
September 23, 2007 12:33 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc028a

1

Linear Time Probabilistic Algorithms for the Singular Haplotype
Reconstruction Problem from SNP Fragments

Zhixiang Chen and Bin Fu and Robert Schweller
Department of Computer Science, University of Texas-Pan American

Edinburg, TX 78539, USA. E-mail: {chen, binfu, schwellerr}@cs.panam.edu

Boting Yang
Department of Computer Science, University of Regina

Saskatchewan, S4S 0A2, Canada. E-mail: boting@cs.uregina.ca

Zhiyu Zhao
Department of Computer Science, University of New Orleans

New Orleans, LA 70148, USA. E-mail: zzha2@cs.uno.edu

Binhai Zhu
Department of Computer Science, Montana State University

Bozeman, MT 59717. USA. E-mail: bhz@cs.montana.edu.

In this paper, we develop a probabilistic model to approach two scenarios in reality about

the singular haplotype reconstruction problem - the incompleteness and inconsistency

occurred in the DNA sequencing process to generate the input haplotype fragments
and the common practice used to generate synthetic data in experimental algorithm

studies. We design three algorithms in the model that can reconstruct the two unknown

haplotypes from the given matrix of haplotype fragments with provable high probability
and in time linear in the size of the input matrix. We also present experimental results

that conform with the theoretical efficient performance of those algorithms. The software

of our algorithms is available for public access and for real-time on-line demonstration.
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1. Introduction

Most part of genomes between two humans are identical. The sites of genomes that
make differences among human population are Single Nucleotide Polymorphisms
(SNPs). The values of a set of SNPs on a particular chromosome copy define a
haplotype. Haplotyping an individual involves determining a pair of haplotypes, one
for each copy of a given chromosome according to some optimal objective functions.

In recent years, the haplotyping problem has been extensively studied.1–11 There
are several versions of the haplotyping problem. In this paper, we consider the
singular haplotype reconstruction problem that asks to reconstruct two unknown
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haplotypes from the input matrix of fragments as accurately as possible. Like other
versions of the problem, this has also been extensively studied.1,3–5 Because both
incompleteness and inconsistency are involved in the fragments, it is not surprising
that various versions of the haplotyping problem are NP-hard or even hard to
approximate,1,4,5 and many elegant and powerful methods such as those in (Li,
Ma and Wang)12 cannot be used to deal with incompleteness and inconsistency at
the same time. In this paper, we develop a probabilistic approach to overcome some
of the difficulties caused by the incompleteness and inconsistency occurred in the
input fragments.

2. A Probabilistic Model

Assume that we have two haplotypes H1, H2, denoted as H1 = a1a2 · · · am and
H2 = b1b2 · · · bm. Let Γ = {S1, S2, . . . , Sn} be a set of n fragments obtained from
the DNA sequencing process with respect to the two haplotypes H1 and H2. In
this case, each Si = c1c2 · · · cm is either a fragment of H1 or H2. Because we lose
the information concerning the DNA strand to which a fragment belongs, we do
not know whether Si is a fragment of H1 or H2. Suppose that Si is a fragment of
H1. Because of reading errors or corruptions that may occur during the sequencing
process, there is a small chance that either cj 6= - but cj 6= aj , or cj = -, for
1 ≤ j ≤ m, where the symbol - denotes a hole or missing value. For the former, the
information of the fragment Si at the j-th SNP site is inconsistent, and we use α1

to denote the rate of this type of inconsistency error. For the latter, the information
of Si at the j-th SNP is incomplete, and we use α2 to denote the rate of this type
of incompleteness error. It is known1,3,4 that α1 and α2 are in practice between 3%
to 5%. Also, it is realistically reasonable to believe that the dissimilarity, denoted
by β, between the two haplotypes H1 and H2 is big. Often, β is measured using the
Hamming distance between H1 and H2 divided by the length m of H1 and H2, and
is assumed to be large, say, β ≥ 0.2. It is also often assumed that roughly half of
the fragments in Γ are from each of the two haplotypes H1 and H2.

In the experimental studies of algorithmic solutions to the singular haplotype
reconstruction problem, we often need to generate synthetic data to evaluate the
performance and accuracy of a given algorithm. One common practice1,3,4 is as
follows: First, choose two haplotypes H1 and H2 such that the dissimilarity between
H1 and H2 is at least β. Second, make ni copies of Hi, i = 1, 2. Third, for each
copy H = a1a2 · · · am of Hi, for each i = 1, 2, . . . ,m, with probability α1, flip ai to
a′i so that they are inconsistent. Also, independently, ai has probability α2 to be a
hole -. A synthetic data set is then generated by setting parameters m, n1, n2, β, α1

and α2. Usually, n1 is roughly the same as n2, and β ≈ 0.2, α1 ∈ [0.01, 0.05], and
α2 ∈ [0.1, 0.3].

Motivated by the above reality of the sequencing process and the common prac-
tice in experimental algorithm studies, we will present a probabilistic model for
the singular haplotype reconstruction problem. But first we need to introduce some
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necessary notations and definitions.
Let Σ1 = {A,B} and Σ2 = {A,B, -}. For a set C, |C| denotes the number of

elements in C. For a fragment (or a sequence) S = a1a2 · · · am ∈ Σm2 , S[i] denotes
the character ai, and S[i, j] denotes the substring ai · · · aj for 1 ≤ i ≤ j ≤ m. |S|
denotes the length m of S. When no confusion arises, we alternatively use the terms
fragment and sequence.

Let G = g1g2 · · · gm ∈ Σm1 be a fixed sequence of m characters. For any sequence
S = a1 · · · am ∈ Σm2 , S is called a Fα1,α2(m,G) sequence if for each ai, with proba-
bility at most α1, ai is not equal to gi and ai 6= -; and with probability at most α2,
ai = -.

For a sequence S, define holes(S) to be the number of holes in the sequence S.
If A is a subset of {1, · · · ,m} and S is a sequence of length m, holesA(S) is the
number of i ∈ A such that S[i] is a hole.

For two sequences S1 = a1 · · · am and S2 = b1 · · · bm of the same length m, for
any A ⊆ {1, · · · ,m}, define

diff(S1, S2) =
|{i ∈ {1, 2, · · · ,m}|ai 6= - and bi 6= - and ai 6= bi}|

m

diffA(S1, S2) =
|{i ∈ A|ai 6= - and bi 6= - and ai 6= bi}|

|A|
.

For a set of sequences Γ = {S1, S2, · · · , Sk} of length m, define vote(Γ) to be
the sequence H of the same length m such that H[i] is the most frequent character
among S1[i], S2[i], · · · , Sk[i] for i = 1, 2, · · · ,m.

We often use an n ×m matrix M to represent a list of n fragments from Σm2
and call M an SNP fragment matrix. For 1 ≤ i ≤ n, let M [i] represent the i-th row
of M , i.e., M [i] is a fragment in Σm2 .

We now define our probabilistic model:
The Probabilistic Singular Haplotype Reconstruction Problem: Let

β, α1 and α2 be small positive constants. Let G1, G2 ∈ Σm1 be two haplotypes with
diff(G1, G2) ≥ β. For any given n ×m matrix M of SNP fragments such that ni
rows of M are Fα1,α2(m,Gi) sequences, i = 1, 2, n1 + n2 = n, reconstruct the two
haplotypes G1 and G2, which are unknown to the users, from M as accurately as
possible with high probability. We call β (resp., α1, α2) dissimilarity rate (resp.,
inconsistency error rate, incompleteness error rate).

3. Technical Lemmas

For probabilistic analysis we need the following two Chernoff bounds.

Lemma 3.1.12 Let X1, · · · , Xn be n independent random 0, 1 variables, where Xi

takes 1 with probability at most p. Let X =
∑n
i=1Xi. Then for any 1 ≥ ε > 0,

Pr(X > pn+ εn) < e−
1
3nε

2
.

Lemma 3.2.12 Let X1, · · · , Xn be n independent random 0, 1 variables, where Xi

takes 1 with probability at least p. Let X =
∑n
i=1Xi. Then for any 1 ≥ ε > 0,
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Pr(X < pn− εn) < e−
1
2nε

2
.

Lemma 3.3. Let S be a Fα1,α2(m,G) sequence. Then, for any 0 < ε ≤ 1, with

probability at most 2e−
ε2m

3 , diff(Gi, S) > α1 + ε or holes(S) > (α2 + ε)m.

Proof. Let Xk, k = 1 · · · ,m, be random variables such that Xk = 1 if S[k] 6= Gi[k]
and S[k] 6= −, or 0 otherwise. By the definition of the Fα1,α2(m,G) sequences, Xk

are independent and Pr(Xk = 1) ≤ α1. So, by Lemma 3.1, with probability at most
e−

ε2m
3 , X1+· · ·+Xm > (α1+ε)m. Thus, we have diff(G,S) > α1+ε with probability

at most e−
ε2m

3 . Similarly, with probability at most e−
ε2m

3 , holes(S) > (α2 + ε)m.

Lemma 3.4. Assume that A is a fixed subset of {1, 2, · · · ,m}. Let S be a

Fα1,α2(m,G) sequence. Then, for any 0 < ε ≤ 1, with probability at most 2e−
ε2|A|

3 ,
diffA(Gi, S) > α1 + ε or holesA(S) > (α2 + ε)|A|.

Proof. Let S′ (resp. G′) be the subsequence consisting of all the characters S[i]
(resp. G[i]), i ∈ A, with the same order as in S (resp. G). Then, diffA(S,Gi) =
diff(S′, G′). The lemma follows from a similar proof for Lemma 3.3.

Lemma 3.5. Let Ni be a set of ni many Fα1,α2(m,Gi) sequences, i = 1, 2. Let β
and ε be two positive constants such that 2α1 + 2α2 + 2ε < 1, and diff(G1, G2) ≥ β.

Then, with probability at most 2(n1 +n2)e−
ε2βm

3 , diff(Si, Sj) ≤ β(1−2α1−2α2−2ε)
for some Si ∈ Ni and some Sj ∈ Nj with i 6= j.

Proof. For each Gi, let Ai be the set of indexes {k ∈ {1, 2, · · · ,m}|Gi[k] 6= Gj [k]},
where i 6= j. Since diff(Gi, Gj) ≥ β and |Gi| = |Gj | = m, we have |Ai| ≥ βm. For

any Fα1,α2(m,Gi) sequence S, by Lemma 3.4, with probability at most 2e−
ε2|Ai|

3 ≤
2e−

ε2βm
3 , diffAi(S,Gi) > α1+ε or holesAi(S) > (α2+ε)|Ai|. Hence, with probability

at most 2nie−
ε2βm

3 , diffAi(S,Gi) > α1 +ε or holesAi(S) > (α2 +ε)|Ai|, for some S ∈
Ni. Therefore, with probability at most 2(n1 + n2)e−

ε2βm
3 , we have diffAi(S,Gi) >

α1 + ε or holesAi(S) > (α2 + ε)|Ai,j |, for some S ∈ Ni, for some i = 1 or 2. In other

words, with probability at least 1−2(n1 +n2)e−
ε2βm

3 , we have diffAi(S,Gi) ≤ α1 +ε
and holesAi(S) ≤ (α2 + ε)|Ai,j |, for all S ∈ Ni and for i = 1 and 2.

For any Fα1,α2(m,Gi) sequence Si, i = 1, 2, if diffAi(Si, Gi) ≤ α1 + ε and
holesAi(Si) ≤ (α2 +ε)|Ai|, then diff(S1, S2) ≥ diffAi(S1, S2) ≥ β(1−2α1−2α2−2ε).

Thus, with probability at least 1− 2(n1 + n2)e−
ε2βm

3 , we have diff(S1, S2) ≥ β(1−
2α1 − 2α2 − 2ε), for every S1 ∈ N1 and every S2 ∈ N2. In words, with probability

at most 2(n1 + n2)e−
ε2βm

3 , we have diff(S1, S2) < β(1 − 2α1 − 2α2 − 2ε), for some
S1 ∈ N1 and some S2 ∈ N2.

Lemma 3.6. Let α1, α2 and ε be three small positive constants that satisfy 0 <

2α1 +α2−ε < 1. Assume that N = {S1, · · · , Sn} is a set of Fα1,α2(m,G) sequences.
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Let H = vote(N). Then, with probability at most 2m(e−
ε2n
2 ), G 6= H.

Proof. Given any 1 ≤ j ≤ m, for any 1 ≤ i ≤ n, let Xi be random variables
such that Xi = 1 if Si[j] 6= G[j] and Si[j] 6= −, or 0 otherwise. By the definition
of the Fα1,α2(m,G) sequences, Xi are independent and Pr(Xi = 1) ≤ α1. So, by

Lemma 3.2, with probability at most e−
ε2n
2 , X1 + · · ·+Xn < (α− ε)n. That is, with

probability at most e−
ε2n
2 , there are fewer than (α1− ε)n characters Si[j] such that

Si[j] 6= G[j] and Si[j] 6= -. Similarly, with probability at most e−
ε2n
2 , there are fewer

than (α2 − ε)n characters Si[j] such that Si[j] = -. Thus, with probability at most
2me−

ε2n
2 , there are fewer than (α1+α2−2ε)n characters Si[j] such that Si[j] 6= G[j]

for some 1 ≤ j ≤ m. This implies that, with probability at least 1−2me−
ε2n
2 , there

are more than (1 − α1 − α2 + 2ε)n characters Si[j] such that Si[j] = G[j] for any
1 ≤ j ≤ m. Since 0 < 2α1 + α2 − ε < 1 by the assumption of the theorem, we have
(α1 + ε)n < (1− α1 − α2 + 2ε)n. This further implies that with probability at least
1− 2me−

ε2n
2 , vote(N)[j] = G[j] for any 1 ≤ j ≤ m, i.e., vote(N) = G.

4. When the Inconsistency Error Parameter Is Known

Theorem 4.1. Assume that α1, α2, β, and ε > 0 are small positive constants that
satisfy 4(α1 + ε) < β and 0 < 2α1 + α2 − ε < 1. Let G1, G2 ∈ Σm1 be the two
unknown haplotypes such that diff(G1, G2) ≥ β. Let M be any given n×m matrix
of SNP fragments such that M has ni fragments that are Fα1,α2(m,Gi) sequences,
i = 1, 2, and n1 + n2 = n. There exists an O(nm) time algorithm that can find two

haplotypes H1 and H2 with probability at least 1−2ne−
ε2m

3 −2me−
ε2n1

2 −2me−
ε2n2

2

such that either H1 = G1 and H2 = G2, or H1 = G2 and H2 = G1.

Proof. The algorithm, denoted as SHR-One, is described as follows.
Algorithm SHR-One
Input: M , an n×m matrix of SNP fragments.

Parameters α1 and ε.
Output: Two haplotypes H1 and H2.

Set Γ1 = Γ2 = ∅.
Randomly select a fragment r = M [j] for some 1 ≤ j ≤ n.
For every fragment r′ from M do

If (diff(r, r′) ≤ 2(α1 + ε)) then put r′ into Γ1

Let Γ2 = M − Γ1.
Let H1 = vote(Γ1) and H2 = vote(Γ2).
return H1 and H2.

End of Algorithm
Claim 1. With probability at most ne−

ε2m
3 , we have either diff(f,G1) > α1 + ε

for some Fα1,α2(m,G1) sequence f in M , or diff(g,G1) > α1 + ε for some
Fα1,α2(m,G2) sequence g in M .
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By Lemma 3.4, for any fragment f = M [k] such that f is a Fα1,α2(m,G1)

sequence, with probability at most e−
ε2m

3 we have diff(f,G1) > α1 + ε. Since there
are n1 many Fα1,α2(m,G1) sequences in M , with probability at most n1e

− ε2m3 , we
have diff(f,G1) > α1 + ε for some Fα1,α2(m,G1) sequence f in M . Similarly, with

probability at most n2e
− ε2m3 , we have diff(g,G2) > α1 + ε for some Fα1,α2(m,G2)

sequence g in M . Combining the above completes the proof for Claim 1.
Claim 2. Let Mi be the set of all the Fα1,α2(m,Gi) sequences in M , i = 1, 2.

With probability at least 1− ne− ε
2m
3 , Γ1 and Γ2 is a permutation of M1 and M2.

By the assumption of the theorem, the fragment r of M is either a Fα1,α2(m,G1)
sequence or a Fα1,α2(m,G2) sequence. We assume that the former is true. By

Claim 1, with probability at least 1 − ne−
ε2m

3 , we have diff(f,G1) ≤ α1 + ε for
all Fα1,α2(m,G1) sequences f in M , and diff(g,G1) ≤ α1 + ε for all Fα1,α2(m,G2)
sequences g in M . Hence, for any fragment r′ in M , if r′ is a Fα1,α2(m,G1) se-

quence, then with probability at least 1−ne− ε
2m
3 , we have diff(r, r′) ≤ diff(r,G1) +

diff(r′, G1) ≤ 2(α1 + ε). This means that, with probability at least 1 − ne−
ε2m

3 ,
all Fα1,α2(m,G1) sequences in M will be included in Γ1. Now, consider that r′

is a Fα1,α2(m,G2) sequence in M . Since diff(G1, G2) ≤ diff(G1, r) + diff(r,G2) ≤
diff(G1, r) + diff(r, r′) + diff(r′, G2), we have diff(r, r′) ≥ diff(G1, G2)− diff(G1, r)−
diff(G2, r

′). By the given condition of diff(G1, G2) ≥ β and 4(α1 + ε) < β, with
probability at least 1− ne− ε

2m
3 , we have diff(r, r′) ≥ β − diff(G1, r)− diff(G2, r

′) ≥
β − 2(α1 + ε) > 2(α1 + ε), i.e., r′ will not be added to Γ1. Therefore, with prob-
ability at least 1 − ne−

ε2m
3 , Γ1 = M1 and Γ2 = M − Γ1 = M2. Similarly, if r

is a Fα1,α2(m,G2) sequence, with probability at least 1 − ne− ε
2m
3 , Γ1 = M2 and

Γ2 = M − Γ1 = M1. This completes the proof of Claim 2.
Suppose that Γ1 and Γ2 is a permutation of M1 and M2. Say, without loss

of generality, Γ1 = M1 and Γ2 = M2. By Lemma 3.6, with probability at most

2me−
ε2n1

2 + 2me−
ε2n2

2 , vote(Γ1) 6= G1 or vote(Γ2) 6= G2. Hence, by Claim 2, with

probability at most 2ne−
ε2m

3 + 2me−
ε2n1

2 + 2me−
ε2n2

2 , vote(Γ1) 6= G1 or vote(Γ2) 6=
G2.

Concerning the computational time of the algorithm, we need to compute the
difference between the selected fragment r and each of the rest n− 1 fragments in
the matrix M . Finding the difference between r and r′ takes O(m) steps. So, the
total computational time is O(nm), which is linear in the size of the input matrix
M .

5. When Parameters Are Not Known

In this section, we consider the case that the parameters α1, α2 and β are unknown.
However, we assume the existence of those parameters for the input matrix M of
SNP fragments. We will show that in this case we can still reconstruct the two
unknown haplotypes from M with high probability.
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Theorem 5.1. Assume that α1, α2, β, and ε > 0 are small positive constants that
satisfy 2α1+2α2+2ε < 1, 0 < 2α1+α2−ε < 1, and β(1−2α1−2α2−2ε) > 2(α1+ε).
Let G1, G2 ∈ Σm1 be the two unknown haplotypes such that diff(G1, G2) ≥ β. Let
M be any given n × m matrix of SNP fragments such that M has ni fragments
that are Fα1,α2(m,Gi) sequences, i = 1, 2, and n1 + n2 = n. Then, there exists an
O(umn) time algorithm that can find two haplotypes H1 and H2 with probability

at least 1 − (1 − γ)u − 4ne−
ε2βm

3 − 2me−
ε2n1

2 − 2me−
ε2n2

2 such that H1, H2 is a
permutation of G1, G2, where γ = n1n2

n(n−1) and u is an integer parameter.

Proof. The algorithm, denoted as SHR-Two, is described as follows.
Algorithm SHR-Two
Input: M , an n×m matrix M of SNP fragments.

u, a parameter to control the loop.
Output: two haplotypes H1 and H2.

Let dmin =∞ and M = ∅.
For (k = 1 to u) do //the k-loop

Let M1 = M2 = ∅ and d1 = d2 = 0.
Randomly select two fragments r1 = M [i1], r2 = M [i2] from M

For every fragment r′ from M do
If (diff(ri, r′) = min{diff(r1, r′), diff(r2, r′)} for i = 1 or 2

then put r′ into Mi.
Let di = max{diff(ri, r′)|r′ ∈Mi} for i = 1, 2.
Let d = max{d1, d2}.
If (d < dmin) then let M = {M1,M2} and dmin = d.

return H1 = vote(M1) and H2 = vote(M2).
End of Algorithm
Claim 3. With probability at most (1 − γ)u, r1, r2 is not a permutation of a

Fα,β(m,G1) sequence and a Fα,β(m,G2) sequence in all of the k-loop iterations.
Let Ni be the set of the ni fragments in M that are Fα1,α2(m,Gi) sequences,

i = 1, 2.
Claim 4. With probability at most 4ne−

ε2βm
3 , diff(Gi, S) > α1 +ε or holes(S) >

(α2 + ε)m for some S from Ni for some i = 1 or 2; or diff(S1, S2) ≤ β(1 − 2α1 −
2α2 − 2ε) for some S1 ∈ N1 and some S2 ∈ N2.

Claim 3 follows from simple counting. Claim 4 follows from Lemmas 3.3 and 3.5.
Claim 5. Let H1 = vote(M1) and H2 = vote(M2) be the two haplotypes re-

turned by the algorithm. With probability at most (1− γ)u + 4ne−
ε2βm

3 , M1,M2 is
not a permutation of N1, N2.

We assume that (1) diff(S1, S2) > β(1 − 2α1 − 2α2 − 2ε) for every S1 from N1

and every S2 from N2; and (2) diff(Gi, S) ≤ α1 + ε and holes(S) ≤ (α2 + ε)m for
all S ∈ Ni for i = 1, 2. We consider possible choices of the two random fragments
r1 and r2 in the following.
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At any iteration of the k-loop, if r1 ∈ N1 and r2 ∈ N2, then by (2) we have
diff(r1, r′) ≤ diff(r1, G1) + diff(r′, G1) ≤ 2(α1 + ε) for any r′ ∈ N1; and diff(r2, r′) ≤
diff(r2, G2)+diff(r′, G2) ≤ 2(α1 +ε) for any r′ ∈ N2. By (1) and the given condition
of the theorem, we have, diff(r1, r′) > β(1 − 2α1 − 2α2 − 2ε) > 2(α1 + ε) for any
r′ ∈ N2; and diff(r2, r′) > β(1− 2α1 − 2α2 − 2ε) > 2(α1 + ε) for any r′ ∈ N1. This
implies that at this loop iteration we have M1 = N1,M2 = N2 and d ≤ 2(α1 + ε).
Similarly, if at this iteration r1 ∈ N2 and r2 ∈ N1, then M1 = N2,M2 = N1 and
d ≤ 2(α1 + ε).

If r1, r2 ∈ N1 at some iteration of the k-loop, then for any r′ ∈ N2, either r′ ∈M1

or r′ ∈M2. In either case, by (1) of our assumption and the given condition of the
theorem, we have d ≥ β(1− 2α1− 2α2− 2ε) > 2(α1 + ε) at this iteration. Similarly,
if r1, r2 ∈ N2 at some iteration of the k-loop, then we also have d > 2(α1 + ε) at
this iteration.

It follows from the above analysis that, under the assumption of (1) and (2),
once we have r1 ∈ N1 and r2 ∈ N2 or r1 ∈ N2 and r2 ∈ N1 at some iteration of
the k-loop, then M1, M2 is a permutation of N1, N2 at the end of this iteration.
Furthermore, if M1 and M2 are replaced by M ′1 and M ′2 after this iteration, then
M ′1,M

′
2 must also be a permutation of N1, N2. By Claims 3 and 4, with probability

at most (1− γ)u + 4ne−
ε2βm

3 , the assumption of (1) and (2) is not true, or r1 ∈ N1

and r2 ∈ N2 (or r1 ∈ N2 and r2 ∈ N1) is not true at all the iterations of the k-loop.

Hence, with probability at most (1 − γ)u + 4ne−
ε2βm

3 , the final list of M1 and M2

returned by the algorithm is not a permutation of N1, N2, so the claim is proved.
For M1 and M2 returned by the algorithm, we assume without loss of generality

Mi = Ni, i = 1, 2. By Lemma 3.6 and the given condition of the theorem, with

probability at most 2me−
ε2n1

2 + 2me−
ε2n2

2 , we have H1 = vote(M1) 6= G1 or H2 =

vote(M2) 6= G2. Thus, by Claim 6, with probability at most (1− γ)u + 4ne−
ε2βm

3 +
4me−

ε2n
2 , we have H1 6= G1 or H2 6= G2.

It is easy to see that the time complexity of the algorithm is O(umn), which is
linear in the size of M .

6. Tuning the Dissimilarity Measure

In this section, we consider a different dissimilarity measure in algorithm SHR-
TWO to improve its ability to tolerate errors. We use the sum of the differences
between ri and every fragment r′ ∈Mi, i = 1, 2, to measure the dissimilarity of the
fragments in Mi with ri. The new algorithm SHR-Three is given in the following.
We will present experimental results in Section 7 to show that algorithm SHR-Three
is more reliable and robust in dealing with possible outliers in the data sets.

Algorithm SHR-Three
Input: M , an n×m matrix of SNP fragments.

u, a parameter to control the loop.
Output: two haplotypes H1 and H2.
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Let dmin =∞ and M = ∅.
For (k = 1 to u) do //the k-loop

Let M1 = M2 = ∅ and d1 = d2 = 0.
Randomly select two fragments r1 = M [i1], r2 = M [i2] from M

For every fragment r′ from M do
If (diff(ri, r′) = min{diff(r1, r′), diff(r2, r′)} for i = 1 or 2

then put r′ into Mi.
Let di =

∑
r′∈Mi

diff(ri, r′) for i = 1, 2.
Let d = max{d1, d2}.
If (d < dmin) then let M = {M1,M2} and dmin = d.

return H1 = vote(M1) and H2 = vote(M2).
End of Algorithm

Theorem 6.1. Assume that α1, α2, β, and ε > 0 are small positive constants that
satisfy 2α1 + 2α2 + 2ε < 1, 0 < 2α1 + α2 − ε < 1, η > 2(α1+ε)

β(1−2α1−2α2−2ε) with

η = min(n1,n2)
2n , and β(1 − 2α1 − 2α2 − 2ε) > 2(α1 + ε). Let G1, G2 ∈ Σm1 be the

two unknown haplotypes such that diff(G1, G2) ≥ β. Let M be any given n × m

matrix of SNP fragments such that M has ni fragments that are Fα1,α2(m,Gi)
sequences, i = 1, 2, and n1 + n2 = n. Then, there exists an O(umn) time algorithm
that can find two haplotypes H1 and H2 with probability at least 1 − (1 − γ)u −
4ne−

ε2βm
3 − 2me−

ε2n1
2 − 2me−

ε2n2
2 such that H1, H2 is a permutation of G1, G2,

where γ = n1n2
n(n−1) and u is an integer parameter.

The proof of Theorem 6.1 is omitted due to space limit.

7. Experimental Results

We have tested both the accuracy and the speed of algorithm SHR-Three. Due to
the difficulty of getting real data from the public domain,8 our experiment data is
created following the common practice in literature.3,8 A random matrix of SNP
fragments is created as follows: (1) Haplotype 1 is generated at random with length
m (m ∈ {50, 100, 150}). (2) Haplotype 2 is generated by copying all the bits from
haplotype 1 and flipping each bit with probability β (β ∈ {0.1, 0.2, 0.3}). This
simulates the dissimilarity rate β between two haplotypes. (3) Each haplotype is
copied n

2 times so that the matrix has m columns and n(n ∈ {10, 20, 30}) rows.
(4) Set each bit in the matrix to - with probability α2 (α2 ∈ {0.1, 0.2, 0.3}). This
simulates the incompleteness error rate α2 in the matrix. (5) Flip each non-empty
bit with probability α1(α1 ∈ {0.01, 0.02, ..., 0.1}). This is the simulation of the
inconsistency error rate of α1.

Due to space limit, we present only one table to show the performance of al-
gorithm SHR-Three with different parameter settings in accordance with those in
(Panconesi and Sozio).8 The typical parameters used there are m = 100, n = 20, β =
0.2, α2 = 0.2 and 0.01 ≤ α1 ≤ 0.05. These are considered to be close to the real sit-
uations. The computing environment is a PC machine with a typical configuration
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of 1.6GHz AMD Turion 64X2 CPUs and 1GB memory.

Table 1. Results for m = 100, β = 20%, α2 = 20%

n = 10 n = 30

α1 (%) Time (ms) Reconstruction Rate (%) Time (ms) Reconstruction Rate (%)

1 2.444 99.91 4.744 100.00

2 2.568 99.78 5.046 100.00

3 2.674 99.58 5.261 100.00

4 2.774 99.36 5.605 99.99

5 2.851 99.01 6.045 100.00

6 2.925 98.60 6.302 99.97

7 3.028 98.03 6.567 99.96

8 3.121 97.54 6.870 99.85

9 3.213 96.81 7.307 99.70

10 3.314 95.85 7.635 99.56

The software of our algorithms is available for public access and for real-time
on-line demonstration at http://fpsa.cs.uno.edu/HapRec/HapRec.html. We thank
Liqiang Wang for implementing the programs in Java and setting up this web site.
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