
October 3, 2007 17:37 Proceedings Trim Size: 9.75in x 6.5in apbc057a

GENOME HALVING WITH DOUBLE CUT AND JOIN

ROBERT WARREN AND DAVID SANKOFF

University of Ottawa

The genome halving problem, previously solved by El-Mabrouk for inversions and re-
ciprocal translocations, is here solved in a more general context allowing transpositions
and block interchange as well, for genomes including multiple linear and circular chro-

mosomes. We apply this to several data sets and compare the results to the previous

algorithm.

1. Introduction

In this paper we discuss a generalization of the genome halving process studied
by El-Mabrouk.3 Before stating and solving the problem formally in the ensuing
sections, we first give some motivation for the generalization.

Models of genome rearrangement processes have permitted different repertoires
of operations. Certainly, realistic models must account for inversion. Likewise,
reciprocal translocations, Robertsonian translocations and other processes of chro-
mosome fusion and fission, all of which involve transferring an entire telometric
(i.e., suffix or prefix) region of at least one chromosome, are widespread across all
eukaryotic domains.

Other movements of chromosomal fragments, usually not involving telomeres,
are widely attested, and grouped together under the label of transpositions. They
are produced by a variety of processes, such as gene duplication followed by the loss
of the original copy, or retrotransposition, or recombination errors.

Of the three true movement rearrangements,a inversion, translocation and trans-
position, only the first two, separately or in combination, have proved very amenable
to mathematical modeling, as exemplified by the Hannenhalli-Pevzner formula for
the edit distance between two genomes, i.e., the minimum number of operations
required to transform one genome into another, and the efficient algorithm for pro-
ducing such a series of operations. No formula or efficient algorithm exists for
transposition, either by itself or in combination with the other two operations.

Recently, Yancopoulos et al.6 introduced the “double cut and join” (DCJ) op-
eration as the basis for generating all the movement rearrangements. This allowed
for the inclusion of transposition with inversion and translocation in a single model

aDuplications of genes or of chromosomal segments, as well as deletions and insertions are often
considered as aspects of genome rearrangement, but they are not really of the same biological

nature as the movements inherent in inversion, translocation and transposition, and mathematical
models of rearrangement are not easily extended to encompass them.

1

October 3, 2007 17:37 Proceedings Trim Size: 9.75in x 6.5in apbc057a

2

and resulted in a simpler formula for the edit distance and a simpler algorithm for
recovering a corresponding series of operations. A double cut and join operation
simply cuts the chromosome in two places and joins the four ends of the cut in a
new way.

The DCJ model, however, allows for the generation of a new kind of movement
operation, a generalized transposition called block interchange, which is not repre-
sented in the biological genome rearrangement literature, though it has long been
studied in the mathematical literature on rearrangement. Both transposition and
block interchange can be thought of as the excision of a fragment, its circularization,
together counting as one DCJ operation, followed by a second set of cuts, where
the circle is not necessarily cut in the same place it was originally created through
a join, and then reincorporated at a new site in the chromosome. Transpositions
and block interchanges thus count as two DCJ operations whereas inversions and
translocations each count as one.

The question arises, what is the biological significance of these chromosomal
circles? On the evolutionary level, very little is known, but circular DNA structures
abound in all sorts of organisms, even eukaryotes. Circular chromosomes are well-
known in clinical studies4 and the process of excision, circularization, linearization
and reincorporation is exactly what happens in the configuration of the immune
response in higher animals. Because the evolutionary consequences of block inter-
change could have come about in other ways, there has been no reason to look
for evidence of this process or even to notice it. The question of its existence or
importance remains open.

Yancopoulos et al.’s original publication6 pointed out that the running time
of their algorithm could be reduced to linear if circles were not constrained to be
reincorporated into linear chromosomes as as soon as they were generated. Bergeron
et al.2 recently restated the DCJ model and produced a simplified (linear) algorithm
ignoring the reincorporation constraint and, as in the mathematical justification of
DCJ in Ref. 6, without any explicit mention of the particular operations of inversion,
translocation, transposition, interchange, fusion and fission. It is thus the most
general existing algorithm for movement rearrangements. As it has a form which
lends itself well to constraints on the operations allowed, it can largely emulate
other algorithms, e.g., the Hannenhalli-Pevzner algorithm (but without taking into
account “hurdles” and “knots”) or the Yancoupoulos-Attie-Friedberg algorithm (at
the cost of losing its computational efficiency).

It is with this background that we ask how generalizations of the genomic dis-
tance problem, such as genome halving or rearrangement median (considered else-
where), behave under the DCJ context.

2. Background

In this section we introduce our notation for genomes. A gene a represents an
oriented sequence of DNA whose two extremities are its tail

>−
a and its head —>

a .

October 3, 2007 17:37 Proceedings Trim Size: 9.75in x 6.5in apbc057a

3

The adjacency of two consecutive genes a and b is denoted by an unordered set,

either {—
>
a ,

>−
b }, (= {

>−
b ,

—>
a }), {—

>
a ,

—>

b }, {
>−
a ,

>−
b }, {

>−
a ,

—>

b }, depending on the order
and orientation of a and b. An extremity that is not adjacent to any other extremity
is called a telomere and is represented by a singleton set {—

>
a } or {>−

a }. A genome
is represented by an unordered set of adjacencies and telomeres such that the head
and tail of each gene appear exactly once.

A duplicated genome is a genome with two copies of each gene such that the
head and the tail of every gene appear exactly twice. To differentiate the two genes
we arbitrarily assign each gene a subscript. Thus, we say that gene a is a unique
gene with paralogs a1 and a2 with corresponding paralogous extremities

>−
a1 and

>−
a2 ,

and —>
a1 and —>

a2 . To denote paralogous extremities, we have a special notation: if p is
an extremity then p is its corresponding paralogous extremity. Thus, if p =

>−
a1 then

p =
>−
a2 . Given V ⊆ A, where A is a duplicated genome, we can retrieve the set of all

extremities using the function π(V) =
⋃

v∈V v. The set of paralogous extremities
in V can be retrieved using the function ϕ(V) defined as follows: if p and p are in
π(V) then p is in ϕ(V).

Definition 1. Let A be a duplicated genome. A is valid if and only if:

• If {u, v} ∈ A then {u, v} ∈ A

• If {u} ∈ A then {u} ∈ A

A duplicated genome that is valid is a perfectly duplicated genome. Similarly, an
invalid duplicated genome is called a rearranged duplicated genome.

Observant readers may notice that the above definition of validity is very general
and will allow many genomes with some questionable halvings. This is intentional.
One of the advantages of double cut and join is the ease with which it handles
circular chromosomes. However, what is considered a valid halving in a linear mul-
tichromosonal genomes and what is considered valid for circular unichromosonal
genomes are very different. For the case of an input consisting of multiple chromo-
somes that can be either linear of circular neither definition suffices. Our definition
of validity combines both definitions of validity but, because we do not try and
conserve chromosomes, it can result in some surprising results. However, typically
these results are not desirable but adding additional constraints to prevent may
occasionally increase the cost. For a better treatment of validity for linear multi-
chromosonal genomes consult Ref. 3. For a better treatment of validity for circular
unichromosonal genomes consult Ref. 1.

We can now define the problem:

Definition 2. The genome halving problem is defined as follows: given a rearranged
duplicated genome A find a perfectly duplicated genome B such that the distance
between A and B is minimal with respect to some distance metric.

As mentioned in the introduction, in this paper the distance metric we will use

October 3, 2007 17:37 Proceedings Trim Size: 9.75in x 6.5in apbc057a

4

is the double cut and join distance. To understand the DCJ distance we must first
introduce the following data structure:

Definition 3. The adjacency graph AG(A,B) is a graph whose set of vertices are
the adjacencies and telomeres of A and B. For each u ∈ A and v ∈ B there are
|u ∩ v| edges between u and v.

Since every vertex in an adjacency graph has a degree of two, there are only two
types of components: cycles and paths. Since the graph is bipartite, all the cycles
have an even number of edges. Paths may have an odd or even number of edges.
We refer to paths with an odd number of edges as odd paths and paths with an
even number of edges as even paths. The difference between odd and even paths is
important, thus, overall, there are three types of components to consider. Since an
adjacency graph is bipartite, we can deduce the following useful lemma:

Lemma 1. An adjacency graph AG(A,B) contains a path with an odd number of
edges if and only if telomere {u} ∈ A and telomere {v} ∈ B are endpoints of a path.

Since double cut and join is defined for non-duplicated genomes, for the purposes
of measuring distance we consider each paralog to be a different gene.

Theorem 1. (Ref. 2) Let A and B be two genomes defined on the same set of n

genes, then we have

d(A,B) = n− c− i

2

where c is the number of cycles and i the number of odd paths in AG(A,B).

For simplicity, throughout the rest of this paper we will use the symbol A to
represent a rearranged genome and genome B to represent a perfectly duplicated
genome. A and B have n unique genes, thus, they each have 2n paralogs, 4n

extremities and 2n paralogous extremities. Thus, d(A,B) = 2n− c− i/2.

3. Natural Graphs

From the definition of validity, it is clear that the relationships between paralogous
extremities is important. Following El-Mabrouk,3 we define a data structure, a
natural graph, to capture that relationship.

Definition 4. For each u ∈ A we define the set Vu recursively as follows:

• Basis Step: u ∈ Vu

• Recursive Step: If u ∈ Vu and u is an adjacency {p, q} then v, w ∈ A where
p ∈ v and q ∈ w are also in Vu. If u ∈ Vu and u is a telomere {p} then
v ∈ A where p ∈ v is also in Vu

October 3, 2007 17:37 Proceedings Trim Size: 9.75in x 6.5in apbc057a

5

_^]\XYZ[—>
a1 ,

—>

b1
_^]\XYZ[—>
a2 ,

—>

b2

(a) Even Cycle

_^]\XYZ[>−
d1

_^]\XYZ[>−
d2 ,

—>
c1

WVUTPQRS—>
c2

(b) Even Path

_^]\XYZ[>−
a1 ,

>−
b2

��
��

��
��

��

??
??

??
??

??

_^]\XYZ[>−
a2 ,

—>

d2
_^]\XYZ[>−
b1 ,

—>

d1

(c) Odd Cycle

WVUTPQRS>−
c1

WVUTPQRS>−
c2

(d) Odd Path

Figure 1. The natural graphs for A = {{>−
c1 }, {—

>
c1 ,

>−
d2 }, {

—>
d2 ,

>−
a2 }, {—

>
a2 ,

—>
b2}, {

>−
b2 ,

>−
a1 }, {—

>
a1 ,

—>
b1},

{
>−
b1 ,

—>
d1}, {

>−
d1 }, {

>−
c2 }, {—

>
c2}}.

We define the set Eu = {(v, w) ∈ Vu|p ∈ v ∧ p ∈ w}. We say that G(Vu, Eu) is a
natural graph, G(V,E), generated by u. Note that if there exists an G(V,E) and
an G′(V ′, E′) such that v ∈ V and v ∈ V ′ then G = G′.

Let NG be the set of all natural graphs defined on A.

Like adjacency graphs, every vertex in a natural graph has degree of at most
two. Therefore we can classify natural graphs in one of four ways:

Definition 5. Let G(V,E) ∈ NG. NG consists of four mutually exclusive subsets:

(1) If G is a cycle and |E| is even then it is called an even cycle. We call the
set of all natural graphs that are even cycles EC

(2) If G is a path and |E| is odd then it is called an odd path. We call the set
of all natural graphs that are odd paths OP

(3) If G is a cycle and |E| is odd then it is called an odd cycle. We call the set
of all natural graphs that are odd cycles OC

(4) If G is a path and |E| is even then it is called an even path. We call the set
of all natural graphs that are even paths EP

Using the properties of natural graphs we can derive some useful lemmas, the
proofs of which will be included in a full version of this paper.

Lemma 2. Let G(V,E) ∈ NG. There is no subgraph G′ of G, such that G′ is
perfectly duplicated.

Lemma 3. Let G(V,E) ∈ NG and {u, v} ∈ V . Let B and B′ be two identical
perfectly duplicated genomes except {u, v}, {u, v} ∈ B and {u}, {u} ∈ B′. d(A,B) ≤
d(A,B′).

October 3, 2007 17:37 Proceedings Trim Size: 9.75in x 6.5in apbc057a

6

Lemma 4. Let G(V,E) ∈ NG. If |ϕ(V)| is even then there exists an H ⊆ B with
π(H) = π(V) such that d(V,H) is minimal.

From Lemma 2 and Lemma 4 we can now effectively redefine the genome halving
problem to: for each natural graph, construct a subset of B such that the distance
between the natural graph and its corresponding subset is minimal.

From Lemma 4 we can conclude that all the natural graphs should contain an
even number of paralogous extremities. Observe that this is the case for the natural
graphs in the sets EC and EP . For the remaining graphs we observe that since
there are an even number of paralogous extremities in A it must be the case that
|OP |+ |OC| is even.

4. Lower Bounds

Before we can derive lower bounds on the distance, we once again need a new data
structure:

Definition 6. Let G(V,E) ∈ SN . Let H ⊆ B such that π(H) = π(V). Let C be
a component of AG(V,H). We define the signature SC as follows:

(1) If u ∈ π(C ∩ V) then u is in SC unless u is already in SC ;
(2) If {u, v} is an adjacency in C ∩ V and u is in SC then neither v nor v is in

SC ;

A maximal signature is a signature which includes as many extremities as possible.
Let S be a set of maximal signatures for all components in AG(V,H). We define
a signature graph SG(S, F) where S is the vertices and F is the set of edges. F

is defined as follows: for all S1, S2 ∈ S there exists an edge {S1, S2} if and only
if there exists an extremity x such that x ∈ S1 and x ∈ S2. We also define the
function δ(SC), where SC ∈ S, which denotes the degree of SC .

From the fact that |ϕ(V)| is odd and from the definition of a maximal signature
we get the following lemma:

Lemma 5. Let G(V,E) ∈ EP ∪OC and let SG(S, F) be a signature graph defined
on G.

∑
SC∈S |SC | ≤ |V | − 1

We now have enough information to establish lower bounds on the distance:

Theorem 2. Let G(V,E) ∈ SN with 2n extremities where n ≥ 1. Let H ⊆ B with
π(H) = π(V). The following statements are all true:

(1) If G ∈ EC then d(V,H) ≥ n− 1;
(2) If G ∈ OP then d(V,H) ≥ n− 2;
(3) If G ∈ OC then d(V,H) ≥ n− 1;
(4) If G ∈ EP then d(V,H) ≥ n;

October 3, 2007 17:37 Proceedings Trim Size: 9.75in x 6.5in apbc057a

7

Proof. From the definition of a signature graph, we know that
∑

SC∈S δ(SC) ≤∑
SC∈S |SC | ≤ |V |. Therefore, |F | = 1

2

∑
SC∈S δ(SC) ≤ 1

2

∑
SC∈S |SC | ≤ 1

2 |V |. It
follows from Lemma 2 that all signature graphs are connected, therefore, |S| ≤
|F |+ 1 ≤ 1

2 |V |+ 1. Thus, AG(V,H) contains ≤ 1
2 |V |+ 1 components.

When G ∈ EC, |V | = 2n and thus AG(V,H) contains ≤ n + 1 components.
When G ∈ OP , |V | = 2n and thus AG(V,H) contains ≤ n + 1 components.
When G ∈ EP , |V |−1 = 2n and, from Lemma 5, only |V |−1 vertices contribute

towards the signature graph. Thus, AG(V,H) contains ≤ n + 1 components.
When G ∈ OC, |V | − 1 = 2n − 2 and, from Lemma 5, only |V | − 1 vertices

contribute towards the signature graph. Thus, AG(V,H) contains ≤ n components.
From Theorem 1 we can observe that d(V, SG ∪ SG) = |ϕ(V)| − c − i where

c and i are the number of cycles and odd paths respectively in AG(V, SG ∪ SG).
When G ∈ EC ∩ EP we know that |ϕ(V)| = 2n. For the remaining two cases
|ϕ(V)| = 2n−1. We know from the above that the maximum number of components
each type of natural graph contains, to establish lower bounds on the distance we
need only determine which of those components are cycles and which are odd paths.

It can be proven (proof omitted in this abstract) that some of components must
be paths. In the worst case, graphs in OP contains 2 odd paths, graphs in EP

contain 1 even path. For the purposes of establishing a lower bound we can safely
assume that the remaining components are cycles.

5. Upper Bounds

Using the structure of a natural graph, we can define an ordering of the vertices
and extremities that will simplify ensuing developments. We define the ordering as
follows:

Definition 7. Let G(V,E) ∈ NG. We relabel the extremities in V to define a
suitable order of the vertices.

(1) G ∈ EC. |V | = |ϕ(V)| = 2n, for all n ≥ 1. Let V =
{v′1, v1, v

′
2, v2, . . . , v

′
n, vn} such that the following hold:

• v′1 = {x2n, x1} and v1 = {x1, x2};
• For each i, 1 < i ≤ n, v′i = {x2i−2, x2i−1} and vi = {x2i−1, x2i};

(2) G ∈ OP . |ϕ(V)| = 2n − 1 and |V | = 2n, for all n ≥ 1.
Let V = {v′1, v1, v

′
2, v2, . . . , v

′
n, vn} such that the following hold:

• v′1 = {x1} and v1 = {x1, x2};
• For each i, 1 < i < n, v′i = {x2i−2, x2i−1} and vi = {x2i−1, x2i};
• v′n = {x2n−2, x2n−1} and vn = {x2n−1};

(3) G ∈ OC. |V | = |ϕ(V)| = 2n − 1, for all n ≥ 1.
Let V = {v′1, v1, v

′
2, v2, . . . , v

′
n−1, vn−1, v

′
n} such that the following hold:

• v′1 = {x2n−1, x1};

October 3, 2007 17:37 Proceedings Trim Size: 9.75in x 6.5in apbc057a

8

• For each i, 1 < i ≤ n−1, vi−1 = {x2i−3, x2i−2} and v′i = {x2i−2, x2i−1};
(4) G ∈ EP . |ϕ(V)| = 2n and |V | = 2n + 1, for all n ≥ 1.

Let V = {v′1, v1, v
′
2, v2, . . . , v

′
n, vn, v′n+1} such that the following hold:

• v′1 = {x1} and v1 = {x1, x2};
• For each i, 1 < i ≤ n, v′i = {x2i−2, x2i−1} and vi = {x2i−1, x2i};
• v′n+1 = {x2n};

From the definition of suitable order we can derive the sets S and S for each
natural graph. Let G(V,E) ∈ NG where V is suitably ordered. As noted before,
ϕ(V) is 2n when G ∈ EC ∪ EP , 2n − 1 when G ∈ OP ∪ OC, for all n ≥ 1. If
G 6∈ OC then let SG = {v1, v2, . . . , vn} ∈ V . We define SG as follows: if the
adjacency {x, y} ∈ SG then {x, y} ∈ SG, if the telomere {x} ∈ SG then {x} ∈ SG.
We call the set SG the set of selected vertices. Set SG is the set of derived vertices.

The case of G ∈ OC is a special case. We SG = {v1, v2, . . . , vn−1} ∈ V . If we
define SG as normal we end up missing the extremities x2n−1 and x2n−1. Thus,
for G ∈ OC we define SG as SG

′ ∪ {x2n−1, x2n−1} where SG
′

is the same as the
definition for SG when G 6∈ OC. Note that this definition for SG has a tendency to
produce circular chromosomes which may not be desirable. Alternative definitions
which avoid circles do exist but they produce a worse distance.

We can now derive a solution for B:

B =
⋃

G∈SN

SG ∪ SG

For the ensuing proofs, it is useful to keep track of the unselected vertices in V .
Let UG = V \ S which is {v′1, v′2, . . . , v′n} when G 6∈ EP or {v′1, v′2, . . . , vn, v′n+1}
when G ∈ EP .

The following useful observation describes the motivation for constructing set S

in this manner:

Observation 1. Let G(V,E) ∈ NG. Each adjacency {xi, xj} ∈ SG corresponds
to a cycle in AG(V, SG ∪ SG) and each telomere {xk} ∈ SG corresponds to an odd
path in AG(V, SG ∪ SG).

In order for B to be valid, the set of derived vertices must be constructed as
above. Observe that, for G(V,E) ∈ NG, UG ⊂ V and that π(UG) = π(SG). Thus,
AG(UG, SG) ⊆ AG(A,B) which has the following properties:

Lemma 6. The following statements are all true:

(1) If G ∈ EC then AG(UG, SG) contains exactly one cycle and no paths.
(2) If G ∈ OP then AG(UG, SG) contains exactly one odd path and no cycles.
(3) If G ∈ OC then AG(UG, SG) contains exactly one cycle and no paths.
(4) If G ∈ EP then AG(UG, SG) contains no cycles or odd paths.

October 3, 2007 17:37 Proceedings Trim Size: 9.75in x 6.5in apbc057a

9

Proof. This lemma follows from the definitions of UG and SG as well as the defi-
nition of an adjacency graph.

We can now define the distance between any natural graph G(V,E) and SG∪SG:

Theorem 3. The following statements are all true:

(1) If G ∈ EC then d(V, SG ∪ SG) ≤ n− 1
(2) If G ∈ OP then d(V, SG ∪ SG) ≤ n− 2
(3) If G ∈ OC then d(V, SG ∪ SG) ≤ n− 1
(4) If G ∈ EP then d(V, SG ∪ SG) ≤ n

Proof. From Theorem 1 we can observe that d(V, SG ∪SG) = |ϕ(V)| − c− i where
c and i are the number of cycles and odd paths respectively in AG(V, SG ∪ SG).

From Observation 1 and Lemma 6 we can immediately conclude that c = n in
all cases except when G ∈ EC in which case c = n + 1 and that i = 0 in all cases
except when G ∈ OP in which case i = 2. When G ∈ EC ∩ EP we know that
|ϕ(V)| = 2n. For the remaining two cases |ϕ(V)| = 2n− 1.

Theorem 4. Let A be a rearranged duplicated genome and B be a perfectly dupli-
cated genome with 2n genes where n is the number of unique genes and n ≥ 1 then
the minimum distance between A and B is:

d(A,B) = n− |EC| −
⌊

2 · |OP | − |OC|
2

⌋
= n− |EC| − |OP | −

⌊
|OC|

2

⌋
Proof. This theorem follows immediatly from Theorem 2 and Theorem 3 and the
fact that |OP | and |OC| are odd.

6. Experiments

We have implemented the DCJ halving algorithm so that it runs in (provably mini-
mum) linear time. We applied it to data sets on three present-day genomes that are
descended from a genome doubling event: Zea mays,7 with two copies of 34 markers,
Saccharomyces cerevisiae, with two copies of 300 markers, and Candida glabrata,
with two copies of 300 markers.5 The number of operations from the doubling event
to the present-day genome was 27, 193 and 249 respectively. The El-Mabrouk al-
gorithm gave a result of 250 for Candida glabrata but otherwise the results were
exactly the same. Applying the algorithm as written in the paper produced circular
chromosomes in each case. However, borrowing the look-ahead routine (which pre-
vents the formation of circular chromosomes) from the El-Mabrouk paper3 we got
the same result as El-Mabrouk with no circular chromosomes and no asymptotic
increase in complexity.

October 3, 2007 17:37 Proceedings Trim Size: 9.75in x 6.5in apbc057a

10

7. Conclusion

We have shown that the main ideas of the El-Mabrouk algorithm carry over to the
DCJ context, although the case analysis here involves both cycles and paths, instead
of just cycles in the breakpoint graph. In one respect, however, the algorithm is
much simpler, due to the simplifications inherent in the DCJ approach. Where El-
Mabrouk had to attend to the complex components of the breakpoint graph known
as hurdles and knots, the DCJ formulation avoids this completely.

Since the repertoire of movement rearrangements in the DCJ formulation is
complete, the results of applying our algorithm will always be a lower bound on
any result using a constrained set of operations. At the same time, constraining
the DCJ operations may not yield an optimal result, since these constraints are ad
hoc and may not yield the minimum number of operations. Thus the method yields
both a lower bound (using unconstrained operations) and an upper bound (using
the constraints) on the results of algorithms yielding optimal answers for a specific
set of constraints.

8. Acknowledgments

We thank Julia Mixtacki, Jens Stoye, Chunfang Zheng and Nadia El-Mabrouk for
helpful discussion. Research supported in part by a grant to David Sankoff from
the Natural Sciences and Engineering Research Council of Canada (NSERC). David
Sankoff holds the Canada Research Chair in Mathematical Genomics and is a Fellow
of the Royal Society of Canada.

References

1. Max A. Alekseyev and Pavel A. Pevzner. Whole genome duplications and contracted
breakpoint graphs. SIAM Journal on Computing, 36(6):1748–1763, 2007.

2. Anne Bergeron, Julia Mixtacki, and Jens Stoye. A unifying view of genome rearrange-
ments. In Philipp Bücher and Bernard M.E. Moret, editors, Algorithms in Bioinformat-
ics: 6th International Workshop, volume 4175 of Lecture Notes in Computer Science,
pages 163–173. Berlin, Heidelberg: Springer-Verlag, 2006.

3. Nadia El-Mabrouk and David Sankoff. The reconstruction of doubled genomes. SIAM
Journal on Computing, 32:754–792, 2003.

4. Fabien Kuttler and Sabine Mai. Formation of non-random extrachromosomal ele-
ments during development, differentiation and oncogenesis. Seminars in Cancer Bi-
ology, 17(1):56–64, 2007.

5. David Sankoff, Chunfang Zheng, and Qian Zhu. Polyploids, genome halving and phy-
logeny. Bioinformatics, 23:i431 – i439, 2007.

6. Sophia Yancopoulos, Oliver Attie, and Richard Friedberg. Efficient sorting of ge-
nomic permutations by translocation, inversion, and block interchange. Bioinformatics,
21(16):3340–3346, 2005.

7. Chunfang Zheng, Qian Zhu, and David Sankoff. Parts of the problem of polyploids
in rearrangement phylogeny. In Glenn Tesler and Dannie Durand, editors, Proceedings
of the RECOMB 2007 Workshop on Comparative Genomics, volume 4751 of Lecture
Notes in Computer Science, pages 162–176. Berlin, Heidelberg: Springer-Verlag, 2007.

