
October 2, 2007 19:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc050a

1

A fixed-parameter approach for Weighted Cluster Editing

S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß

Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2,
07743 Jena, Germany, E-mail:{boecker, m2brse, bui, truss}@minet.uni-jena.de

Clustering objects with respect to a given similarity or distance measure is a problem often encountered
in computational biology. Several well-known clustering algorithms are based on transforming the
input matrix into a weighted graph although the resulting WEIGHTED CLUSTER EDITING problem is
computationally hard: here, we transform the input graph into a disjoint union of cliques such that the
sum of weights of all modified edges is minimized.
We present fixed-parameter algorithms for this problem which guarantee to find an optimal solution in
provable worst-case running time. We introduce a new data reduction operation (merging vertices) that
has no counterpart in the unweighted case and strongly cuts down running times in practice. We have
applied our algorithms to both artificial and biological data. Despite the complexity of the problem,
our method often allows exact computation of optimal solutions in reasonable running time.

1. Introduction

Suppose we are given an undirected graph G = (V,E), and for every tuple {u, v} ∈
(
V
2

)
we are also given a weight that tells us the cost of deleting {u, v} from G in case {u, v} ∈
E, or inserting {u, v} into G in case {u, v} /∈ E. Now the WEIGHTED CLUSTER EDITING

problem is defined as follows: Transform G into a transitive graph, that is, a disjoint union
of cliques, by applying a set of edge modifications with minimum total weight.

The problem of clustering objects according to given similarity or distance values can
be found in many areas of computational biology, such as finding families of orthologous
genes,1 or analyzing gene expression data for tissue classification.2,3 We want to partition
these objects into homogeneous and well-separated subsets. In graph theoretical terms, the
objects to be clustered are the vertices V of the graph, and a clustering is a disjoint union of
cliques. We can transform our input matrix into a weighted graph using a simple threshold,
or a stochastic model and log odds.2,4 For perfect data, the resulting graph is a disjoint
union of cliques. But for biological data the input graph is “corrupted”, and we have to
clean (edit) this graph under the parsimony criterion to reconstruct the best clustering.2,5

Unlike other clustering techniques, WEIGHTED CLUSTER EDITING does not make any
prior assumptions on the number of clusters or their structure.

The WEIGHTED CLUSTER EDITING problem is NP-hard because it generalizes the un-
weighted case.6 In recent years, many heuristics were developed for this problem. In par-
ticular, the well-known clustering algorithms CAST, HCS, and CLICK build on its graph-
theoretic intuition: CAST4 tries to find the optimal solution with high probability, while
both HCS7 and CLICK2 greedily use minimal cuts to find an approximate solution. In a

October 2, 2007 19:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc050a

2

recent article8 we have compared our simple branching strategy (Sec. 4) with two heuristic
approaches on biological and random data. To the best of our knowledge, this is the first
time a fixed-parameter approach for WEIGHTED CLUSTER EDITING has been proposed.

There exist a variety of results regarding the unweighted CLUSTER EDITING problem.5

A fixed-parameter algorithm runs in time O(2.27k +|V |3) where k is the minimum number
of edge modifications.9 In theory, the best algorithm known for the problem has running
time O(1.92k + |V |3),10 but this algorithm uses very complicated branching rules and has
never been implemented. See Niedermeier11 for a recent monograph on fixed-parameter
algorithms.

Our contributions. In this paper, we present data reduction rules for WEIGHTED CLUS-
TER EDITING that are nontrivial extensions of the unweighted case. In particular, we
present a new data reduction technique of “merging vertices” that has no counterpart for
unweighted graphs. This technique drastically improves the running time of our algorithms
in practice. We also show that our data reduction leads to a problem kernel of size O(k2).

We then adopt the O(3k) branching strategy from Gramm et al.9 for WEIGHTED CLUS-
TER EDITING: the resulting algorithm runs in time O(3k + |V |3 log |V |) if every edge dele-
tion or insertion has cost at least 1. Furthermore, we provide a strategy with running time
O(2.42k + |V |3 log |V |), roughly following the refined branching strategy in Gramm et al.9

Given an arbitrary instance of the problem with fixed k, these algorithms are guaranteed to
find an optimal solution with cost at most k or return that no such solution exists. Minimum
edit costs are only required to achieve a provable running time.

We have applied both branching strategies to biological and simulated graph instances.
We found that without merging vertices, the O(2.42k) strategy outperforms the O(3k) strat-
egy, as expected. But if we merge vertices, both strategies become significantly faster and,
in particular, the O(3k) strategy consistently outperforms the O(2.42k) strategy. We con-
jecture the discrepancy between theoretical and practical running times to be an indication
for the power of our merging technique. Finally, we report preliminary results of applying
our method to gene expression data for tissue classification.

2. Preliminaries

For brevity, we use uv as shorthand for an unordered pair {u, v} ∈
(
V
2

)
. We assume a

problem instance to be given in the form of a weight function s :
(
V
2

)
→ R: For s(uv) > 0

an edge uv is present in the graph and has deletion cost s(uv), while for s(uv) ≤ 0 the
edge uv is absent from the graph and has insertion cost −s(uv).

If all connected components of a graph G are cliques, this graph is called transitive.
If we modify a graph G to obtain a graph G′ which is transitive, we call G′ a clustering
of G. It is graph theory folklore that a graph G is transitive if and only if there are no three
vertices which induce a 2-path in G. To this end, we call vuw a conflict triple in G if uv

and uw are edges of G but vw is not.
When given an input graph G, we first identify its connected components. As it never

makes sense to connect two components in a clustering, we calculate the best solutions for
all components separately and sum up the costs to obtain the total cost for G.

October 2, 2007 19:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc050a

3

Beside the input graph G, our fixed-parameter algorithms also require a cost limit k. In
order to find an optimal solution, we call the algorithm repeatedly, starting with k = 1. If
we did not find a solution with this value, we increase k by 1, call the algorithm again and
so forth. Note that for real-valued edge weights, we have to traverse the complete search
tree and find the best solution with cost at most k, if any. If we can decide in O(ck) time if
there is a solution with cost at most k, the above procedure to find an optimal solution of
cost at most k can also be executed in O(ck) time.

To obtain provable running times, we assume that all edges have edit costs of at least 1.
There cannot be a fixed-parameter algorithm solving WEIGHTED CLUSTER EDITING

problem with arbitrarily small edit costs unless P = NP.

Comment. With such an algorithm we can solve the NP-complete unweighted CLUSTER

EDITING problem in polynomial time by assigning uniform edit costs of 1
k to all edges of

the input graph and searching for a solution of cost 1.

3. Data reduction

In the beginning of our algorithm and in each search node, we call the following data
reduction routines in order to downsize the input graph as much as possible.

Rule 1: Remove cliques. Remove already existing cliques from the input graph.

Rule 2: Check for unaffordable edge modifications. For each set of two vertices u, v

from V , we calculate a lower bound for the costs induced when uv is set to “permanent”
or “forbidden”, e.g. when the respective edge is modified. Let N(v) := {u | s(uv) > 0}
denote the set of neighbors of a vertex v, and let A4B be the symmetric set difference of
sets A and B. We define induced costs icf (uv) and icp(uv) for setting uv to “forbidden”
or “permanent”, respectively:

icf (uv) =
∑

w∈N(u)∩N(v)

min{s(uw), s(vw)}

icp(uv) =
∑

w∈N(u)4N(v)

min{|s(uw)|, |s(vw)|}
(1)

This is how we make use of these values:

• For all u, v ∈ V where icf (uv) > k: Insert uv if necessary, and set uv to “perma-
nent” by assigning s(uv)← +∞.

• For all u, v ∈ V where icp(uv) > k: Delete uv if necessary, and set uv to “for-
bidden” by assigning s(uv)← −∞.

If there is a pair uv such that both conditions hold simultaneously, the problem instance
is not solvable.

Remark. The above conditions do not take into account edit cost of the edge uv itself. For
implementation, we test whether max{0, s(uv)} + icf (uv) > k or max{0,−s(uv)} +
icp(uv) > k holds. We disregard this subtlety for the sake of readability.

October 2, 2007 19:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc050a

4

u v

w

u′

w

u v

w

u′

w

u v

w

u′

w

u v

w

u′

w

(a) (b) (c) (d)

c1 > c2 c1 ≤ c2pay c2 pay c1

c1 c2

c1 + c2

c1 c2

c1 + c2

c1 c2

c1 − c2

c1 c2

c2 − c1

Figure 1. Merging two vertices u, v into a new vertex u′: Let c1 = |s(uw)|, c2 = |s(vw)| be the edit costs.
Dotted edges are nonexistent.

Rule 3: Merge vertices incident to permanent edges. As soon as we set an edge uv to
“permanent”, we infer that u and v must be in the same clique in every solution. In this
case we merge u and v creating a new vertex u′.

If w is a neighbor of both u and v, we create a new edge u′w whose deletion costs
as much as the deletion of both uw and vw. If w is neither a neighbor of u nor of v,
we calculate the insertion cost of the nonexistent edge u′w analogously. In case w is a
neighbor of u or v but not both, uvw or vuw is a conflict triple, and we must decide
whether we delete the edge connecting w with u or v, or we insert the nonexistent edge.
By summing the weights (one of which is negative) to calculate s(u′w) we carry out the
cheaper operation decreasing k accordingly, and maintain the possibility to edit u′w later.

This is how we merge u and v into a new vertex u′: For each vertex w ∈ V \ {u, v} set
s(u′w) ← s(uw) + s(vw). Let k ← k − icp(uv), and delete u and v from the graph. See
Fig. 1. Note that these reduction rules conserve the optimal solution.

To start our data reduction, we have to compute icf (uv) and icp(uv) for all u, v ∈ V

what takes O(|V |3) time. Setting an edge to “forbidden” or “permanent” can reduce the
parameter k because we might have to delete or insert an edge. If we merge a permanent
edge, this can further reduce the parameter. This, in turn, may trigger other edges to become
forbidden or permanent. In addition, setting an edge to “forbidden” or “permanent” will
change the induced costs of other edges. We now show how to execute our data reduction
for an arbitrary input graph in time O(|V |3 log |V |).

Let n := |V |. The induced costs icf (uv) and icp(uv) for each vertex pair u, v ∈ V can
be computed in O(n) time. Therefore it initially takes O(n3) time to compute the induced
costs of all u, v ∈ V . Note that during the data reduction, at most

(
n
2

)
edges will be set to

“forbidden”, and at most n − 1 merge operations are executed before the graph collapses
into a single vertex. For each u ∈ V we use a binary heap to store all icf (uv) and another
binary heap to store all icp(uv) for v ∈ V . This allows us to find maxv{icf (uv)} and
maxv{icp(uv)} for each u ∈ V in constant time.

We repeatedly do the following: Using maxw{icf (uw)} and maxw{icp(uw)} for each
u ∈ V , we find the overall maximum icf and icp value in time O(n). We test if there
exist u, v ∈ V with icf (uv) > k or icp(uv) > k. If no such u, v exist, we stop. Other-
wise, we set the corresponding edge to “forbidden” or “permanent”, we update parameter
k ← k − |s(uv)| and also the heaps for icf and icp values as described below. The running

October 2, 2007 19:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc050a

5

time of this part of the algorithm is O(n3 log n).
Setting an edge uv to “forbidden” affects the values icf (ux), icf (vx), icp(ux), and

icp(vx) for all vertices x ∈ V . We concentrate on updating icf (ux), the other updates
can be executed similarly. Let s0 be our weight function before the update and s1 after
the update, then these functions agree except for s0(uv) 6= s1(uv) = −∞. Analogously,
let icf 0(ux) and icf 1(ux) denote “induced costs forbidden” of the tuple u, x before and
after the update, respectively. If s0(uv) ≤ 0 then no edge is deleted and we see from (1)
that icf 1(ux) = icf 0(ux) must hold. A similar argument resolves the case s0(xv) ≤ 0.
If s0(uv) > 0 and s0(xv) > 0 then u, v as well as x, v were adjacent in the initial graph
and icf 1(ux) = icf 0(ux)−min{s0(uv), s0(xv)}must hold. Clearly, computing icf 1(ux)
takes constant time. Updating all affected icf values and all binary heaps takes O(n log n)
time: In case we have to decrease a key we can remove the corresponding entry from the
heap in time O(log n) and reinsert a new entry also in time O(log n). Because every edge
can be set to “forbidden” at most once, and since there are O(n2) many edges, all updates
induced from setting edges to “forbidden” take total time O(n3 log n).

When we set an edge uv to “permanent”, the data reduction merges u, v into a new
vertex u′ and deletes u, v from the graph. We iterate over all vertices w ∈ V and first
compute s(u′w)← s(uw)+s(vw) as well as icf (u′w) and icp(u′w) using (1). Analogous
to the previous paragraph, this affects the values icf (wx) and icp(wx) for all vertices
x ∈ V . For every vertex w, computing icf (u′w), icp(u′w) and updating all heaps takes
time O(n log n), and so does updating the induced costs of all icf and icp values affected
by s(u′w). Hence, merging an edge can be executed in total time O(n2 log n). There can
be at most n − 1 merge operations, so the running time of all merge operations is also
bounded by O(n3 log n). Finally, we can detect and remove all connected components
which are cliques in time O(n2).

The following lemma shows that our data reduction produces a problem kernel as the
size of the resulting graph is polynomial in k. We omit the proof for the sake of brevity.

Lemma 3.1. If every edge deletion or insertion has cost at least 1, then our data reduction
results in a problem kernel with at most 2k2 + k vertices and 2k3 + k2 edges.

4. Initial branching strategy

Given a weighted graph G = (V,E), we now describe a simple recursive algorithm that
is guaranteed to find an optimal solution for WEIGHTED CLUSTER EDITING. Recall that
an undirected graph is transitive if and only if it does not contain a conflict triple. Our
algorithm takes advantage of this observation: Search for a conflict triple, and let u be the
vertex of degree two and v, w be the leaves. For algorithmic reasons, we can set existent
(nonexistent) edges to “permanent” (“forbidden”) by assigning infinite edit costs to them.
Recursively branch into three cases:

(1) Insert vw, set uv, uw, and vw to “permanent”.
(2) Delete uv, set uw to “permanent” and uv and vw to “forbidden”.
(3) Delete uw, set uw to “forbidden”.

October 2, 2007 19:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc050a

6

u

v w

xu

v w

x

u

v w

x

u

v w

xu

v w

x

u

v w

x

u

v w

x

u

v w

x

−1

−2 −3 −3 −2

Figure 2. Case (W2a): Vertices v, w do not share a common neighbor; v has a neighbor x connected with u.

In each branch, we lower k by the insertion or deletion cost required for the executed
operation. If a connected component decomposes into two components, we calculate the
optimum solutions for these components separately. If k falls below zero, we discard the
respective branch of the algorithm. Again, we omit the proof.

Theorem 4.1. If every edge of the weighted graph G = (V,E) has weight of at least one,
the WEIGHTED CLUSTER EDITING problem can be solved in O(3k + |V |3 log |V |) time.

5. Refined branching strategy

In the following, we will refine the simple branching strategy resulting in a search tree
of size O(2.42k), considering induced subgraphs of size 4. Unfortunately, the O(2.27k)
branching strategy of Gramm et al.9 cannot be used in the weighted case because it is based
on an observation (Lemma 5) that does not hold for weighted graphs. We now modify this
branching strategy accordingly.

Note that the automated search tree generator of Gramm et al.10 also found an O(2.42k)
search tree for induced subgraphs of size 4, but the branching strategy is not explicitly
described there. If we consider induced subgraphs of size 5, this results in an O(2.27k)
search tree.10 The latter branching strategy requires case distinction with 20 initial cases and
branching vectors of size at most 16. In comparison, our branching strategy distinguishes
only four initial cases and branching vectors of length five.

Let vuw be a conflict triple as above. We distinguish the following cases:

(W1) Vertices v, w have no neighbors except for u, that is, N(v) = {u} and N(w) = {u}.
(W2) Vertices v, w do not share a common neighbor, but there exists a vertex x such that,

say, vx ∈ E. We distinguish two sub-cases: (W2a) ux ∈ E (see Fig. 2), and (W2b)
ux /∈ E (see Fig. 3).

(W3) Vertices v, w share a common neighbor x 6= u, so vx ∈ E and wx ∈ E. We distinguish
two sub-cases: (W3a) ux ∈ E (see Fig. 2 in Gramm et al.9), and (W3b) ux /∈ E (see
Fig. 3 in Gramm et al.9).

In case (W1) holds, we ignore the conflict triple vuw for the moment, and continue

October 2, 2007 19:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc050a

7

u

v w

xu

v w

x

u

v w

x

u

v w

xu

v w

x

u

v w

x

u

v w

x

u

v w

x

−1

−2 −2 −2 −3

Figure 3. Case (W2b): Vertices v, w do not share a common neighbor; v has a neighbor x not connected with u.

with the next triple. In all other cases, we branch as indicated by Figs. 2, 3 in this article
and Figs. 2, 3 in Gramm et al.9 We describe the branching in detail for case (W2a), see
Fig. 2: Here, edges uv, uw, ux, and vx are present in the induced graph. We branch into
five sub-cases:

• Delete uw and set uw to “forbidden”.
• Set uw to “permanent”, delete uv, ux, and set uv, ux, vw, wx to “forbidden”.
• Insert wx, set uw, ux,wx to “permanent”, delete uv, vx, and set uv, vw, vx to “for-

bidden”.
• Insert vw, set uv, uw, vw to “permanent”, delete ux, vx, and set ux, vx,wx to “for-

bidden”.
• Insert vw, wx and set all six edges to “permanent”.

The branching strategies for case (W2b) can be easily derived from Fig. 3. Regarding
branching strategies for cases (W3a) and (W3b) we refer to cases (C2) and (C3) of Gramm
et al.9

One can easily check that if only conflict triples of type (W1) are present in a connected
graph, this graph is a star graph, that is, a tree where all vertices but one are leaves. It is
straightforward how to quickly find an optimal solution for this case. We omit the details.
The analysis of the refined branching strategy leads to Theorem 5.1.

Theorem 5.1. If every edge of the weighted graph G = (V,E) has a weight of at least one,
then the total running time using our refined branching strategy is O(2.42k + |V |3 log |V |).

6. Experiments and results

To explore the performance of our algorithms for WEIGHTED CLUSTER EDITING and
compare the abovementioned branching strategies, we test both algorithms on the same
artificial and protein similarity datasets we used in Rahmann et al.8 For a given number of
vertices, an artificial instance is generated by first creating a random number of clusters of
random size, then setting edge weights and false edges using a Gaussian distribution. The
probability to see an undesired or missing edge in the resulting graph is about 15 %. The

October 2, 2007 19:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc050a

8

Table 1. Results for artificial data. Each row of the table corresponds to ten instances.

|V | |E| # edit avg. cost avg. edge time 3k time 2.42k no merging
10 11–30 8.30 95.77 24.05 10 ms 11 ms 11 ms
20 65–165 28.10 301.9 24.41 54 ms 56 ms 69 ms
30 138–296 66.70 671.2 23.79 1.0 s 1.9 s 8.3 s
40 251–533 115.5 1238.3 24.30 29 s 52 s 31 min
50 402–821 183.2 1860.0 23.94 7.6 min 28 min > 5 h

Note: ‘# edit’ is the average number of edit operations, ‘avg. cost’ is the average total cost,
‘avg. edge’ is the average cost per edge, and ‘no merging’ is the running time of the 2.42k

branching strategy without merging permanent edges.

random instances can be seen as a worst case scenario, as we expect biological instances to
be closer to a clustering. Our biological instances stem from protein similarity data, gen-
erated using more than 192 000 protein sequences from the COG dataset.12 Edge weights
are computed from log E-values of bidirectional BLAST hits using a threshold of 10−10:
The modification cost of each vertex pair is the difference between the logarithms of the
threshold and the respective proteins’ E-values. In the resulting graph 3964 connected com-
ponents are not transitive, and 3788 of these have up to 100 vertices. See Rahmann et al.8

for more details. Recently, Wittkop et al.13 showed that the Cluster Editing model leads to
valid clusterings when applied to protein similarity data and manages to outperform other
methods.

We implemented the weighted data reduction and both branching strategies in C++. The
results are reported in Tables 1 and 2. Running times were measured on an AMD Opteron-
275 2.2 GHz with 3 GB of memory running SunOS 5.1. For protein similarity data, three
instances with 84, 91, and 98 vertices did not stop after 13 days of computation with either
branching strategy and are omitted from Table 2. Using the O(2.42k) strategy another five
instances did not stop after 13 days of computation. For the O(3k) strategy only 30 out of
3788 instances (0.8 %) had a running time of more than ten minutes. These components
are typically not near transitivity and admit many cheap edge modifications. So, despite
the hardness of the WEIGHTED CLUSTER EDITING problem and the worst-case running
times of our branching strategies, optimal solutions were usually computed in a matter of
minutes. Note that a naı̈ve algorithm using exhaustive enumeration cannot handle instances
with more than, say, 12 vertices.

We want to evaluate whether it pays off in practice to follow a more complicated and
thus time-consuming strategy to obtain a better worst-case running time. Recent experi-
ments by Dehne et al.14 show that on unweighted graphs the O(2.27k) branching is faster
than the O(3k) branching.9 As can be seen in Tables 1 and 2, in our experiments the basic
strategy outperforms the refined branching strategy for all graph sizes, in contrast to the
fact that its worst-case running time is inferior.

One potential cause for this unexpected result is the fact that both strategies immedi-
ately merge permanent edges. To estimate the impact of merging edges, we evaluate both
branching strategies using the same implementation, but we disable merging permanent
edges. Here, the refined strategy is faster than the simple branching strategy, in agreement
with theoretical running times (data not shown). In addition, both algorithms are signifi-
cantly slower than our branching strategies that merge edges, see Table 1.

October 2, 2007 19:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc050a

9

Finally, we report some preliminary results regarding tissue classification using gene
expression data: here, one uses gene expression data to discriminate between similar can-
cer types. We analyzed four datasets from Monti et al.3 where the correct classification
is known: “Leukemia” with 38 samples, “Novartis multi-tissue” with 103 samples, “CNS
tumor” with 42 samples, and “Normal tissue” with 90 samples. See Monti et al.3 for details
and references on these datasets. We transformed each gene expression matrix into a dis-
tance matrix between samples using normalized scalar products. For our intitial study, we
did not transform these values into log-odds as suggested by Sharan et al.2 but used “raw”
distances. We believe that applying the probabilistic framework of Sharan et al.2 will fur-
ther improve the quality of our results. Thresholds for building the weighted graph were set
by manual inspection, but repeated runs showed that our method was relatively insensitive
to varying these thresholds. Running times of our approach range from a few seconds, to
4.6 days for the “Novartis” dataset. In three out of four cases, our results outperform that
of all methods investigated in Monti et al.:3 For example, using the “Novartis” dataset our
clustering has an adjusted Rand index of 0.934 while the best method reported in Monti
et al.,3 namely Hierarchical Clustering, results in an adjusted Rand index of 0.921.a We
will further investigate the application of our method to the problem of tissue classification
in the future.

7. Conclusion

Albeit the undisputed elegance of the fixed-parameter approaches for unweighted CLUS-
TER EDITING, their practical use in computational biology is limited because biological
data is almost always weighted in nature. Here, we have presented fixed-parameter algo-
rithms for the WEIGHTED CLUSTER EDITING problem that guarantee to find the optimal
solution with provable worst-case running times. In application, running times of our algo-
rithms are much better than these worst-case bounds suggest: For biological data where the
input graph is sufficiently close to a clustering, our algorithms finds the optimal solution

aThe adjusted Rand index15 is a measure of agreement between partitions with potentially different numbers of
clusters. An index of 1 corresponds to perfect agreement, the expected value for two random partitions is 0.

Table 2. Results for protein similarity data.

|V | |E| # inst. # edit avg. cost avg. edge time 3k time 2.42k # hard
3–10 2–44 2075 2.32 6.63 19.75 2.0 ms 2.0 ms 0

11–20 14–189 725 11.78 36.49 23.23 12 ms 14 ms 0
21–30 47–434 307 30.92 95.56 23.31 103 ms 184 ms 0
31–40 62–773 178 62.02 200.1 21.52 680 ms 2.2 s 0
41–50 143–1224 181 101.6 333.9 21.26 91 s 7.1 min 3
51–60 204–1603 117 137.4 424.2 21.38 24 min > 3.2 h 8
61–70 191–2214 93 176.4 616.5 26.08 47 min > 3.6 h 1
71–80 614–3078 57 227.8 820.2 26.39 6.8 h > 16 h 10
81–90 266–3388 29 430.9 1372.7 25.87 3.7 h > 27 h 5
91–100 494–4504 23 315.0 1332.6 37.04 49 s 7.1 min 0

Note: ‘# inst.’ is the number of instances in this group. ‘# hard’ is the number of “hard” instances in
this group where the O(3k) strategy had running time of more than ten minutes.

October 2, 2007 19:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc050a

10

in reasonable time even when hundreds of edge modifications are necessary. We success-
fully applied our algorithm to protein similarity data, and reported first results for tissue
classification using gene expression data.

Different from what worst-case running times suggest, our O(3k) branching strategy
almost always outperforms the O(2.42k) strategy. The reason for this unexpected outcome
is certainly the power of the merge operation which outweighs advantages of complicated
branching rules. We think that there may exist simple branching strategies that make even
better use of edge merging, resulting in faster running times in practice and, eventually,
also in improved worst-case bounds.

Acknowledgments

We thank Jan Baumbach, Sven Rahmann, and Tobias Wittkop for providing both artificial
and protein similarity data.

Bibliography
1. A. Krause, J. Stoye and M. Vingron, BMC Bioinformatics 6, p. 15 (2005).
2. R. Sharan, A. Maron-Katz and R. Shamir, Bioinformatics 19, 1787(Sep 2003).
3. S. Monti, P. Tamayo, J. Mesirov and T. Golub, Mach. Learn. 52, 91 (2003).
4. A. Ben-Dor, R. Shamir and Z. Yakhini, J. Comput. Biol. 6, 281 (1999).
5. R. Shamir, R. Sharan and D. Tsur, Discrete Appl. Math. 144, 173 (2004).
6. M. Křivánek and J. Morávek, Acta Inform. 23, 311(June 1986).
7. E. Hartuv, A. O. Schmitt, J. Lange, S. Meier-Ewert, H. Lehrach and R. Shamir, Genomics 66,

249 (2000).
8. S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truß and S. Böcker, Exact and heuristic

algorithms for Weighted Cluster Editing, in Proc. of Computational Systems Bioinformics (CSB
2007), 2007.

9. J. Gramm, J. Guo, F. Hüffner and R. Niedermeier, Theor. Comput. Syst. 38, 373 (2005).
10. J. Gramm, J. Guo, F. Hüffner and R. Niedermeier, Algorithmica 39, 321 (2004).
11. R. Niedermeier, Invitation to Fixed-Parameter Algorithms (Oxford University Press, 2006).
12. R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs, B. Kiryutin, E. V. Koonin, D. M.

Krylov, R. Mazumder, S. L. Mekhedov, A. N. Nikolskaya, B. S. Rao, S. Smirnov, A. V. Sverdlov,
S. Vasudevan, Y. I. Wolf, J. J. Yin and D. A. Natale, BMC Bioinformatics 4, p. 41 (2003).

13. T. Wittkop, J. Baumbach, F. P. Lobo and S. Rahmann, Large-scale clustering of protein se-
quences with FORCE – a layout based heuristic for Weighted Cluster Editing., To appear in
BMC Bioinformatics, (2007).

14. F. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw and Y. Zhang, The Cluster Editing problem:
Implementations and experiments, in Proc. of International Workshop on Parameterized and
Exact Computation (IWPEC 2006), , LNCS Vol. 4169 (Springer, 2006).

15. L. Hubert and P. Arabie, J. Classif. 2, 193 (1985).

