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We have developed a generic framework for combining introns from genomicly aligned
expressed–sequence–tag clusters with a set of exon predictions to produce alternative
transcript predictions. Our current implementation uses ASPIC to generate alterna-
tive transcripts from EST mappings. Introns from ASPIC and a set of gene predictions
from many diverse gene prediction programs are given to the gene prediction combiner
GenePC which then generates alternative consensus splice forms. We evaluated our
method on the ENCODE regions of the human genome. In general we see a marked
improvement in transcript-level sensitivity due to the fact that more than one transcript
per gene may now be predicted. GenePC, which alone is highly specific at the transcript
level, balances the lower specificity of ASPIC.
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1. Introduction

1.1. Gene Prediction Combiners

The computational integration of multiple gene predictions into one unified or

consensus prediction has increasingly become the first-pass annotation of choice

for newly sequenced genomes. Examples of such programs are EuGène,1 GAZE,2

GLEAN, JIGSAW,3 Genomix4 and even the Ensembl pipeline.5 These programs

are popular because they perform a task that human annotators usually begin with

— examining multiple predictions and looking for consensus. Of course, human

annotators have the ability to look at all sources of information including, but

not limited to, CpG islands, putative promoter elements, protein domain integrity,

protein family conservation, genome integrity, and literature references. Neverthe-
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less, the primary tools continue to be a combination of ab initio, homology-based,

and expressed sequence tag (EST)/cDNA-based gene prediction. In this area, gene

combiners are already demonstrating their utility. In the future perhaps combiners

will be able to incorporate even more diverse sources of information such as those

mentioned above.

1.2. Diversity Combiners and Wise Crowds

Because gene prediction combiners take advantage of the diversity of input, they

can be considered a class of diversity combiner.6 Diversity combiners used in the

wireless telecommunication arena are effective at canceling out noise when receiving

multiple independent inputs. The most effective of these are called maximal-ratio

combiners; these combiners use a weighted sum of their inputs where the weight

is based on their signal–to–noise ratio. We reasoned that a similar approach might

help in integrating multiple gene predictions. Additionally, we tried to enforce the

following four principles of collective wisdom:7

(1) Diversity of opinion — Input gene predictors should represent a diversity of

algorithms.

(2) Independence — Input gene predictors should not be influenced by each others’

predictions.

(3) Decentralization — Predictors should be able to specialize and draw upon local

private knowledge.

(4) Aggregation — Some mechanism must exist to combine the predictions.

Our gene prediction combiner, GenePC, constructs a consensus prediction using

the principle that exons co-predicted by diverse input prediction algorithms are more

likely to be real. By explicitly correcting for correlated input, GenePC corrects for

lack of diversity and interdependence. This procedure also takes the guesswork out

of choosing which gene predictions to combine.

Decentralization is normally not an issue. However, when one organization is in

charge of annotating a genome, it tends to run a set of gene prediction programs

using the same set of aligned expressed sequence or proteins or, if using comparative

genomics, they tend to use the same genomes for comparison. Likewise, when a

gene annotation assessment project is undertaken (GASP,8 EGASP,9 nGASP), the

allowed input and allowed training sets are usually fixed. Of course, this allows a

fair assessment of individual gene predictors; however, in principle it should have a

negative effect on the performance of gene prediction combiners.

The method we present here is an aggregation method that explicitly corrects

for lack of diversity and independence among all pairs of inputs. Additionally, we

correct for over-aggregation. A problem for consensus building is the special case in

which more than one solution is correct. This is particularly relevant to gene predic-

tion, where a gene can code for more than one alternative transcript. Our method
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reintroduces high-quality transcript evidence during the last step of aggregation to

guide the division of a single consensus into multiple likely consensus transcripts.

1.3. Alternative Splicing Prediction

The annotation of multiple alternative splice forms has been a stumbling block for

both the standard class of gene predictors and for combiners. Programs that are

successful at alternative transcript prediction are in general those that use expressed

sequence tag (EST) or mRNA evidence (a notable exception is the latest version of

Augustus,10 which is able to output multiple transcripts per loci in the absence of

expressed sequence evidence.) Many such programs, including ASPIC, rely only on

transcript mapping and often output incomplete transcripts. EuGène is one of the

first gene predictors/combiners to output full-length alternative transcripts using

often incomplete transcript evidence. Our approach is similar in spirit to that of

EuGène, but in implementation there are many differences. The most obvious of

which is our use of ASPIC,11 a software tool for Alternative Splicing PredICtion,

to drive the construction of alternative gene models by GenePC.

2. Methods

Before we begin we must mention one caveat. Although more and more programs

are predicting UTR segments of genes by using mRNA and EST evidence, we have

decided to restrict ourselves to only the the coding segments (CDS) of genes as

these are the most reliably predicted features of protein-coding genes. As such we

will naturally not be able to annotate the variation in splicing of UTR sequence

which actually represents a significant proportion of alternative splicing.

2.1. Approach

Our aggregation method combines ASPIC CDS predictions with GenePC, an ex-

tended version of GeneID12 which combines gene predictions at the level of exact

exons based on diversity and performance. Such a combination allows multiple con-

sensus transcripts to be predicted per locus, depending on the number of mutually

incompatible sets of introns inferred from the EST alignments.

Our method involves three steps. In the first step, we run GenePC using all

available gene predictions on a genome or subset of the genome. GenePC scores every

uniquely predicted exon as a function of the set of gene predictors that predicted

it. We calculate an Exon Score S which is given by

S = α

n
∑

i=1

Sinorm
+β

n
∑

i=1

n
∑

j=1

j 6=i

(
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SNetij + SPetij

2

)
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n
∑
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(1)
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where Sinorm
is the Z-score normalized exon score provided by program i and SNet

and SPet are the exon-level sensitivity and specificity, respectively, of program i

against program j or program i against the annotation a. The weighting parameters

α, β and γ can be optimized for a particular combination of gene predictions and

genomes. The coefficients x and y are adjusted to give more weight to sensitivity

or specificity of a gene prediction program. We generally set x = 0.25 and y = 0.75.

The parameters for First, Internal, Terminal and Single exon types are optimized

independently using a training set of confirmed genes within the prediction region

or on a separate set. If no annotation is available, performance values can either be

estimated from the literature or γ may be set to zero. A graphical overview of this

procedure is shown in Figure 1.
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Fig. 1. Schematic of GenePC prediction aggregation using Diversity (distance between programs)
and Performance (Accuracy against the annotation). Self-reported exon scores are not used (α =
0.) In practice, we use a pairwise distance matrix rather than the phylogram shown here.

In the second step, we run the alternative splicing prediction program ASPIC,

which is freely available at http://t.caspur.it/ASPIC/, with a set of ESTs aligned

to the genome. We perform an initial alignment of ESTs to the genome with the

program GMAP.13 The ESTs are then clustered based on the sharing of at least

one splice site (a fuzzy clustering methods that we developed allows for small shifts
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in intron position due to spliced alignment error) and then each cluster is given

to ASPIC. ASPIC then performs a multiple genome-EST alignment optimized for

producing a set of transcripts with a minimal number of exons.11,14 The longest

open reading frame is then determined for each transcript output by ASPIC and

overlapping CDS spans are assigned to different compatibility groups or bins. The

number of bins is determined by the locus with the largest number of alternative

transcripts. For loci with less than the maximum number of alternative transcripts,

CDS spans are reassigned to empty bins so that we maximally cover the genome with

the available evidence. Finally, for use in the next step, we convert the transcript

data into sets of introns in GFF format for input into GenePC.

In the final step, we use the dynamic programming algorithm genamic15 as

implemented in GeneID to chain together the highest scoring set of exons from

each intron compatibility set generated in the previous step. Only the introns from

ASPIC are provided to GenePC so that exons not predicted by any gene predictor

will not contribute to the final gene models. This feature is made possible in version

1.3 of GeneID, freely available at http://genome.imim.es/software/geneid/, which

has been modified to use introns as evidence but will not output a gene model if

no exons are present. In the last step, redundant transcripts are removed from the

combined predictions of each run of GeneID.

3. Results

3.1. Training and Test Sets

We evaluated our method on the ENCODE16 regions using 14 sets of gene predic-

tions submitted to the EGASP competition.9 The EGASP competition solicited

gene predictions on the 44 ENCODE regions encompassing 1% of the human

genome. Training was allowed on 13 of these regions. We trained GenePC on these

same 13 regions, obtaining performance (prediction vs. annotation) and distance

(prediction vs. prediction) values separately for First, Internal, Terminal and Sin-

gle exons. Self-reported exon scores were not used since this information was not

provided for all inputs. Input predictions included all non-combiner programs that

predicted complete gene structures, thus excluding Spida and JIGSAW.

The set of ESTs used by the HAVANA team to annotate the ENCODE regions

were downloaded from Genbank and aligned to the genome with GMAP. They were

clustered based on shared splice junctions and given as input to ASPIC. The result-

ing transcripts (some of which are full-length but many of which are partial) were

distributed into the minimal number of internally compatible sets of transcripts. In

this case, the locus with the largest number of alternative incompatible transcripts

was 12. Therefore, we were required to run GeneID twelve times on the ENCODE

regions, each time using the same set of GenePC-scored non-redundant exons and

a different set of ASPIC introns.

We evaluated ASPIC-GenePC predictions and all input predictions against the

March 2007 Gencode17 human ENCODE gene annotation release using the pro-
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Table 1. Transcript-level performance.

Category Program SNt SP t (SNt + SPt)/2

Ab initio GeneID 0.03 0.04 0.04

Exonhunter 0.06 0.03 0.05

Genemark 0.05 0.04 0.05

AugustusAbinitio 0.13 0.16 0.15

Multi-genome Sgp2 0.05 0.04 0.05

Twinscan 0.10 0.08 0.09

AugustusDual 0.15 0.17 0.16

N-SCAN 0.21 0.35 0.28

EST/Protein and Pipelines Ensembl 0.25 0.24 0.25

AugustusAny 0.27 0.34 0.31

AugustusEst 0.27 0.36 0.32

Fgenesh 0.43 0.38 0.41

Exogean 0.51 0.43 0.47

Pairagon-N-SCAN 0.51 0.46 0.49

ASPIC CDS 0.63 0.37 0.50

Combiners JIGSAW 0.42 0.63 0.53

GenePC 0.41 0.65 0.53

ASPIC-GenePC 0.65 0.51 0.58

Note: All predictions except for ASPIC CDS, GenePC and ASPIC-GenePC pre-
dictions correspond to EGASP submissions downloaded from the UCSC genome
browser.

gram evaluation.pl (Eduardo Eyras, personal communication) which takes into

account alternative transcripts in both the annotation and predictions. Only full-

length known and putative Gencode genes were used for evaluation.

3.2. Evaluation

We evaluated ASPIC-GenePC using a large number of measures including sensitiv-

ity and specificity at the level of nucleotides, exons, transcripts and genes (see Tbl.

1). JIGSAW and GenePC outperform all other predictors in nearly every category

(results not shown). We believe the most significant result is the accuracy at the

transcript level. GenePC and JIGSAW already perform quite well in predicting ex-

act transcripts. Further gains in transcript-level sensitivity are realized when EST

evidence is used to guide alternative best predictions. We observed an average 5%

gain in accuracy. This is a combination of a 24% gain in sensitivity and 14% loss in

specificity. ASPIC-GenePC predicts 466 of 719 Gencode-annotated transcripts in

381 of 397 genes. This is in contrast with the 295 transcripts predicted correctly by

GenePC alone.
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Table 2. Evaluation at gene, transcript, exon, intron and nu-
cleotide levels.

JIGSAW GenePC ASPIC CDS ASPIC-GenePC

SNg 0.96 0.94 0.84 0.96

SPg 0.82 0.83 0.69 0.78
SNt 0.42 0.41 0.63 0.65

SPt 0.63 0.65 0.37 0.51
SNe 0.88 0.88 0.87 0.93

SPe 0.84 0.86 0.75 0.80
SNet 0.93 0.96 0.84 0.94
SPet 0.93 0.97 0.95 0.92
SNi 0.88 0.86 0.89 0.95

SPi 0.85 0.86 0.87 0.82
SNit 0.93 0.95 0.85 0.95

SPit 0.94 0.96 0.96 0.93
SNn 0.95 0.94 0.81 0.96

SPn 0.86 0.87 0.85 0.85
SNnt 0.95 0.97 0.86 0.96
SPnt 0.96 0.98 0.97 0.95

Note: SN indicates sensitivity. SP indicates specificity. Gene (g),
transcript(t), exon(e), intron(i) and nucleotide(n) levels were as-
sessed. For each exon, intron and nucleotide, we evaluated against
the set of projected unique predicted features to the projected
unique annotated features. We also compared the features of a
predicted transcript to the features of the annotated transcript
with the highest overlap (best hit), denoted by the suffix t. Gene
sensitivity is defined as any exonic overlap.

For comparison, we also show the performance of JIGSAW, ASPIC, GenePC

and ASPIC-GenePC at the exon and nucleotide levels in Table 2. It is interesting to

note that with the addition of ASPIC introns, sensitivity increases and specificity

decreases in almost every level compared with GenePC alone or with JIGSAW.

4. Discussion

The phenomenon of alternative splicing continues to represent a challenge to ab

initio gene prediction. Two approaches to the problem have generally been taken in

the past: (a) output of suboptimal predictions and (b) output of multiple transcripts

supported by mutually incompatible evidence. We have taken the latter approach

as it is straightforward and is backed by strong evidence of transcription. However,

this does not preclude the use of a combiner to gather a consensus on how many

alternative transcripts exist for a particular gene and output that number of tran-

scripts, without relying on another source of evidence. We have not moved in this

direction yet, considering most ab initio predictors have yet to produce more than

one transcript per locus.

Nevertheless, using our straightforward EST-driven approach, we were struck

by the 24% gain in transcript sensitivity over GenePC alone that is conferred by

ASPIC-guided alternative transcript prediction. Part of this gain was offset by a
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decrease in specificity. However, the number of additional genes predicted was not

dramatic (28 new genes, 9 of which are annotated), meaning that the majority of

the 171 new transcripts predicted are alternative transcripts of known loci. While all

of them by definition have some level of EST support, many may actually be partial

or non-coding transcripts predicted by ASPIC. Since the corresponding transcripts

have been filtered out of the annotation, these predictions demonstrate themselves

as false positives.

The success of our aggregation method is likely due to the high sensitivity of

ASPIC in predicting reliable transcripts. ASPIC in fact has been mainly designed to

perform a multiple alignment of ESTs to a genomic sequence based on the combined

analysis of all available expressed sequence tags. Moreover, it refines the exon-intron

boundaries by an appropriate dynamic programming module and generates the most

likely transcripts using a new algorithm based on graph theory. However, where

ASPIC fails to find exons or genes, GenePC can fill in the gaps. Furthermore,

where ASPIC predicts transcripts with exons not present in the combined set of

input gene predictions to GenePC, no transcripts are predicted.

The general framework we have outlined — dividing transcript evidence into

compatible sets and providing them as intron evidence for exon structure assembly

— should be extensible to nearly any gene prediction method that directly takes

EST/cDNA evidence or external constraints such as introns, as we have used here.

While substantial gains in accuracy from the incorporation of expression evidence

would be expected (and have been demonstrated) for de novo or ab initio gene

predictors, the enhanced performance of a combiner was not anticipated. In theory

the expressed sequence evidence is already used by at least several input methods,

making its re-introduction redundant. However, combiners such as GenePC are

afflicted with the same problem faced by traditional gene finders: they output only

the optimal gene model. Thus, the enhancement we observe is acheived by essentially

unflattening the consensus gene model determined by GenePC into multiple models

that maximally represent the transcript evidence. Incompatibilities among ESTs are

not ignored but are, if they are of sufficient quality, utilized to their full diagnostic

potential.

In the future, we anticipate an increased focus on alternative transcript predic-

tion. While we currently have to rely on the crutch of EST and cDNA sequences,

advances in our understanding of the regulation of alternative splicing may allow

the prediction of alternative transcripts based on knowledge of the critical factors

present and active, for example, in particular cell-types or at particular developmen-

tal stages or in response to particular external stimuli. We suggest that our iterative

approach in conjunction with an evidence combiner would be equally applicable in

this context.
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