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1. Introduction

1.1. Motivation and Related Work

Non-coding RNAs (ncRNAs) are functional transcripts that do not code for pro-

teins. Recent findings have shown that RNA-mediated regulatory mechanisms in-

fluence a substantial portion of typical microbial genomes,1 drawing increasing at-

tention to their study. A major approach for computational detection of ncRNAs

is through comparative genomics,2 where conserved structures are predicted from

sequences of multiple species. The key difficulty with this approach is that homolo-

gous ncRNAs are often divergent because compensatory mutation preserves struc-

ture while changing the sequence. Unfortunately, existing ncRNA-discovery algo-

rithms that consider secondary structure are impractical for genome-scale searches

since they are computationally expensive, and work best when applied to datasets

in which homologous ncRNAs predominate. Together, these considerations suggest

the following strategy: gather clusters of sequences so that each cluster is sufficiently

small and enriched in homologous elements for successful computational motif pre-

diction.
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Recently, Yao et al.3 applied this strategy to search for bacterial cis-regulatory

RNAs. Because cis-regulatory RNAs are often upstream of genes, they clustered

regions upstream of homologous genes (a “gene-oriented” approach). They avoided

the need for accurate alignment by using a tool called CMFinder4 that can predict

RNA motifs in unaligned sequences in the face of low sequence conservation, extra-

neous flanking regions and unrelated sequences. The method successfully recovered

most known Rfam5 families in Firmicutes. Coupled with careful manual evaluation

of top-ranking results, this paper and Weinberg et al.6 identified 29 novel RNAs in-

cluding several riboswitches,7,8 some of which have been experimentally validated.

However, this approach will detect ncRNAs only if they are well-represented up-

stream of homologous genes. For example, ncRNA genes that are independently

transcribed (e.g., SRP, RNaseP, tRNAs) will tend to maintain particular neighbor-

ing genes only through a narrow phylogenetic range. This is true of some ncRNAs in

the Firmicutes (and Yao et al. generally recovered these), but others will be missed.

Another important example of the ncRNAs that might be missed by a gene-oriented

approach are ones that regulate several non-homologous genes in a phylogenetically

narrow range of species.

The main contribution of this paper is the development of an “IGR-oriented

pipeline” that clusters intergenic regions (IGRs) based on a combination of sequence

and structure similarity, independent of gene context, for purposes of ncRNA discov-

ery. We believe it can identify ncRNAs that are difficult to find with a gene-oriented

strategy. For example, an early version of our IGR-oriented approach (unpublished

data) correctly predicted 7 related riboswitches regulating purine biosynthesis genes

in Mesoplasma florum9 with no close relatives in other sequenced species, exactly

the second scenario outlined above.

1.2. Efficient pipeline for detecting ncRNAs

To be able to detect ncRNAs computationally, we wish to identify homologous

RNA sequences. To do this without gene context, we search through entire inter-

genic regions (IGRs) of several species for homology. Homologous ncRNAs usually

exhibit some conservation in primary sequence, but detection of this similarity is

often impossible without exploiting the significant conservation of RNA structure.

Traditional structure-based methods10 perform well but are extremely slow, making

them impractical for large search spaces. We design a novel lightweight approach

that incorporates both secondary structure information and primary sequence ho-

mology via BLAST (referred to as the folded -BLAST approach). The goal is to

achieve the best sensitivity possible, while maintaining feasible search time.

We wish to group sequences based on homology relationships. However, RNAs

may contain multiple domains with sequence homology recognizable by BLAST,

but these domains may be separated by dissimilar regions. To account for this, we

design a hierarchical clustering method that, given a set of pairwise homology hits,

heuristically merges and clusters overlapping sequences. Finally, as in Yao et al.’s
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pipeline,3 the clusters can be used to predict motifs, which in turn can be used to

scan genomes for more motif instances (motif scan).

Our proposed pipeline for a given input set of genomic sequences, then, consists

of the following steps: (1) intergenic region extraction; (2) homology search; (3)

hierarchical clustering; (4) motif discovery; and (5) motif scan.

Our pipeline shares high level goals with the work of Will et al.,11 but differs in

emphasis, and is somewhat complementary to it. Both cluster intergenic sequences

based on homology, then attempt to predict RNA motifs in these clusters. Will et

al., building on Missal et al.,12 need reliable sequence alignments for their motif

prediction step, so they use a stringent BLAST E-value threshold for this phase.

To recover broader RNA families, they apply a second clustering step to cluster the

RNA motifs produced in the first step. The number of RNA predictions is much

smaller than the number of IGRs, and they can afford to apply sophisticated but

computationally expensive structure-based clustering methods here, and their paper

develops such a method (LocARNA). In contrast, we use an RNA motif prediction

tool that tolerates unaligned inputs and thus can be more aggressive in trying to

gather more (and more remote) homologs, on the premise that more examples will

allow inference of more accurate models. Hence, we cluster intergenic sequences

based on relatively permissive BLAST searches. A novelty of our approach is incor-

porating secondary structure information in this clustering stage. Neither method

attempts direct pairwise structure comparison among all intergenic sequences; that

appears prohibitively expensive on data sets of this scale.

1.3. Evaluation

We clustered a set of Firmicutes genomic sequences, and evaluated them using a set

of ncRNA families mainly consisting of riboswitches. Riboswitches are metabolite-

sensing RNAs that regulate gene activity through binding to ligands and modifying

the expression of biosynthetic and transport proteins for those ligands.7,8 They are

structurally conserved with an average family sequence identity of 55–80% and aver-

age sequence length of 60–200 nts. Primary sequence-only methods captured ∼84%

of the known ncRNAs, with an average cluster specificity of ∼40%. Incorporating

secondary structure captures about 80% of the known ncRNAs while increasing

average cluster specificity to ∼50%. Motifs predicted from the ncRNA-containing

clusters were then used to scan a test set, and the folded -BLAST approach achieved

median sensitivity of 76% with 99% specificity, much better than the best pri-

mary sequence-only approach (sensitivity 61%). Moreover, several motifs predicted

from folded -BLAST clusters were more similar, and in some cases, almost identical

to trusted riboswitch models. This suggests that our novel method of secondary

structure-incorporation enhances clustering, which in turn increases the likelihood

of inferring a strong motif.
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2. Results

Full genomic sequences from a set of 212 Firmicutes species were used as input. The

entire set contains 1252 known ncRNAs, 1008 of which are completely covered by

our extracted intergenic regions. Primary sequence homology data were obtained

using NCBI-BLAST,13 WU-BLAST,14 or SSEARCH.15 To incorporate structure

into our homology searches, we used WU-BLAST, since it allows convenient usage

of arbitrary scoring matrices.a

2.1. Clustering evaluation

Table 1 shows evaluation for the Firmicutes clusters generated by our pipeline. Note

that per-cluster specificity (p) is only a lower-bound, since unannotated members

of a cluster could be undiscovered ncRNAs. NCBI-BLAST generally has the best

capture count, i.e., clustering the largest number of known ncRNAs in any cluster,

yet also the worst per-cluster specificity. folded -BLAST captures fewer, yet aver-

age cluster specificity generally tops all the rest. However, no program in Table 1

consistently surpasses the others.

Since our goal is to detect novel ncRNA families, we turn our attention to

individual clusters with good specificity. For example, folded -BLAST produced 16

clusters that contained at least one TPP riboswitch, one of which had specificity of

35/39, another 10/10, and another 7/9. If any of these could yield a representative

motif, then a motif scan would likely recover other TPP riboswitches. Thus, what

is more important is our ability to produce clusters that permit RNA alignment

tools like CMFinder to correctly predict structured RNAs. In the following section,

we show results of predicted motifs from selected clusters.

2.2. Motif discovery and scanning

CMFinder predicts zero or more motifs in all ncRNA-containing clusters. For any

motif, along with the covariance model (CM) produced, we do a CM scan if the

number of cluster members containing this motif is at least 6, and that the average

motif score (generated by CMFinder) is at least 50. These criteria are set because

weak motifs/CMs will likely introduce false hits. The CMs scan our entire ncRNA

dataset: ∼1 Mb of ncRNAs from all available bacterial species (not just Firmicutes),

plus a control set of ∼5 Mb of randomly selected IGRs (from various species) not

containing known ncRNAs.

In this CM scan test, a hit is considered correct only if it matches a selected

ncRNA on the correct strand. Strictly speaking, we cannot be sure that our ran-

domly selected IGRs indeed do not contain any undiscovered ncRNAs, but for the

purpose of evaluation, we assume there to be none.

aDetails are in Methods. Supplementary materials including additional method details and results
are available at: http://bio.cs.washington.edu/supplements/lachesis/APBC2008.
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Table 2 summarizes the individual CM scans recovering the most instances for

each particular family. For most of the more abundant families, such as FMN, SAMI,

TPP, ykoK and ydaO riboswitches, all four programs had a best CM scan of ∼ 0.9

sensitivity with ∼ 1.0 specificity. Recovery of purine riboswitches was consistently

low, and we observed that it was because non-Firmicutes purine riboswitches have

much longer single-stranded terminal regions than their Firmicutes counterparts.

Of particular interest are the 7 Mesoplasma florum purine riboswitches, a difficult

case for gene-oriented pipelines. In NCBI-BLAST, 6 of the 7 were grouped in a

cluster of size 44 (6/44), and although CMFinder succeeded in producing a repre-

sentative motif, it had low specificity: the CM scan reported back the 6 on which it

was trained, along with almost 2000 false hits. The motif discovered from the WU-

BLAST cluster was more specific, but still had 96 false hits. In contrast, SSEARCH

generated a 6/7 cluster and the resulting CMfinder motif scans reported back the

6 with no false hits. folded -BLAST produced a 7/32 cluster, but CMFinder did not

predict a motif, so no CM scan was done. We examined why CMFinder failed in

Table 1. Clustering evaluation by individual ncRNA families

RfamID avg. c: captured count
or seq. p: avg. cluster specificity

ref. len. NCBI-BLAST WU-BLAST SSEARCH folded-BLAST
ncRNA (#) (nts) c p c p c p c p

t-box (452) RF00230 223 441 0.42 406 0.49 423 0.51 352 0.60

SAMI (113) RF00162 124 104 0.44 99 0.57 100 0.59 102 0.55
TPP (90) RF00059 97 77 0.29 70 0.21 72 0.39 75 0.61

purine (66) RF00167 99 64 0.11 52 0.23 52 0.30 59 0.21
ylbH (53) RF00516 143 37 0.08 27 0.11 28 0.13 26 0.06
cobalamin (51) RF00174 201 51 0.51 46 0.61 45 0.22 45 0.67

lysine (46) RF00168 181 36 0.17 33 0.45 34 0.41 33 0.45

SRP (41) RF00169 99 41 0.42 40 0.37 39 0.41 41 0.45

RNaseP (40) RF00011 360 37 0.77 37 0.82 37 0.39 37 0.86

FMN (40) RF00050 147 40 0.59 40 0.82 40 0.75 40 0.67
glycine (38) RF00504 90 32 0.29 30 0.58 33 0.41 28 0.29
preQ1 (37) RF00522 69 33 0.15 18 0.24 23 0.42 19 0.39
ydaO (29) RF00379 171 29 0.85 27 0.95 26 0.81 24 0.86
yybP (29) RF00080 131 28 0.34 23 0.36 26 0.34 23 0.44

6S (26) RF00013 205 23 0.32 24 0.32 22 0.56 24 0.66

ykoK (25) RF00380 178 25 0.29 25 0.46 22 0.51 25 0.96

glmS (19) RF00234 183 18 0.46 18 0.86 18 0.29 19 0.34
ykkC (12) RF00442 129 10 0.46 10 0.47 8 0.35 9 0.50

moco (10) Weinberg et al.6 132 6 0.52 6 0.51 3 0.21 7 0.52

SMK (10) Fuchs et al.16 173 6 0.38 2 0.30 6 0.83 2 0.26

Median** 0.89 0.34 0.79 0.46 0.85 0.41 0.79 0.51

Note:
For each ncRNA family F we give its name, the number of members covered by the extracted IGRs of our Firmicutes
test set, the Rfam accession or other reference, the average length of members, and performance statistics for the
clustering methods. For each F, we report c, the captured count, i.e., the number of ncRNAs in F covered by a
member in some cluster, and p, the cluster specificity, i.e., the average over all clusters C containing members of F,
of the percentage of members of F in C. We define a known ncRNA as “covered” by a IGR segment if the segment
covers at least 50 nts or 50% of the ncRNA region.
**: For c, the median is taken over the ratios of capture count to family size.
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Table 2. CM scan best recovery motif comparison. For each ncRNA family and each homology
search program used, the motif/CM that recovered the most instances of the particular family is
listed. The actual motif identifications can be cross-referenced online. sen. is the recovery percent-
age (sensitivity), and spe. is the specificity of the CM scan; “None” indicates that no instances
were recovered.

ncRNA NCBI-BLAST WU-BLAST SSEARCH folded-BLAST
family sen. spe. sen. spe. sen. spe. sen. spe.

t-box 0.69 0.98 0.71 0.99 0.41 0.99 0.68 0.99

SAMI 0.94 0.99 0.96 0.99 0.84 0.99 0.94 0.99

TPP 0.84 0.99 0.95 0.99 0.54 0.99 0.96 0.99

purine 0.36 0.99 0.36 0.99 0.32 0.99 0.37 0.99

ylbH 0.01 0.5 0.01 1.00 0.02 1.00 0.01 0.33

cobalamin None 0.84 0.82 0.72 1.00 0.86 0.99

lysine 0.79 1.00 0.84 0.82 0.72 1.00 0.74 1.00

SRP 0.1 0.99 0.1 1.0 0.84 0.98 0.77 0.98

RNaseP 1.0 0.99 1.0 0.99 1.0 0.99 1.0 0.99

FMN 0.96 0.99 0.96 0.99 0.96 0.99 0.96 0.98

glycine None 0.08 0.98 None 0.86 0.99

preQ1 0.01 0.04 None 0.01 0.02 None

ydaO 0.97 1.00 0.96 1.00 0.96 1.00 0.96 0.99

yybP 0.26 1.00 0.11 1.00 0.11 1.00 0.22 0.99

6S 0.09 1.00 0.42 0.92 0.09 1.00 0.29 1.00

ykoK 0.96 1.00 0.96 1.00 0.90 1.00 0.96 1.00

glmS 0.95 1.00 0.93 1.00 0.91 1.00 0.95 1.00

ykkC None None 0.69 1.00 0.69 1.00

moco None None None None

SMK 0.08 0.67 None None None

Median 0.31 0.99 0.56 0.99 0.61 0.99 0.76 0.99

folded -BLAST’s case, and determined that CMFinder’s prior parameter for the ex-

pected fraction of motif-containing instances was higher than the actual percentage.

If the percentage was lowered from 0.5 to 0.2, CMFinder would find a representative

motif for 6 of the M. florum purine riboswitches. However, lowering the percentage

might entail tradeoffs.

Fig.1(a) depicts the motif recovering the most TPP riboswitches using the

folded -BLAST approach, while Fig.1(b) is the (hand curated) consensus motif from

the Rfam TPP seed alignment. The folded -BLAST motif has a longer unpaired re-

gion on the 5′ end, but shares an almost identical structure and base composition

with Rfam’s. It is encouraging to see how similar the two structures are, given that

the cluster used to predict motif Fig.1(a) had 30 sequences, and Fig.1(b) was con-

structed out of 174 seed sequences. The best TPP-recovering motif produced by the

other three programs (not drawn due to space limit) correctly predicted most of

the structure, but varied in 5′ and 3′ ends: WU-BLAST’s does not have the closing

stem loop, resulting in a much longer unpaired region on both ends; NCBI-BLAST’s

missed both the closing stem loop and part of a multiloop; SSEARCH’s predicted

most of the base pairings correctly, but had a 70-nts 5′ unpaired region, which is

probably why the CM scan recovery was poor. We noticed that the TPP-containing

sequences in the best-TPP-recovery clusters for NCBI-BLAST and SSEARCH were
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(a) folded-BLAST (b) Rfam

Fig. 1. A TPP riboswitch motif automatically predicted by our pipeline vs the (hand-curated)
Rfam structure. Terminal single-stranded regions are not shown for simplicity. (a) Motif predicted
using folded-BLAST approach that resulted in the best CM scan recovery of TPP riboswitches.
(b) Consensus motif from the Rfam TPP riboswitch seed alignment (Rfam id RF00059).

50-200 bps longer than the ones in WU-BLAST and folded -BLAST, and it is pos-

sible that we had tuned the parameters for the first two programs in such a way

that IGR fragments are easily joined together into long sequences during clustering

pre-processing.

Two small ncRNA families, the moco and preQ1 riboswitches, had poor CM scan

recoveries. The moco riboswitch was discovered by manual inspection of CMfinder

motifs from the gene-oriented pipeline,6 but is not common in Firmicutes, making

motif discovery difficult, even though all four homology search programs produced

good clusters, grouping 5 or 6 instances in compact clusters of size 5 or 6. For preQ1,

though it has more Firmicutes instances, is short (65 nts on average), which made

accurate and compact clustering challenging.

3. Methods

3.1. Extracting intergenic regions (IGR)

Given an input genomic sequence, we remove regions annotated in RefSeq as coding

regions, repeat regions, tRNAs or rRNAs. Both strands are removed when one

strand contains one of the above annotations. This breaks a genomic sequence into

a set of intergenic regions (IGRs). We then discard all IGRs shorter than 15 nts

along with those immediately adjacent to an annotated rRNA region, for we find

their 5′ and 3′ borders to be frequently misannotated.

Removing genomic regions encoding for genes or known RNA elements on either

strand reduces search space, yet might risk missing ncRNAs. Using our ncRNA

dataset, we examine how much will be missed in our Firmicutes set, and how much

can be gained by extending our search space into annotated regions. Our dataset

contains 1236 Firmicutes ncRNAs, and if we hypothesize that a region containing



October 5, 2007 23:2 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc018a

8

a ncRNA will have a chance of being grouped with other homologous regions if

and only if there exists an extracted IGR that covers at least 50% or 50 nts of the

ncRNA, then we will miss 107 ncRNAs. Even if we extend our extracted IGRs 200

nts on both ends, almost doubling the search space, by our hypothesized definition

we still miss 59. We have several explanations for this: If a ncRNA overlaps an

annotated coding region, the RefSeq record could have mis-annotated the location.

Also, ncRNAs might overlap other functional regions either due to the evolutionary

pressure of keeping genomes compact, or because their mechanism of gene regulation

requires some overlap. For simplicity in this study, we do not extend IGRs.

3.2. Homology search

To compare performance, we used several popular search programs, including

NCBI-BLAST, WU-BLAST, and SSEARCH. SSEARCH15 implements the Smith-

Waterman local alignment algorithm; it is 10 times slower than BLAST programs,

but is thought to be more sensitive. NCBI-BLAST and WU-BLAST are both heuris-

tic approximations to Smith-Waterman, and begin alignment by matching exact

short words (seeds). In this study, we use a seed length of 11 because preliminary

tests indicated that it has reasonable sensitivity and speed.

3.3. Homology search with predicted secondary structure

To implement folded -BLAST, we use RNALfold from the Vienna package17 to com-

pute locally stable RNA secondary structures with a maximal base span L (empiri-

cally set to 200). Given an input sequence and a defined L, RNALfold lists predicted

secondary structure components. However, since it has been shown that secondary

structure alone is insufficient for detecting ncRNAs,18 we cannot entirely trust the

boundaries and structures predicted. Hence, we developed a heuristic procedure to

merge RNALfold’s components, breaking long IGRs into small, overlapping pieces

with lengths of 200-500 nt. For each piece, RNAfold predicts whether each nucleotide

is paired upstream, paired downstream or unpaired. To take advantage of fast pri-

mary sequence homology search programs, we map these sequences into a 12 letter

alphabet representing nucleotide plus pairing direction. The resulting sequences are

treated like protein sequences, but we search using a handmade scoring matrix in

which nucleotide identity (match) is favored, but when the predicted structures are

the same, nucleotide mismatch penalty is mitigated. The matrix is detailed in the

online supplement.

3.4. Clustering

Prior to clustering, we pre-process pairwise homology hits obtained from homology

search programs into nodes and edges. A node represents an IGR segment, and an

edge represents a homology hit. For all homology search results, hits with score less

than 40 or greater than 300 are ignored. Note that, although the same score may
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have different statistical significance depending on the program used, we have tuned

the parameters to achieve statistical similarity, and have observed that all programs

generally produce the same distribution of scores. For folded -BLAST, an additional

criterion is added: hits with percentage identity less than 0.3 or positive percentage

identity (percentage of alignments contributing positive scores) less than 0.5 are

ignored. The cutoff values were determined using small test sets of ncRNAs against

random sequences.

When we process a homology hit, we first check whether there already is a node

representing a segment overlapping the query region by 15 nts. If so, then that

node is expanded to represent the union of the two regions; otherwise a new node

is created. The same procedure is applied to the aligned subject region. We then

create an edge to represent the hit, whose weight is the homology score. In sum, the

output of pre-processing a set of homology hits is a weighted, undirected graph.

The clustering step uses WPGMA (Weighted Pair Group Method using Arith-

metic averaging), also known as average-linkage clustering. Edge weights are used

as scores. Missing edges are assumed to have score 0.

The output of the hierarchical clustering is a forest of trees. Some trees can be

as small as only 2 leaves, which means that the homology search program did not

find any other IGR segments significantly homologous to them. The largest tree can

be as large as the number of nodes. Such a supersized cluster is impractical for any

further evaluation, and given that most of our ncRNA families have no more than

100 instances in our species sets, we generally use a size cutoff of 50. More adaptive

tree-cutting is discussed below.

3.5. Motif prediction and scan

Motif prediction and scan are done as in Yao et al., 2007, excluding the (subjective)

manual evaluation steps. Briefly, CMfinder4 folds each sequence in its input set, and

constructs an initial heuristic alignment attempting to match similar sequence and

structural features between sequences. Next it builds a covariance model (CM) from

the alignment, exploiting both mutual information and single-sequence structure

predictions to arrive at a consensus structure prediction. Finally, it performs an

EM-like iteration, alternately realigning the sequences to the model and rebuilding

the model from the refined alignment. It is robust to non-motif containing sequences

and extraneous regions flanking the motifs. Parts of CMfinder use the Infernal19

software package, which was also used for the scanning step in our evaluation. On

larger data sets, we would also use the RaveNnA20 filtering package.

4. Discussion and Future Work

Refining the design of our ncRNA discovery pipeline is complicated because there

is no clear winner among applicable homology and motif tools. We plan to improve

our pipeline in various aspects, particularly the following: (1) Secondary structure

incorporation: The heuristics used in our novel method for incorporating secondary
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structure were empirically determined. For example, secondary structures were pre-

dicted with a maximal base span of 200, and the scoring matrix used for folded -

BLAST was handmade (we found scores trained from curated ncRNA alignments

to perform poorly). (2) Hierarchical clustering: We merged overlapping homologous

sequences based on the assumption that evolutionary divergence causes homology

search programs to fail to capture full length homologous ncRNAs. We have neither

deeply investigated this assumption nor determined an optimal merging strategy. (3)

Adaptive tree cutting: Our fixed size-cut for partitioning large clusters may com-

promise motif prediction for some ncRNA families. For example, folded -BLAST

clustered the 7 M. florum purine riboswitches into a compact subbranch, yet the 50

size-cut included extraneous sequences that caused CMFinder to fail in predicting

a motif. To improve specificity, we could try using other evidence (e.g., homology

scores) to trim a cluster, or iteratively use CMFinder to add or remove members

until all cluster members are predicted as containing motif instances.

With future evaluation on other species and improvement of the existing

pipeline, we hope to identify and experimentally verify novel structured RNAs.
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