm with constant performance ratio.
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