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Spaced seed is a filter method invented to efficiently identify the regions of interest
in similarity searches. It is now well known that certain spaced seeds hit (detect) a

randomly sampled similarity region with higher probabilities than the others. Assume

each position of the similarity region is identity with probability p independently. The
seed optimization problem seeks for the optimal seed achieving the highest hit probability

with given length and weight. Despite that the problem was previously shown not to be

NP-hard, in practice it seems difficult to solve. The only algorithm known to compute
the optimal seed is still exhaustive search in exponential time. In this article we put

some insight into the hardness of the seed design problem by demonstrating the relation

between the seed optimization problem and the optimal Golomb ruler design problem,
which is a well known difficult problem in combinatorial design.
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1. Introduction and Notations

1.1. Seed optimization

Similarity searches often utilize some types of filtrations to efficiently identify the
similarity candidates for further examination. Normally filtration provides a trade-
off between searching sensitivity and searching speed. In DNA similarity searches,
spaced seed was invented to achieve a better tradeoff.1

A spaced seed x is represented by a binary string such as 111*1**1*1**11*111.
The positions with letter 1 are required matches, and the positions with letter *
are “don’t cares”. The length of the string is called the length of the seed, denoted
by l(x). The number of required matches is called the weight of the seed, denoted
by w(x). A similarity is hit by a seed x if there is a length-l(x) segment of the
similarity such that all the required matches specified by x are satisfied by the
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segment. Figure 1 shows an example.

GAGTACTCAACACCAACATTAGTGGGCAATGGAAAAT

|| ||||||||| ||||| || |||||| ||||||

GAATACTCAACAGCAACACTAATGGGCAGCAGAAAAT

111*1**1*1**11*111

Fig. 1. The seed 111*1**1*1**11*111 hits the similarity region.

A spaced seed x can also be specified by the set of positions of the required
matches. For example, the seed x = 111*1**1*1**11*111 can be denoted by its
set representation S(x) = {0, 1, 2, 4, 7, 9, 12, 13, 15, 16, 17}. For a given set S and an
integer, we define S + i = {x+ i |x ∈ S}.

It is easy to see that spaced seeds with the same weight provide the same effi-
ciency in filtering out random matches. However, it was observed, though not thor-
oughly studied, that some spaced seeds provide better filtration than the others.2,3

Ma et al.1 first studied the optimization of the spaced seed in their PatternHunter
paper, and demonstrated that the optimized spaced seed could improve the sen-
sitivity (hit probability) significantly over the consecutive seed (with no * in the
seed) of the same weight. The term, spaced seed, was also coined in the paper.1

In the PatternHunter paper,1 a length-L similarity region is modeled as a 0-1
string, where 0 means mismatch and 1 means match. Each position of the region
is independently 1 with probability p. In this paper we call these regions the i.i.d.
regions ∗ and p be the similarity level of the region. Then1 enumerated all the pos-
sible seeds with given weight and length, calculated their hit probabilities under
certain L and p, and selected the optimal seed with the best hit probability. This is
apparently an exponential time algorithm. After several years of extensive research
in the seed optimization problem, many heuristic algorithms were developed to cal-
culate the optimal seed.5,7–12 However, the exponential-time, brute-force algorithm
is still the only known algorithm that guarantees the finding of the optimal seed.
We formalize the seed optimization problem under i.i.d. regions as follows:

I.I.D. Seed Optimization An instance of i.i.d. seed optimization is given by
a four-tuple 〈l, w, L, p〉. The objective is to find the seed with length l and weight
w that achieves the maximum hit probability in i.i.d. regions with length L and
similarity level p.

Clearly, the similarity regions have another simple probabilistic model, where
a length-L similarity region is uniformly drawn from all length-L 0-1 strings with
exactly k matches (letter 1). In this paper we call these regions the uniform regions.
Analogously, we define the following:

Uniform Seed Optimization An instance of uniform seed optimization is

∗ Different from this paper,4,5 used the term “uniform” for these regions. The use of the terms
i.i.d. and uniform in this paper follow.6
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given by a four-tuple 〈l, w, L, k〉. The objective is to find the seed with length l and
weight w that achieves the maximum hit probability in uniform regions with length
L and exactly k matches.

Independently to the work of PatternHunter,1 Burkhardt and Kärkkä́ınen13

studied a slightly different seed optimization under uniform regions. They tried
to find a seed with the maximum weight to hit all the uniform regions. Apparently,
this problem can be reduced to the uniform seed optimization problem by trying
different values of l and w.

Despite the hardness of seed optimization in practice, Li et al.4,14 made an
interesting observation that if the input parameters are given in unary forms, then
the seed optimization problem can not be NP-hard. This observation is based on the
theorem that a sparse language (the number of instances is bounded by a polynomial
of the input size) cannot be NP-hard unless P=NP.15 Thus, the research in seed
optimization is in an awkward situation: no efficient algorithm has been designed;
yet NP-hardness, the common strategy to prove the complexities of a problem, does
not work here.

Much related to the seed optimization problems, researchers have studied the
algorithms to calculate the sensitivity of a given spaced seed, under both the i.i.d.
and uniform models. Under the i.i.d. model, Ma et al.1 proposed the first exponen-
tial time algorithm and other papers16,17 proposed algorithms with improved time
complexity. Under the uniform model, Buhler et al.12 proposed exponential time
algorithm. The sensitivity calculation algorithms have been used in the brute-forth
seed optimization as subroutines. Hence, sensitivity calculation appeared to be an
easier problem than seed optimization. Ironically, the accurate sensitivity calcula-
tion was proved to be NP-hard under both the i.i.d. model4,14 and the uniform
model.18

However, the proofs of hardness of sensitivity calculation do not imply the hard-
ness of the seed optimization. This is because the proofs required specially designed
spaced seeds, which may not be the optimal seeds. In this paper we aim to provide
some insight into the complexity of the seed optimization problem.

1.2. Golomb ruler

A w-mark Golomb ruler is a set of distinct nonnegative integers 0 = a1, a2, . . ., aw,
called “marks”, such that |ai − aj | 6= |ak − al| for {i, j} 6= {k, l} and i 6= j. The
optimal Golomb ruler design problem seeks for a w-mark ruler with the least aw.19

It is relatively easy to construct a w-mark Golomb ruler with polynomial aw. In
fact, because of the easy construction, Golomb ruler has been used in the reduction
to prove the NP-hardness of calculating the sensitivity of a given spaced seed.4,18

However, the finding of the optimal Golomb ruler is much harder. Although there
is no mathematical proof about the computational complexity of optimal Golomb
ruler design, it is well known in combinatorial design that optimal Golomb ruler
design is a very difficult problem. The largest known optimal Golomb ruler to date
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has w = 24, which was found by J. P. Robinson and A. J. Bernstein20 in 1967 and
verified to be optimal with four years of distributed computation at distributed.net
(http://www.distributed.net) in 2004. Currently the finding (verifying) of the 25-
mark optimal Golomb ruler is underway at distributed.net.

The optimal Golomb ruler design problem and our seed optimization problem are
analogous in the simplicity of the definitions and the complexity of the algorithms
in use. Indeed, in this paper we reduce the optimal Golomb ruler design problem
to seed optimization, and consequently prove that seed optimization is at least as
hard as optimal Golomb ruler design. Our results, together with the tremendous
efforts that mathematicians have spent on optimal Golomb ruler design, justify the
exponential time algorithms and heuristic algorithms for seed optimization, and
suggest that the future research in this problem should still focus on these two
types of algorithms.

The rest of the paper is organized as follows: Section 2 proves that in the i.i.d.
regions with certain conditions, optimal seeds are Golomb rulers. A closed-form
sufficient condition is given. This reduces the optimal Golomb ruler design problem
to the i.i.d. seed optimization problem. Section 2 further provides a counterexample
to show that without the conditions, the optimal Golomb ruler may not be the
optimal seed. Section 3 studies the uniform seed optimization. Results in uniform
regions are very similar to the i.i.d. regions. Section 4 discusses the results and
proposes open problems.

2. I.I.D. Seed Optimization

2.1. Reduction from optimal Golomb ruler design to i.i.d. seed

optimization

In this section we provide a polynomial time reduction from the optimal Golomb
ruler design problem to the seed optimization problem. It has been believed that the
sensitivity increase of the spaced seed comes from the irregularities in the positions
of the letters 1 in the seed. With the irregularity, when a spaced seed hits a similarity
region, an extra hit right after the first hit requires many more positions of the
similarity region to be matches, as illustrated in Figure 2. This makes the concurrent

111*1**1*1**11*111 111*1**1*1**11*111 ...

111*1**1*1**11*111 111*1**1*1**11*111 ...

Fig. 2. No matter how the seed is “slided”, two overlapping 111*1**1*1**11*111 always give six
or more extra required matches than one seed.

existence of more than one hits in the same similarity region a rare event; whereas
for a consecutive seed, the second hit is relatively easy – only one additional required
match is needed. As a result, while the total number of hits are similar, spaced seeds
hit more similarity regions than a consecutive seed.
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Noticing that if seed x is such that its set representation, S(x) is a Golomb ruler,
then S(x)∩ (S(x) + i) has at most one element for any integer i. This provides the
minimum level of overlap between a seed and its sliding. For the above mentioned
relation between sensitivity and irregularity, a Golomb ruler is likely to the optimal
spaced seed. This is not necessarily true for all conditions (Section 2.2). However,
in what follows we prove that this is true under certain conditions.

We first give a very stringent condition in Theorem 2.1. Later on this condition
will be relaxed in Theorem 2.2.

Theorem 2.1. Consider the i.i.d. seed optimization problem 〈l, w, L, p〉. Let n =
L − l + 1 be the number of positions the seed can hit the region. Suppose p ≤ 1

n3

and n ≥ 2l. Then there is a w-mark Golomb ruler with aw = l− 1 if and only if the
optimal spaced seed is a Golomb ruler.

Proof. Suppose a length-l and weight-w seed is given by its set representation.
When the context is clear, we also use S to refer to the seed. Define φ(i) = |S ∩
(S + i)|. Define φ = maxi φ(i).

Denote by h(i1, . . . , ik) the probability of that the seed hits at every position of
i1, i2, . . ., ik. This event is equivalent to that all the positions in

k⋃
j=1

(S + ik)

are matches. Therefore, it is easy to verify that Equations (1), (2) and (3) are true.
For any 0 ≤ i < n,

h(i) = pw. (1)

For any 0 ≤ i < j < n,

h(i, j) = p2w−φ(j−i) ≤ p2w−φ. (2)

For any 0 ≤ i < j < k < n,

h(i, j, k) ≤ p2w−φ+1. (3)

We claim that

Pr(S hits) ≥
n−1∑
i=0

h(i)−
∑

0≤i<j<n

h(i, j) (4)

and

Pr(S hits) ≤
n−1∑
i=0

h(i)−
∑

0≤i<j<n

h(i, j) +
∑

0≤i<j<k<n

h(i, j, k) (5)

This is because of the following two facts: (1) for any similarity region that contains
r ≤ 2 hits, the probability of the region is counted precisely once in both Eq.(4)
and Eq.(5); (2) for any similarity region that contains r > 2 hits, the probability of
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the region is counted
(
r
1

)
−
(
r
2

)
≤ 1 time in Eq.(4) and

(
r
1

)
−
(
r
2

)
+
(
r
3

)
≥ 1 times in

Eq.(5).
Because of Eq.(3), when p ≤ 1

n3 ,∑
0≤i<j<k<n

h(i, j, k) ≤
(
n

3

)
p2w−φ+1 < p2w−φ × 1

2
(6)

If φ = 1, Eq.(4) becomes

Pr(Shits) ≥ npw − p2w−1 × n2

2
(7)

If φ ≥ 2, because there is at least one pair of i and j such that φ(j− i) = φ ≥ 2,
as well as Eq.(6), Eq.(5) becomes

Pr(S hits) ≤ npw−p2w−φ+p2w−φ× 1
2

= npw− 1
2
×p2w−φ < npw−p2w−1× n

2

2
(8)

When there is a Golomb ruler of length l with w markers, the seed defined by
the ruler has φ = 1 and the hit probability is lower bounded by (7). Because φ ≥ 2
implies (8), the optimal seed must be such that φ = 1. It is easy to verify that when
n ≥ 2l, φ = 1 implies that the seed is a Golomb ruler.

Corollary 2.1. The i.i.d. seed optimization problem is at least as hard as optimal
Golomb ruler design.

Proof. Theorem 2.1 says that the finding of w-mark Golomb ruler with length l

can be reduced to the seed optimization problem. Then the optimal Golomb ruler
problem for a given weight w can be solved by trying different length l in polynomial
steps.

One problem of Theorem 2.1 is that the upper bound of p is O(n−3), which is
very small and not practical. We relax this upper bound in Theorem 2.2.

Theorem 2.2. Consider the i.i.d. seed optimization problem 〈l, w, L, p〉. Let n =
L − l + 1. Suppose p ≤ 1

4l ·
n−l
n and 2l ≤ n ≤ (2

√
l)w−1. Then there is a w-mark

Golomb ruler with aw = l − 1 if and only if each optimal spaced seed is a Golomb
ruler.

Proof. If there is no optimal w-mark Golomb ruler with aw = l − 1, then clearly
the optimal spaced seed cannot be a Golomb ruler. Next we prove the “only if”.
Suppose there is a w-mark Golomb ruler, denoted as S∗. Denote the optimal spaced
seed as S. We prove by contradiction that S is also a Golomb ruler.

Define φ∗(i) = |S∗ ∩ (S∗ + i)|. Because S∗ is a Golomb ruler, φ∗(i) ≤ 1. Define
φ(i) = |S ∩ (S + i)| and φ = maxi φ(i). If S is not a Golomb ruler, then φ > 1. Let
h∗(i1, . . . , ik) = Pr(S∗ hits at i1, . . . , ik) and h(i1, . . . , ik) = Pr(S hits at i1, . . . , ik).
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Because both S and S∗ have weight w, h(i) = h∗(i) = pw. In addition, if j−i ≥ l,
then h(i, j) = h∗(i, j) = p2w. Thus, replacing S by S∗ and h by h∗ in Eq.(4), then
subtracting Eq.(5) from Eq.(4), we get the following:

Pr(S∗ hits)− Pr(S hits)

≥
∑

0≤i<j<n

h(i, j)−
∑

0≤i<j<n

h∗(i, j)−
∑

0≤i<j<k<n

h(i, j, k)

=
∑

0≤i<j<min(i+l,n)

h(i, j)−
∑

0≤i<j<min(i+l,n)

h∗(i, j)−
∑

0≤i<j<k<n

h(i, j, k)

≥ (n− l)p2w−φ − nlp2w−1 −
∑

0≤i<j<k<n

h(i, j, k). (9)

Here the last inequality is because the following two facts: (1) There is at least one
d such that φ(d) = φ. Therefore h(i, i+ d) = p2w−φ for at least n− l different i. (2)
h∗(i, j) ≤ p2w−1.

To prove the theorem, it suffices to show that when φ ≥ 2, Eq. (9) is greater
than zero, which is a contradiction to the optimality of S. Clearly, when p is small,
the absolute value of the second negative term in (9) can be bounded by a fraction
of the first term in (9). We need to examine the third term

∑
0≤i<j<k<n h(i, j, k)

more carefully.
The set of indexes I = {(i, j, k)|0 ≤ i < j < k < n} can be divided into two sets

I1 = {(i, j, k) ∈ I|j < i + l and k < j + l} and I2 = I \ I1. Clearly I1 corresponds
to the situations where the seed at j overlaps both the seed at i and the seed at
k; and I2 corresponds to the situations where at least one hit does not overlap the
other two seeds. For any (i, j, k) ∈ I2, |(S + i)∪ (S + j)∪ (S + k)| ≥ 3w− φ. Hence∑

(i,j,k)∈I2

h(i, j, k) ≤ n3

6
× p3w−φ. (10)

When p is small, this can also be bounded by a fraction of the first term of (9).
Again, I1 can be divided into two sets

J1 = {(i, j, k) ∈ I1 : |(S + k) \ ((S + i) ∪ (S + j))| = 1}

and J2 = I1 \ J1. That is, providing that there are hits at i and j, J1 contains
the indexes where the the seed at k requires only one additional match in the
similarity region, and J2 contains the indexes where the seed at k requires at least
two additional matches. Therefore, for any (i, j, k) ∈ J2, |(S+i)∪(S+j)∪(S+k)| ≥
2w − φ+ 2. Hence ∑

(i,j,k)∈J2

h(i, j, k) ≤ nl2 × p2w−φ+2. (11)

When p is small, this can be bounded by a fraction of the first term of (9) again.
The rest of the proof is to bound∑

(i,j,k)∈J1

h(i, j, k) ≤ p2w−φ+1 × |J1|.
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For (i, j, k) ∈ J1, we consider the possibilities of k for fixed i and j. As shown in
Figure 3, because the last letter 1 in the seed at k already contributed an additional
match, the second last letter 1 in the seed at k must coincide with the last letter 1
of either the seed at i or the seed at j. Otherwise it contributes another additional
match (keep in mind that the seeds at i, j and k are the same seed), contradicting
the definition of J1.

i: ...10001 ...10001

j: ...10001 ...10001

k: ...10001 ...10001

(A) (B)

Fig. 3. The two possible choices of k for fixed i and j in J1.

Thus, once i is fixed, there are l choices of j, and then there are at most two
choices of k. As a result, |J1| ≤ 2nl, and∑

(i,j,k)∈J1

h(i, j, k) ≤ p2w−φ+1 × 2nl (12)

Combining Equations (9), (10), (11) and (12),

Pr(S∗ hits)− Pr(S hits)

> (n− l)p2w−φ − nlp2w−1 −
∑

(i,j,k)∈I2∪J2∪J1

h(i, j, k)

≥ (n− l)p2w−φ − nlp2w−1 − n3

6
· p3w−φ − nl2 · p2w−φ+2 − 2nl · p2w−φ+1

= p2w−φ+1

(
(n− l) · p−1 − nl · pφ−2 − n3

6
· pw−1 − nl2 · p− 2nl

)
It is easy to verify that when φ ≥ 2, p ≤ 1

4l ·
n−l
n and n ≤ (2

√
l)w−1, the above

equation has value greater than 0. Hence the theorem is proved.

Remark: Obviously, the main factor for the upper bound of p in Theorem 2.2 is
O( 1

l ). With a more sophisticated analysis, it is also possible to bound p by O( 1
w ).

The analysis is omitted here.

2.2. Counterexample

One natural question is to ask whether the upper bounds on p in Theorem 2.1 and
Theorem 2.2 can be removed. The answer is no. With much computation, we found
the following counter example. For w = 5, n = 150, p = 0.999, the optimal 5-mark
Golomb ruler is {0, 2, 7, 10, 11}.21 The corresponding spaced seed has sensitivity
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1− 4.3376× 10−116. Whereas the spaced seed {0, 3, 4, 6, 11}, which is not a Golomb
ruler, has a better sensitivity 1− 3.3674× 10−117.

One may argue that this may be due to that the region is not sufficiently long,
and the boundary effects cause this to happen. Figure 4 excludes this possibility.
When p = 0.999, the curves in Figure 4 plot the trend of log(Pr(There is no hit))
for the above two seeds, with respect to the length of the region. Clearly we can see
that the no-hit probability of the Golomb ruler seed {0, 2, 7, 10, 11} goes down slower
than the non-Golomb ruler seed {0, 3, 4, 6, 11}. This clearly demonstrates that the
non-Golomb ruler seed {0, 3, 4, 6, 11} is asymptotically better than the Golomb ruler
seed.

Fig. 4. The curves of log(Pr(There is no hit)) with respect to the region length. The upper curve
is for the Golomb ruler seed {0, 2, 7, 10, 11}, and the lower curve is for the seed {0, 3, 4, 6, 11}.

3. Uniform Seed Optimization

For uniform regions, we can also reduce the optimal Golomb ruler design problem
to seed optimization. The proof is in fact much simpler.

Theorem 3.1. Optimal Golomb ruler design can be reduced to uniform seed opti-
mization problem in linear time.

Proof. Suppose the uniform regions are given with length L and k matches. Let
k = 2w − 2 and L ≥ 3l.

For any seed S, let φ(i) as defined in the proof of Theorem 2.1. Clearly,

Pr(S hits) ≤
L−l∑
i=0

Pr(S hits at i).



September 25, 2007 13:58 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc019a

10

Furthermore, the equality holds if and only if Pr(S hits more than once) = 0. With
k = 2w − 2, this happens if and only if φ(i) ≤ 1 for any i, i.e., S is a Golomb ruler
seed.

Similar to the i.i.d. regions, the conditions on the similarity level k cannot be
removed. The counterexample for i.i.d. region still works here. When L = 200,
k = 140, l = 12, and w = 5, the non-Golomb ruler seed 0, 3, 4, 6, 11 has better
sensitivity 1− 1.34× 10−36 than the Golomb ruler seed 0, 2, 7, 10, 11, of which the
sensitivity is 1− 9.3× 10−35.

4. Discussion and Open Problems

Although seed optimization was proved not to be NP-hard in the literature, in
this paper we put some insight into its computational complexity by a polynomial
time reduction from another well-known difficult problem, the optimal Golomb ruler
design. In fact, we show that under certain conditions, the following statement holds:

Statement: If a Golomb ruler exists, the optimal seed is a Golomb ruler.

However, without those conditions, we also give a counterexample to show that
the statement is not always true. In fact, our counterexample shows that a non-
Golomb ruler seed can be asymptotically better than the optimal Golomb ruler
seed. This is different from a common belief in seed design that the irregularities
in the seeds increase the seed sensitivity. Our example shows that the factors that
determine the seed sensitivity is more involved than just the irregularity.

For i.i.d. regions, the conditions for the statement to be true are mainly on the
similarity level, p, of the similarity region. The best upper bound we give in the
paper is p = O( 1

l ), where l is the length of the desired seed. For uniform regions,
the condition is much more stringent: k must be equal to 2w− 2. We leave it as an
open question whether a significantly more relaxed condition on p or k exist for the
statement to hold for i.i.d. or uniform regions.

Our seed optimization problem is given in the form of 〈l, w, L, p〉 for i.i.d. re-
gions and 〈l, w, L, k〉 for uniform regions. In practice often the length of the seed,
l, is not fixed for optimizing a seed. When l is not fixed, our reduction does not
straightforwardly imply the complexity of seed optimization. This is because the
optimal seed can possibly have a shorter length than the w-mark optimal Golomb
ruler, as a consequence of the simple fact that shorter seeds have more positions to
hit a length-L region. However, if the i.i.d. seed optimization problem is defined to
maximize the hit probability at the first n positions of a region, then the length of
a seed is not important anymore and our results still hold. We also point out that
all our reductions work for circular regions, with or without the parameter l.

Although our results indicate that the seed optimization problem is very hard (at
least as hard as optimal Golomb ruler design), whether a polynomial time algorithm
exists for seed optimization is still an open problem.
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