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Estimations of population genetic parameters like allele frequencies, heterozygosities, inbreeding 
coefficients and genetic distances rely on the assumption that all sampled genotypes come from a 
randomly interbreeding population or sub-population. Here we show that small cross-generational 
samples may severely affect estimates of allele frequencies, when a small number of progenies 
dominate the next generation or the sample. A new estimator of allele frequencies is developed for 
such cases when the kin structure of the focal sample is unknown and has to be assessed 
simultaneously. Using Monte Carlo simulations it was demonstrated that the new estimator delivered 
significant improvement over the conventional allele-counting estimator.   

1 Introduction 

The estimation of population frequencies of codominant genetic markers (e.g. 
microsatellites) from samples with unknown kin structures is of paramount importance to 
the population genetic studies, since they form the foundation for downstream genetic 
analyses.1 The frequencies can be used to estimate, for instance, the genetic distance 
between two populations, or the effective population size. Similarly, deviations from 
Hardy-Weinberg Equilibrium (HWE) of these alleles can be used to assess past effects 
on the genetic structure of the population due to, for instance, genetic drift, inbreeding, 
and genetic bottlenecks. The population frequencies are normally estimated from a large 
sample of assumed to be unrelated individuals.2 In practice, it may be difficult to acquire 
genotypes from free-living individuals fulfilling this basic assumption of sampling 
population frequencies and often samples contain a mixture of related genotypes from 
multiple generations.3 Currently, it is unknown how the population allele frequencies can 
be reliably estimated when actual pedigrees within data sets are unknown and have to be 
assessed simultaneously. Although this may not matter for large sample sizes within a 
randomly interbreeding population, where all individuals contribute equally to the next 
generation, this certainly will matter for small samples from populations wherein some 
individuals are more productive than others.1 For example, if a sample of 100 individuals 
consists of 40 full-sibs and 60 unrelated individuals,1 it is very likely that the sample will 
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fail the exact test for HWE,4 e.g. calculated via the GENEPOP program.5 Such a case is 
the focus of this study, when the null hypothesis of HWE is rejected (e.g. 0.05P < ), but 
the sample may still contain sufficient information for the estimation of the population 
allele frequencies in the HWE sense. That is, the 60 unrelated individuals in the 
considered example is commonly deemed a “large” sample.6  

Methods for estimating allele frequencies do exist but they are mostly a by-product 
of sibship reconstruction.7-13 However, it is not known if such frequencies could be 
obtained effectively for a multi generational population sample which could contain any 
kin groups, such as cousins, half and full sibs including or excluding parental genotypes.3 

In addition, the generic pedigree reconstruction problem14 is clearly more difficult 
than the problem of detecting all unrelated individuals (to be used for allele frequency 
estimates). Hence there is a much higher chance that the allele frequencies obtained this 
way would be affected by the pedigree reconstruction errors. Moreover, the population 
allele frequencies must be estimated iteratively during the sibship reconstruction,9 thus 
frequencies’ errors feeding into the reconstruction procedure. If incorrectly done, they 
reduce the reconstruction accuracy drastically, e.g. when the frequencies are estimated 
from the population sample containing a large family of full sibs as in data sets with 
family sizes of 40,5,2,2, and 1.11,12,15 

It is important to differentiate the problem at hand from the problem of estimating 
population allele frequencies when the pedigree of the sampled individuals is known or 
assumed to be known, in which case population allele frequencies can be calculated 
exactly.2,16 In this preliminary study we report for the first time that a robust method for 
estimation of the outbred population allele frequencies may be possible even when 
sample genotypes contain individuals from multiple generations and when the actual 
pedigree is assessed simultaneously using the same genetic markers.  

The following is the outline of this study: (1) given the difficulty of inferring allele 
frequencies and kin structure from the same sample simultaneously, a pair-wise 
relatedness estimator is developed, which does not require allele frequencies; (2) the 
structure of the pair-wise relatedness matrix is examined when the sample kin structure is 
known exactly; (3) using the properties of the relatedness matrix, a new approach is 
proposed for searching for the largest sample subset, which resembles a set of unrelated 
individuals; (4) and finally the new approach is tested via Monte Carlo simulations on 
three different data sets. 

2 Method 

2.1 Estimation of Pairwise Relatedness 

Following in some respects Broman2 and McPeek et al.,16 let a diploid population sample 
consists of n genotype vectors 1 2{ , ,..., }nx x x  at a single locus with k codominant alleles. 
The i’th genotype is defined via the number of observed alleles:17 

(..., ,..., ,...) (...,1,...,1,...)T T
i mi m mix x ′>= =x  for heterozygotes and  
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(..., ,...) (..., 2,...)T T
i mix= =x  for homozygotes, where the rest of the values are zero, and 

where ‘T’ denotes the transpose. For example, a genotype 1 2( , )A A  is encoded as 
(1,1,0,0) at a locus with four alleles 1 2 3 4{ , , , }A A A A . Each diploid genotype contains 
exactly two alleles, 

1
( ) 2k

i mim
x

=
⋅ = =∑1 x , where 1  is the vector of 1’s of length k and 

where the dot-product notation is used for summations when the summation index and 
range is clear by context, i.e.  

1
( ) k

m mm
x y

=
⋅ = ∑x y .   

Let an outbred population (or sub-population) be in HWE and described by the 
population allele frequencies 1 2( , ,..., )T

kp p p=p . Then each observed (sample) 
genotype ix  could be represented as a sum of two statistically independent gamete 
vectors i i i′= +x ε ε , i.e. mi mi mix ε ε ′= + , obtaining 2( ) ( )mi mi mE E pε ε= = , 
var( ) (1 )mi m mp pε = − , ( ) 2mi mE x p= , 2( ) 2 (1 )mi m mE x p p= + , ( ) 2(1 )i iE γ⋅ = +x x , and 
var( ) 2 (1 )mi m mx p p= − .2 The pairwise relatedness matrix could be defined in the 
identity-by-descent (IBD) sense18 via  (1 )j ij i ij ijr r= + −x x z ,  where 1iir = , and ijz  is 
statistically independent of ix . Then cov( , ) 2 (1 )mi mj ij m mx x r p p= − , 

2( ) 2[ (1 ) 2 ]mi mj ij m m mE x x r p p p= − +  and ( ) 2( 2 )i j ijE r h γ⋅ = +x x , where 
2

1
( ) k

mm
pγ

=
= ⋅ = ∑p p  and 1h γ= −  are the population homozygosity  and heterozygosity 

of the given locus, respectively. 
In practice, the pedigree of a sample is often not known a priori and hence the 

relatedness matrix must be estimated together with the allele frequencies. This could be 
done by using the following estimators of heterozygosity and relatedness, which do not 
require allele frequencies.  An estimator h′  of heterozygosity at a locus (and hence 
homozygosity via 1 hγ ′ ′= − ) is given by  

1

n
i iii

h u h
=

′ = ∑ ,  where the weights 
1 2( , ,..., )T

nu u u  are normalized by 
1

1
n

ii
u

=
=∑ , and where 1iih =  and 0iih =  for 

heterozygotes and homozygotes, respectively. If the relatedness matrix { }ijr=r  were 
known, the most optimal weights could be found by minimising ( )var h′ . Since r is not 
known, the equal weights 1/iu n=  are used, which yield an unbiased, but not necessarily 
the most efficient, estimator of heterozygosity in the absence of allele frequencies. The 
estimate at a locus simply equals to the number of observed heterozygotes averaged over 
the sample size n. Assuming unlinked loci, for multilocus genotypes 

{ (1), (2),..., ( )}i i i i L=X x x x , the ( )h h l′ ′≡  estimator is averaged across loci obtaining 
 

1
( ) /L

l
H h l L

=
= ∑  and  

1 1
( ) /( )L n

iil i
H h l nL

= =
′ = ∑ ∑ ,  where ( )E H H′ =  and 

2
1

var( ) var[ ( )] /
L

l
H h l L

=
′ ′=∑ , i.e. the estimate equals to the number of observed 

heterozygotes averaged over the sample size n and number of loci L. An estimator for 
relatedness is given by  2( ) 1 /ij ijr h d H′ ′= − ,  where 2 2

1
( ) /

L
ij ijl

d d l L
=

=∑  and 
2 2( ) [ ( ) ( )] / 4ij i jd l l l= −x x .    

2.2 Estimation of Allele Frequencies from Known Pedigree 

Following McPeek et al.16 the class of best linear unbiased estimators (BLUE) of allele 
frequencies is given by 

 1
2 1

n
i ii

w
=

= ∑q x ,  (1) 
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where the weights 1 2( , ,..., )T T
nw w w=w  are normalized by 

1
1

n
ii

w
=

=∑  and hence 
( )m mE q p= . The sample allele frequencies 1( ,..., )T

ks s=s  are obtained via 1/iw n= ,6  

 
1

/(2 )n
ii

n
=

= ∑s x ,  (2) 

which specifies the conventional allele-counting estimator. In general, the weights are 
found by minimizing the variance of each resulting frequency mq ,  
 ( ) 1

4 1 1
var cov( , )n n

m i j mi mji j
q w w x x

= =
= ∑ ∑ .  Treating each allele with equal weight at the 

locus, the problem is transformed into finding the weights that minimize 

 1
21 1 1

var( )k n n
m i ij jm i j

V q h w r w
= = =

= =∑ ∑ ∑ ,  (3) 

where the same weights minimize both the absolute and the relative variances, 
( )1

var /k
m mm

q p
=∑ . If all individuals are unrelated ( ij ijr δ= , 1/iw n=  and /(2 )V h n= ), 

the commonly used heterozygosity estimator is obtained 
2

Nei 1
2 (1 ) /(2 1)

k
mm

h n q n
=

= − −∑ ,6 where ijδ  is the Kronecker delta defined by 1iiδ =  
and 0i jδ ≠ = . The estimator is also known as the gene diversity and is bias corrected for 
the sample size19 but not for the sample kin structure. 

Since the relatedness matrix ijr is symmetric and positive definite ( )0V > , its 
eigenvectors can always be found and defined as orthonormal ( )α β αβδ⋅ =ξ ξ  and sorted 
by the corresponding real positive eigenvalues 1 2{0 ... }nλ λ λ< ≤ ≤ ≤ , where 

α α αλ=rξ ξ . The weights vector in its most generic form is then given by 

1

n
Cα αα=

=∑w ξ  obtaining  21
2 1

nV h Cα αα
λ

=
= ∑ , subject to the original normalization of 

the weights 
, 1

1n
ii

Cα αα
ξ

=
=∑ . The minimum is found via Lagrange multiplier obtaining 

/( )Cα α αζ ηλ=  and ( )min /(2 )V h η= , where 2
1

/n
α αα

η ζ λ
=

= ∑  and 
1

n
iiα αζ ξ

=
=∑ .  

Observing that the inverse matrix of ijr  can be written as 1
1

( ) /
n

ij i jr α α αα
ξ ξ λ−

=
=∑ , the 

solution can also be expressed via 1
1
( ) /n

i ijj
w r η−

=
= ∑ ,  1

, 1
( )

n
iji j

rη −
=

=∑ . For multiple 
loci the resulting formulas for the weights are locus independent, hence the same weights 
are used to estimate allele frequencies at all loci. The obtained weights (and hence 
frequencies) provide the exact solution to the problem of finding an unbiased estimator 
of frequencies, which is the most efficient in terms of achieving the smallest possible 
(absolute and relative) variance of the frequencies in Eq. (3). 

 When the above formulas are applied (results not shown) to the samples from the 
unrelated data set (see Results section, below) a solution is normally found in the form 

1/i Uw u∈ =  and 0i Uw∉ =  (ignoring rounding errors), where u is the number of elements 
in the subset U of all unrelated parents in the sample. Note that the weights represent the 
theoretical limit of the allele frequency inference from a single sample, i.e. a biologist 
would select the same weights if he or she knew which individuals are unrelated parents 
and which are offspring.  
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2.3 Unknown Pedigree 

The population allele frequencies could be calculated exactly from a given relatedness 
matrix but only if the matrix is positive definite. A sample instance of the ijr′  matrix may 
not be positive definite (regardless of which estimator of r is used) and hence it cannot be 
used directly to infer frequencies. If used, it yields meaningless weights and frequencies 
essentially amplifying its eigenvectors with near zero eigenvalues (some of them could 
even be negative; results not shown). This could explain why it was reported that an 
iterative procedure for estimating relatedness and frequencies yielded worse estimates of 
relatedness values (and hence the frequencies).20,21 

This study proposes a new approach where the weights { }iw  in Eq. (1) are found by 
searching for a subset U of unrelated individuals in the sample,  ( ) /(2 )i ii U

U w u
∈

= ∑q x , 
 where 1i Uw∈ =  and 0i Uw∉ = , and where u is the number of elements in the subset U. 
As indicated earlier, a subset of all unrelated individuals (including unrelated parents) in 
the sample would give the best theoretically possible estimation of population allele 
frequencies. If a parent or parents of one or more offspring are missing from the sample, 
the best one or more representatives of the sibship genotypes should be selected.  

The following criterion for selecting U is proposed. The weights could be used to 
estimate average (over loci) heterozygosity via the standard formula 

21
1

( ) 2 [1 ( )] /(2 1)L
mL l

H U u q U u
=

= − −∑ , which is bias corrected for sample size but not for 
the sample kin structure. The expected value of the estimate is given by 
 [ ]( ) ( )E H U H R U= − ,  where ( ) /[ (2 1)]iji U j i U

R U R u u
∈ ≠ ∈

= −∑ ∑ , ij ijR Hr= , and where 
[ ( )]E H U H=  if U consists of only unrelated individuals, i.e. ij ijr δ=  and ( ) 0R U = . 

Using the unbiased estimator ij ijR r H′ ′ ′= , the problem is reduced to finding the minimum 
of  

 ( ) /[ (2 1)]ij
i j U

R U R u u
≠ ∈

′ ′= −∑ .  (4) 

The new approach searches for the largest subset of the sample which best resembles 
a group of mutually unrelated genotypes. In the above analysis, it is implied that U with 
the largest size u should be preferred. This condition is specified by the denominator 

(2 1)u u −  in Eq. (4). However, a large subset would only be preferred if the resulting R 
increases slower than (2 1)u u − , e.g. if the sample consists of only full siblings, R 
becomes ( ) 0.5( 1) /(2 1)R u u u= − −  and ( 1) ( )R u R u− <  hence the number of selected full 
sibs will be minimized (subject to the observed ijR′ ). While the proposed approach 
minimizes the number of full-sibs, the approach should also maximize the number of 
mutually unrelated individuals. This is achieved by using ijr′  instead of ijr′ , which 
prevents the algorithm from achieving zero in Eq. (4) on not the largest subset U. If ijr′  is 
used, potentially a small number of negative r estimates1 could cancel out contributions 
from an equally small number of positive r estimates. 

Once a solution is obtained, an exact test4 for HWE could be used via available 
software programs5,10 to assess the solution by verifying that the P value does not reject 
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the HWE null hypothesis. If the original sample does not pass the test for some or all of 
the loci (e.g. 0.05P ≤ ), the new approach offers a practical alternative if it obtains the 
subset U that passes the test (e.g. 0.05P > ). Note that the proposed solution could be 
viewed as an approximation for a more general formulation of the problem: “Find the 
largest subset U that passes such an exact HWE test as the test of Guo & Thompson”,4 
where it is assumed that complete sample does not pass the test. 

2.4 Algorithm 

The above approach, when the kin structure of the sample is not known, could be viewed 
as partitioning of the given sample into two groups: the group of putative unrelated 
individuals (the subset U) and the rest of the sample. A set of n elements could be 
partitioned into the two groups 2 1n −  ways, where the single case when all individuals 
are excluded from U is omitted from consideration. Even though the search space for this 
problem is “smaller” than the space of the sibship reconstruction problem,12 it is still non-
polynomial and the exhaustive search is possible only for trivially small samples. 
Moreover, if the relatedness matrix ijR′  is viewed as a complete undirected graph 
(omitting the additional complexity of the dependency on u), the problem of finding a 
complete sub-graph (clique) with the minimum (equivalent to maximum) sum of weights 
is known to be NP-hard,22 i.e. an exact algorithm with polynomial complexity ( )O nα<∞  
does not exist. 

Since an exact solution may not be possible, a heuristic approximation is required. 
One such heuristic for traversing the search space is the simulated annealing technique23 
which was shown to be effective for such related (and more difficult) problems as the 
sibship9 and pedigree14 reconstruction problems.  The following algorithm is proposed, 
where the issue of rare alleles21 is addressed by ensuring that each putative set U contains 
at least one instance of every allele observed in the sample. We recognise that the ijR′  
matrix has a special structure and further study could be done to investigate if a more 
efficient algorithm exists. 

Regarding the design of the algorithm: the main purpose of this study is to develop 
an algorithm that is implemented in a readily available software program (KINGROUP10 
in our case) so that it could be used by biologists. A typical geneticist/biologist is neither 
an expert programmer nor a computer scientist, hence we totally agree with the comment 
of Pearse and Crandall24 who emphasised that “improving software usability is 
essential”. Even though usability is often a personal preference, we believe that an 
algorithm should have as few “magic” numbers controlling the algorithm as possible. 
Hence the proposed algorithm is controlled by a single parameter, the number of 
iterations N. The number is set to 100N n= × , i.e. each sample genotype is considered 
100 times for inclusion or exclusion (on average). User’s access to the computing power 
controls the quality of the solution, i.e. the higher the number N the higher is the 
probability of finding the optimal solution. When working with a real sample, the 
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algorithm should be run a number of times with larger N each time to verify that the 
obtained solution is convergent in N.  

The following algorithm was implemented: 
1. Generate an initial configuration by placing all available individuals into the group 

of putative unrelated individuals, curr {1, 2,..., }U n= . Calculate the current cost 

function curr curr( )Z R U′= , which is always positive due to the use of ijr′  and plus 

H ′  being non-negative by definition. 
2. Generate a new configuration by randomly selecting an individual 1 i n≤ ≤ . If i U∈  

and the individual can be taken out of the group, i.e. each observed allele at each 
locus appears at least once in U, the individual is removed ( )new currU U i= − . If 
i U∈  and the individual can not be taken out of the group, another individual is 
randomly selected. If i U∉ , the individual is added ( )new currU U i= + . Calculate 

newZ  from newU . 
3. Calculate relative change via ( )new curr new/Z Z Z Z∆ = − . If 0Z∆ ≤ , the new 

configuration is accepted becoming “current”. If 0Z∆ > , accept the new 
configuration with the probability ( )BPr( ) exp /( )Z Z k Tα∆ = −∆ , where Tα  is the 
annealing temperature, Bk  is originally the Boltzmann’s constant which becomes 
just a scaling constant, and where the original Boltzmann distribution is used as per 
Kirkpatrick et al.23 

4. Repeat steps 2 and 3 with ( 1) /T N Nα α= − + , where α  is the iteration count. 
Since 0 1Z< ∆ ≤ , Boltzmann’s constant B 1/ ln 2 1.4427k = =  is selected to achieve 

( )BPr( 1) exp 1/ 0.5L k∆ = = − = , i.e. there is at least 50% chance in accepting the 
new configuration with larger cost value at the beginning of the annealing process. 

3 Results and Discussion 

Following Wang21 a triangular population allele frequency distribution was considered, 
( ) 2 /[(1 ) ]mp l m k k= + , yielding the locus heterozygosity of 1 2(2 1) /[3( 1) ]h k k k= − + + . 

The effect of multiple generations was studied by Monte Carlo simulation using f full-
sibs in a sample of n individuals. A population sample of n individuals was generated by 
firstly generating n f−  unrelated individuals based on the given population allele 
frequencies, p. Then, two of the individuals were randomly selected and used to generate 
f full-sibs according to the Mendelian rules of inheritance. The generated set of samples 
was labelled the single-family data set. The theoretically best possible estimation of allele 
frequencies was calculated using only the n f−  unrelated individuals, 

1
/[2( )]n f

ii
n f−

=
= −∑b x , where, without loss of generality, the unrelated genotypes 

where labelled from 1x  to n f−x . Assuming the absence of the pedigree information, the 
frequencies were estimated via the proposed algorithm obtaining the q frequencies. The 
mean squared error (MSE) was used to measure the estimation error, where MSE was 
averaged across loci, 2

1 1
MSE( ) [ ( ) ( )] /( )k L

m mm l
p l q l kL

= =
= −∑ ∑q . 
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The second data set was chosen to contain n unrelated individuals. For this unrelated 
data set the best possible estimator of allele frequencies is identical to the allele-counting 
estimator, i.e. ≡b s .  

The third data set was based on the experimentally observed allele frequencies from 
a real biological sample of a cooperatively breeding Lake Tanganyika cichlid 
(Neolamprologus pulcher).3 The cichlid frequencies are specified at 5L =  loci with 

1 5{ ,..., } {39,34,28,17,10}k k =  alleles and corresponding locus heterozygosities 
(1) (5){ ,..., }={0.929, 0.937, 0.847, 0.478, 0.537}h h . This cichlid data set is denoted by 
( , , )G u g s , where u is the number of unrelated individuals, g is the number of parental 

pairs (i.e. families), s is the number of full-sibs in the first family. The set is obtained by 
generating 1u g+ +  unrelated genotypes 1 2 1{ , ,..., }u g+ +X X X  according to the specified 
allele frequencies. Then the 1s i+ −  full-sibs of the i’th group are generated from the 

1( , )i i+X X  parental pair.  
Fig. 1 presents the root mean square error (RMSE) simulation results: RMSE(b), 

RMSE(q) and RMSE(s). Fig. 1(a) displays the results for the single-family data set, 
where 50n =  individuals were genotyped with 10L = , 10k =  ( 0.8727h = ) and 
variable number of full-sibs f. The results for the unrelated data set are displayed in Fig. 
1(b), where each sample contained a variable number of individuals genotyped with 

5L =  and 20k =  ( 0.9349h = ). The cichlid data set was generated as 
( 10, , 5)G u g s= =  with a variable number of families. Each point in Fig.1 was obtained 

by averaging MSE obtained from 100 independent simulation trials and displaying the 
square root of the average MSE (RMSE). 

The results in Fig. 1 are very encouraging as they clearly demonstrate that the new 
estimator is more accurate than the conventional allele-counting estimator for “dirty” 
samples with high level of cross-generational contamination, e.g. when 20 or more 
individuals belong to the next generation. Interesting questions still remain for future 
studies: (1) How much of the RMSE is due to simulated annealing not being able to find 
the global optimum, and how much is due to the inaccuracy of the relatedness estimates? 
(2) How robust is the new frequency estimator to the presence of genotyping errors 
and/or inbreeding? Note that the new estimator is comparable to or even less accurate 
than the allele-counting estimator for “clean” population samples (Fig. 1(b)) where the 
level of cross-generational contamination is small. However such clean samples are 
likely to pass the HWE test anyway and hence the question of a “better” estimation of 
population allele frequencies would not arise.   

And finally, since the exact HWE test of Guo and Thompson4 played such an 
important conceptual role in this study, we would like to comment on the two versions of 
the HWE test. The first HWE test uses the conventional Monte Carlo (CMC) method and 
is relatively easy to implement (implemented in KINGROUP10 and used in this study). 
This method guarantees P values to within 0.01 with 99% confidence by selecting 17000 
simulations regardless of the sample size or the number of observed alleles, hence no 
“guessing” is required from a software user. Moreover, even Guo and Thompson4 
themselves remarked that the “method is most suitable for data with a large number of 
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alleles but small sample size”, which is the focus of this study. The second method uses 
the Markov Chain (MC) estimation. The main argument in favour of the MC method was 
that it is faster than CMC when the sample size is moderate or large. This argument does 
not hold in practice since a diligent user would have to run MC a number of times to 
ensure that the obtained P values are converged, i.e. stable to the variations in the three 
input parameters (dememorization number, number of batches and iterations per batch).  
In fact, the first method should always be preferred to the second MC method, which is 
controlled by the three input parameters, which input values are, arguably, meaningless 
for a typical biologist and can not be deduced easily.  

 

 
Figure 1. Root mean square error of population allele frequency estimates, where b denotes the best possible 
estimates due to the limited sample size; q denotes this study; s denotes the allele-counting estimates.  
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