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As the sequence identity between a pair of proteins decreases, alignment strategies that are based on se-
quence and/or sequence profiles become progressively less effective in identifying the correct structural
correspondence between residue pairs. This significantly reduces the ability of comparative modeling-
based approaches to build accurate structural models. Incorporating into the alignment process predicted
information about the local structure of the protein holds the promise of significantly improving the align-
ment quality of distant proteins. This paper studies the impact on the alignment quality of a new class
of predicted local structural features that measure how well fixed-length backbone fragments centered
around each residue-pair align with each other. It presents a comprehensive experimental evaluation com-
paring these new features against existing state-of-the-art approaches utilizing profile-based and predicted
secondary-structure information. It shows that for protein pairs with low sequence similarity (less than 12%
sequence identity) the new structural features alone or in conjunction with profile-based information lead
to alignments that are considerably better than those obtained by previous schemes.

1. Introduction

Over the years a wide range of comparative modeling-based methods23,25,28 have been devel-
oped for predicting the structure of a protein (target) from its amino acid sequence. The central
idea behind these techniques is to align the sequence of the target protein to one or more tem-
plate proteins and then construct the target’s structure from the structure of the template(s)
using the alignment(s) as reference.

The overall performance of comparative modeling approaches30 depends on how well the
alignment, constructed by considering sequence and sequence-derived information, agrees
with the structure-based alignment between the target and the template proteins. This can be
quite challenging, as two proteins can have high structural similarity even though there ex-
ists very little sequence identity between them. This led to the development of sophisticated
profile-based methods and scoring functions1,5,8,10,19,31 that allowed high-quality alignments
between protein pairs whose sequence identities are as low as 20%. However, these profile-
based methods become less effective for protein pairs with lower similarities. As a result,
researchers are increasingly relying on alignment scoring methods that also incorporate vari-
ous predicted structural information such as secondary structure, backbone angles, and protein
blocks.7,12,13,20

Recently we developed machine-learning methods21 that can accurately estimate the root
mean squared deviation (RMSD) value of a pair of equal-length protein fragments (i.e., con-
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tiguous backbone segments) by considering only sequence and sequence-derived information.
Our interest in solving this problem is motivated by the operational characteristics of various
dynamic-programming-based18,29 protein structure alignment methods like CE27 and MUS-
TANG14 that score the aligned residues by computing the RMSD value of the optimal super-
imposition of the two fixed-length fragments centered around each residue. Thus, by being able
to accurately predict the RMSD values of all these fragment-pairs from the protein sequence
alone, we can enable the target-template alignment algorithms to use the same information as
that used by the structure alignment methods.

In this paper we focus on studying the extent to which the predicted fragment-level RMSD
(fRMSD) values can actually lead to alignment improvements. Specifically, we study and eval-
uate various alignment scoring schemes that use information derived from sequence profiles,
predicted secondary structure, predicted fRMSD values, and their combinations. Results on two
different datasets show that scoring schemes using the predicted fRMSD values alone and/or
in combination with scores derived from sequence profiles lead to better alignments than those
obtained by current state-of-the-art schemes that utilize sequence profiles and predicted sec-
ondary structure information, especially for sequence pairs having less than 12% sequence
identity. In addition, we present two methods based on seeded alignments and iterative sam-
pling that significantly reduce the number of fRMSD values that need to be predicted, without a
significant loss in the overall alignment accuracy. This significantly reduces the computational
requirements of the proposed alignment strategies.

The rest of the paper is organized as follows. Section 2 provides key definitions and nota-
tions used throughout the paper. Section 3 describes the datasets and the various computational
tools used in this paper. Section 4 describes the scoring schemes used in our study and the
various optimizations that we developed. Section 5 presents a comprehensive experimental
evaluation of the methods developed. Finally, Section 6 summarizes the work and provides
some concluding remarks.

2. Definitions and Notations

Throughout the paper we will use X and Y to denote proteins, xi to denote the ith residue of
X , and π(xi, yj) to denote the residue-pair formed by residues xi and yj .

Given a protein X of length n and a user-specified parameter v, we define vfrag(xi)
to be the (2v + 1)-length contiguous substructure of X centered at position i (v < i ≤
n − v). These substructures are commonly referred to as fragments.14,27 Given a residue-pair
π(xi, yj), we define fRMSD(xi, yj) to be the structural similarity score between vfrag(xi)
and vfrag(yj). This score is computed as the root mean square deviation between the pair of
substructures after optimal superimposition. Finally, we define the fRMSD estimation problem
as that of estimating the fRMSD(xi, yj) score for a given residue-pair π(xi, yj) by considering
only information derived from the amino acid sequence of X and Y .
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3. Materials

3.1. Datasets

We evaluate the accuracy of the alignment schemes on two datasets. The first dataset, referred
to as the ce ref dataset, was used in a previous study to assess the performance of different
profile-profile scoring functions for aligning protein sequences.5 The ce ref dataset consists
of 581 alignment pairs having high structural similarity but low sequence identity (≤ 30%).
The gold standard reference alignment was curated from a consensus of two structure align-
ment programs: FSSP11 and CE.27 The second dataset, referred to as the mus ref dataset, was
derived from the SCOP 1.57 database.17 This dataset consists of 190 protein pairs with an av-
erage sequence identity of 9.6%. Mustang14 was used to generate the gold standard reference
alignments.

To better analyze the performance of the different alignment methods, we segmented each
dataset based on the pairwise sequence identities of the proteins that they contain. We seg-
mented the ce ref dataset into four groups, of sequence identities in the range of 6-12%, 12-
18%, 18-24%, and 24-30% that contained 15, 140, 203, and 223 pairs of sequences, respec-
tively. We segmented the mus ref dataset into three groups, of sequence identities in the range
of 0-6%, 6-12%, and 12-30% that contained 76, 67, and 47 pairs of sequences, respectively.
Note that the three groups of the mus ref are highly correlated with the bottom three levels of
the SCOP hierarchy, with most pairs in the first group belonging to the same fold but different
superfamily, most pairs in the second group belonging to the same superfamily but different
family, and most pairs in the third group belonging to the same family.

3.2. Evaluation Methodology

We evaluate the quality of the various alignment schemes by comparing the differences be-
tween the generated candidate alignment and the reference alignment generated from structural
alignment programs.5,6,24 As a measure of alignment quality, we use the Cline Shift score (CS)2

to compare the reference alignments with the candidate alignments. The CS score is designed
to penalize both under- and over-alignment and crediting the parts of the generated alignment
that may be shifted by a few positions relative to the reference alignment.2,5,22 The CS score
ranges from a small negative value to 1.0, and is symmetric in nature. We also assessed the
performance on the standard Modeler’s (precision) and Developer’s (recall) score,24 but found
similar trends to the CS score and hence do not report the results here.

3.3. Profile Generation

The profile1 of a sequence X of length n is represented by two n × 20 matrices, namely the
position-specific scoring matrix PX and the position-specific frequency matrix FX . These pro-
files capture evolutionary information for a sequence. TheFX(i) and PX(i) are the ith column
of X’s position-specific scoring and frequency matrices. For our study, the profile matrices P
and F were generated using PSI-BLAST1 with the following parameters: blastpgp -j 5
-e 0.01 -h 0.01. The PSI-BLAST was performed against NCBI’s nr database that was
downloaded in November of 2004 and contained 2,171,938 sequences.
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3.4. Secondary Structure Prediction

For a sequence X of length n we predict the secondary structure and generate a position-
specific secondary structure matrix SX of length n × 3. The (i, j) entry of this matrix repre-
sents the strength of the amino acid residue at position i to be in state j, where j ∈ (0, 1, 2)
corresponds to the three secondary structure elements: alpha helices (H), beta strands (E), and
coil regions (C). We use the state-of-the-art secondary structure prediction server YASSPP13

(default parameters) to generate the S matrix. The values of the S matrix are the output of the
three one-versus-rest SVM classifiers trained for each of the secondary structure elements.

3.5. fRMSD Estimation

To estimate the fRMSD scores for a residue-pair π(xi, yj) we used the recently developed
fRMSDPredprogram21a. The fRMSDPredprogram uses an ε-SVR learning methodology to
estimates the fRMSD score of a reside-pair π(xi, yj) by taking into account the profile and the
predicted secondary structure of a fixed-length window around the xi and yj residues. The ε-
SVR estimation technique deploys a novel second-order pairwise exponential kernel function
which shows superior results in comparison to the radial basis kernel function.

The ε-SVR implementation used the publicly available support vector machine tool
SVMlight26 which has an efficient ε-SVR implementation. We used the defaults for regulariza-
tion and regression tube width parameters. The fRMSDPredprogram was trained on a dataset
consisting of 1117 protein pairs derived from the SCOP 1.57 database. This training dataset
was used in previous studies,19,21 and no two protein domains in the dataset shared greater than
75% sequence identity. For each protein pair in the train dataset we use the standard Smith-
Waterman29 algorithm to generate the residue-pairs for which we compute the fRMSD score
by considering fragment lengths of seven.

3.6. Gap Modeling and Shift Parameters

For all the different scoring schemes, we use a local alignment framework with an affine gap
model, and a zero-shift parameter31 to maintain the necessary requirements for a good optimal
alignment.9 We optimize the gap modeling parameters (gap opening (go), gap extension (ge)),
the zero shift value (zs), and weights on the individual scoring matrices for integrating them to
obtain the highest quality alignments for each of the schemes. Having optimized the alignment
parameters on the ce ref dataset, we keep the alignment parameters unchanged for evaluation
on the mus ref dataset.

4. Methods

4.1. Scoring Schemes

We use the standard Smith-Waterman based local alignment29 algorithm in our methods. The
different alignment schemes vary in the computation of the position-to-position similarity
scores between residue-pairs.

aThis work can be found at http://bioinfo.cs.umn.edu/supplements/fRMSDPred/
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4.1.1. Profile-Profile Scoring Scheme

Many different profile-profile scoring functions15,16,31 have been developed for determining the
similarity between a pair of profile columns (i.e., residue-pairs). We use one of the best per-
forming profile-profile scoring functions called PICASSO,10,16 which computes the similarity
between the ith position of protein’s X profile and the jth position of the protein’s Y profile as
〈FX(i),PY (j)〉+ 〈FY (j),PX(i)〉. The operator 〈, 〉 denotes a dot-product operation. We will
refer to this scoring scheme as prof.

4.1.2. Predicted Secondary Structure-based Scoring Scheme

For a given residue-pair π(xi, yj) we compute the similarity score based on the predicted
secondary structure information as a dot-product of the ith row of SX and the jth row of SY ,
i.e., 〈SX(i),SY (j)〉. This approach of incorporating secondary structure information along
with profiles, has been shown to significantly improve the alignment quality.20 We will refer to
this scoring scheme as ss.

4.1.3. fRMSD-based Scoring Scheme

For a given residue-pair π(xi, yj), we use the fRMSDPred program21 to estimate its
fRMSD(xi, yj) score. Since this score is actually a distance, we convert it into a similarity
score using the transformation: log(α/fRMSD(xi, yj)). This transformation assigns positive
values to residue-pairs π(xi, yj) having an estimated fRMSD score that is less than α. For the
purposes of this study the α parameter was set to one, because we observed that the residue-
pairs π(xi, yj) with fRMSD(xi, yj) score of less than one are more likely to be structurally
aligned. We will refer to this scoring scheme as frmsd.

4.2. Combination Schemes

Besides the above scoring schemes, we also investigated their combinations. We used a
weighted combination of the profile-based, predicted secondary, and fRMSD-based scoring
schemes to compute a similarity score for a residue pair π(xi, yj). In this approach the sim-
ilarity score for a residue-pair π(xi, yj), using the prof and frmsd scoring schemes is given
by

w ∗ prof (i, j)
maxP

+
(1− w) ∗ frmsd(i, j)

maxF
, (1)

where prof (i, j) and frmsd(i, j) represent the PICASSO and fRMSD scores for π(xi, yj), re-
spectively. The value maxP (maxF ) is the maximum absolute value of all prof-based (frmsd-
based) residue-pair scores between the sequences and is used to normalize the different scores
prior to addition. The parameter w defines the weighting for different parts of the scoring func-
tion after normalization. The optimal weight parameter w, was determined by varying w from
0.0 to 1.0 with increments of 0.1. This parameter was optimized for the ce ref dataset, and the
same value was then used for the mus ref dataset.



September 24, 2007 22:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc011a

6

A similar approach is used to combine prof with ss and frmsd with ss. In case of the frmsd
+prof +ss there are two weight parameters that need to be optimized.

We will denote the various combination schemes by just adding their individual compo-
nents, e.g., frmsd +prof will refer to the scheme that uses the scores obtained by frmsd and
prof.

4.3. Speedup Optimization

For a residue-pair, we can compute the PICASSO- and secondary structure-based scores using
two and one dot-product operations, respectively. In comparison, the fRMSD score needs |SV |
dot-product operations, where |SV | is the number of support vectors determined by the ε-SVR
optimization method. Hence, the frmsd alignment scheme has a complexity of at least O(|SV |),
which is significantly higher than that of the prof and ss alignment schemes. To reduce these
computational requirements we developed two heuristic alignment methods that require the
estimation of only a fraction of the total number of residue pairs.

4.3.1. Seeded Alignment

The first method combines the banded alignment approach and the seed alignment technique9

and is performed in three steps. In the first step, we generate an initial alignment, referred to
as the seed alignment, using the Smith-Waterman algorithm and the prof +ss scoring scheme.
In the second step, we estimate the fRMSD scores for all residue-pairs within a fixed number
of residues from the seed alignment, i.e., a band around the seed alignment. Finally, in the
third step, we compute the optimal local alignment in the restricted band around the initial
seed alignment. The computed frmsd alignment lies within a fixed band around the prof +ss
alignment and will be effective if the original frmsd alignment and the prof +ss alignments are
not very far away from each other. The complexity of this method can be controled by selecting
bands of different sizes. We refer to this method as the seeded alignment technique.

4.3.2. Iterative Sampling Alignment

The second method employs an iterative sampling procedure to optimize the speed of the frmsd
alignment. The basic idea is fairly similar to the seeded alignment. At iteration i, we estimate
1 out of Ri fRMSD scores in the dynamic-programming matrix for those residue-pairs that lie
within the banded region of size Ki around the seed alignment generated in step i− 1. Ki and
Ri denote the band size and the sampling rate at iteration i, respectively. Using the estimated
fRMSD scores, an alignment is produced at step i which serves as the seed alignment for step
i + 1. The band size is reduced by half, whereas the sampling rate is doubled at each step (i.e.,
Ri will be halved), effectively increasing the number of points in the dynamic-programming
matrix to be estimated within a confined band. The first iteration can be assumed to have the
initial seed as the main diagonal with a band size covering the entire dynamic-programming
matrix.
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5. Results

We performed a comprehensive study to evaluate the accuracy of the alignments obtained by
the scoring scheme derived from the estimated frmsd values against those obtained by the
prof and ss scoring schemes and their combinations. These results are summarized in Fig-
ures 1 and 2, which show the accuracy performance of the different scoring schemes on the
ce ref and mus ref datasets, respectively. The alignment accuracy is assessed using the average
CS scores across the entire dataset and at the different pairwise sequence identity segments. To
better illustrate the differences between the schemes, the results are presented relative to the
CS score obtained by the prof alignment and are shown on a log2 scale.

Analyzing the performance of the different scoring schemes we see that most of those that
utilize predicted information about the protein structure (ss, frmsd, and combinations involv-
ing them and prof) lead to substantial improvements over the prof scoring scheme for the low
sequence identity segments. However, the relative advantage of these schemes somewhat di-
minishes for the segments that have higher pairwise sequence identities. In fact, in the case
of the 12%–30% segment for mus ref, most of these schemes perform worse than prof. This
result is not surprising, and confirms our earlier discussion in Section 1.

Comparing the ss and frmsd scoring schemes, we see that the latter achieves consistently and
substantially better performance across the two datasets and sequence identity segments. For
instance, for the first segment of ce ref (sequence identities in the range of 6%–12%), frmsd’s
CS score is 20% higher than that achieved by the ss scoring scheme. In the first segment of
mus ref dataset (sequence identity in the range of 0%–6%), frmsd’s CS score is 33% higher
than achieved by the ss scoring scheme, and is 19% higher for the second segment (sequence
identity in the range of 6%–12%).

Comparing most of the schemes based on frmsd and its combinations with the other scoring
schemes we see that for the segments with low sequence identities they achieve the best results.
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Among them, the frmsd +prof scheme achieves the best results for ce ref, whereas the frmsd
+prof +ss performs the best for mus ref. For the first segments of ce ref and mus ref, both of
these schemes perform 6.1% and 27.8% better than prof +ss, respectively, which is the best
non-frmsd-based scheme. Moreover, for many of these segments, the performance achieved
by frmsd alone is comparable to that achieved by the prof +ss scheme. Also, comparing the
results obtained by frmsd and frmsd +ss we see that by adding information about the predicted
secondary structure the performance does improve. In the case of the segments with some-
what higher sequence identities, the relative advantage of frmsd +prof diminishes and becomes
comparable to prof +ss.

Finally, comparing the overall performance of the various schemes on the ce ref and mus ref
datasets, we see that frmsd +prof is the overall winner as it performs the best for ce ref and
similar to the best for mus ref.

5.1. Comparison to Other Alignment Schemes

Since the ce ref dataset has been previously used to evaluate the performance of various scor-
ing schemes we can directly compare the results obtained here with those presented in.5 In
particular, according to that study, the best PSI-BLAST-profile based scheme achieved a CS
score of 0.805, which is considerably lower than the CS scores of 0.854 and 0.845 obtained by
the frmsd +prof and prof +ss, respectively.

Also, to ensure that the CS scores achieved by our schemes on the mus ref dataset are
reasonable, we compared them against the CS scores obtained by the state-of-the-art CON-
TRALIGN3 and ProbCons4 schemes. These schemes were run locally using the default param-
eters. CONTRALIGN and ProbCons achieved average CS scores of 0.197 and 0.174 across the
190 alignments, respectively. In comparison the frmsd scheme achieved an average CS score
of 0.299, whereas frmsd +prof achieved an average CS score of 0.337.

5.2. Optimization Performance

We also performed a sequence of experiments to evaluate the extent to which the two run-
time optimization methods discussed in Section 4.3 can reduce the number of positions whose
fRMSD needs to be estimated while still leading to high-quality alignments. These results are
shown in Figure 3, which shows the CS scores obtained by the frmsd scoring scheme on the
ce ref dataset as a function of the percentage of the residue-pairs whose fRMSD scores were
actually estimated. Also, the figure shows the average CS score achieved by the original (not
sampled) frmsd scheme.

These results show that both the seeded and iterative sampling procedures generate align-
ments close to the alignment generated from the original complete scheme. The average CS
scores of the seeded and iterative sampling alignment by computing just 6% of the original
frmsd matrix is 0.822 and 0.715, respectively. The average CS score of the original frmsd
scheme is 0.828. Hence, we get competitive scores by our sampling procedures for almost a 20
fold speedup. The seeded based technique shows better performance compared to the iterative
sampling technique.
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Fig. 3. Speedup using the Seeding and Sampling Alignment Procedure on the ce ref dataset.

6. Conclusion

In this paper we evaluated the effectiveness of using estimated fRMSD scores to aid in the
alignment of protein sequences. Our results showed that the structural information encoded in
these estimated scores are substantially better than the corresponding information in predicted
secondary structures and when coupled with existing state-of-the-art profile scoring schemes,
they lead to considerable improvements in aligning protein pairs with very low sequence iden-
tities.

This approach of estimating the fragment-level RMSD is of similar spirit to learning a
profile-profile scoring function to differentiate related and unrelated residue pairs using ar-
tificial neural networks.19
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