
October 3, 2007 21:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc059a

1

A novel method for reducing computational complexity of whole genome sequence
alignment

Ryuichiro Nakato1
E-mail: rnakato@genome.ist.i.kyoto-u.ac.jp

Osamu Gotoh1;2
E-mail: o.gotoh@i.kyoto-u.ac.jp1Department of intelligence Science and Technology,

Graduate School of informatics, Kyoto University,
Yoshida-Honmachi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan2National Institute of Advanced Industrial Science and Technology,

Computational Biology Research Center,
2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan

Genomic sequence alignment is a powerful tool for finding common subsequence patterns shared
by the input sequences and identifying evolutionary relationships between the species. However, the
running time and space requirement of genome alignment haveoften been very extensive. In this
research, we propose a novel algorithm called Coarse-Grained AlignmenT (CGAT) algorithm, for
reducing computational complexity necessary for cross-species whole genome sequence alignment.
The CGAT first divides the input sequences into ”blocks” witha fixed length and aligns these blocks
to each other. The generated block-level alignment is then refined at the nucleotide level. This two-step
procedure can drastically reduce the overall computational time and space necessary for an alignment.
In this paper, we show the effectiveness of the proposed algorithm by applying it to whole genome
sequences of several bacteria.

Keywords: Genome Alignment; Multiple Alignment; Sequence Analysis; Comparative Genomics.

1. Introduction

With the rapid increase in genomic sequence data available in recent years, there is a great
demand for alignment programs that can allow direct comparison of the DNA sequences
of entire genomes. However, whole genome sequence alignment is a difficult problem in
the points of time and space complexity. Optimal pairwise alignment using Dynamic Pro-
gramming (DP) requiresO(L2) time andO(L) space, whereL is the length of an input
sequence.1 As the length of an entire bacterial genome usually exceeds 1Mb, application
of full-blown DP is impractical, therefore, it is necessaryto devise more efficient methods.

There are several existing algorithms for pairwise genomicsequence alignment. These
algorithms generally apply fast word-search algorithms, such as suffix tree, suffix array, and
look-up table, to extract high scoring pairs (HSPs) of subsequences from the input genome

October 3, 2007 21:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc059a

2

sequences. The HSPs are then chained to conform to coherent alignment.2–6 If neces-
sary, the chained HSPs may serve as anchor points to the subsequences between which
are aligned by a standard DP algorithm. In this report, we propose a novel algorithm for
pairwise alignment named Coarse-Grained AlignmenT (CGAT)algorithm. We developed
a preliminary version of computer program,Cgaln, that implements the proposed algo-
rithm. Comparison of the results ofCgaln with those ofBlastz3 indicated thatCgaln
is as sensitive asBlastz while considerably more specific thanBlastz, when appropriate
parameters are given. The block-level local alignments aregenerated in a very short period
of time, and the overall computation speed was an order of magnitude faster than that ofBlastz with the default setting.

2. Method

2.1. Outline

Figure 1 shows the flow of CGAT. CGAT divides the input sequences into ”blocks” with
a fixed length. These blocks are taken as ”elements” to be aligned. The similarity between
two blocks, each from the two input sequences, is evaluated by frequency of words (k-
mers) commonly found in the blocks. Similar methods based onword counts have been
used for rapid estimation of the degree of similarity between two protein sequences.7,8 For
block-level alignment, we apply the Smith-Waterman local alignment algorithm9 modified
so that sub-optimal similarities are also reported.10 The nucleotide-level alignment is con-
ducted upon the restricted regions included in the block-level alignment found in the first
stage. For the nucleotide-level alignment, we adopt a seed-extension strategy widely used
in homology search programs such asBlast2,3 andPatternHunter.4
2.2. Block-level alignment

Let’s denote the given input genome sequencesGa andGb. LetLa andLb be the lengths ofGa,Gb, respectively, andma andmb be the numbers of blocks inGa andGb, respectively.
Thusma = dLa=Je andmb = dLa=Je, whereJ is the length of a block. Letbax be thex-th block ofGa andbby be they-th block ofGb. The measure of similarity betweenbax
andbby is denoted byMx;y. We evaluateMx;y by the frequency of words commonly found
in bothbax andbby, where a word is a contiguous or discrete series of nucleotides of lengthk (k-mer). (In the discrete case, the value fork refers to the ”weight”, i.e. the number of
positions where nucleotide match is examined.4) Thus,Mx;y =Xi (
� log pai pbi)Æa(kxi)Æb(kyi); (1)

where the summation is taken for allk-mers, andÆa(kxi) = 1 if ki is present inbax, otherwiseÆa(kxi) = 0. The same notation applies toÆb(kyi) as well.pai andpbi are the probabilities
that the wordki appears inbax andbby, respectively, assuming its random distribution along
the entire genome. Thus, pai = nakiJ=La ' naki=ma; (2)pbi = nbkiJ=Lb ' nbki=mb; (3)

October 3, 2007 21:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc059a

3

Input sequences are divided into “blocks” with a fixed length, J.
Each cell of the mesh-like structure is associated with the
block-to-block similarity score .

(1)

Block-level local alignments are
obtained based on the score and
a gap penalty with a DP algorithm.

(2)

Nucleotide-level alignment is conducted
within the aligned block-level cells.

(3)

extending

Genome A

Genome A

Genome A

G
en

om
e

B

A multiple block-level alignment is
obtained with a progressive algorithm.

(2’)

Multiple nucleotide-level alignment is
conducted within the aligned block-level
hyper-cubes.

(3’)

)2,1(M)1,1(M

)1,(am
M),(ba mmM

),1(bm
M

),(yxM

),(yxM

J

G
en

om
e

B
G

en
om

e
B

Fig. 1. The flow of CGAT algorithm. (1)-(2)-(3) is a pairwise alignment flow, and (1)-(2)-(2’)-(3’) is a multiple
alignment flow (future work).

October 3, 2007 21:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc059a

4

wherenaki andnbki are the total numbers ofki in Ga andGa, respectively. The term
 is a
constant that may be estimated with some evolutionary model. At this moment, however,
we treated
 as an adjustable parameter.

The block-level local alignment uses two tables, the “word table” and the “index table.”
The word table stores the number of occurrences of each word in a genome,naki andnbki ,
whereas the index table stores the list of positions where a particulark-mer resides. These
tables are made only once for each genomic sequence. Using these tables, the similarity
measure matrix,Mx;y (x = 1::ma; y = 1::mb), is obtained inO(LaLb=4k).

The block-level alignment is conducted using DP as follows:Fx;y = max

0BB�Fx�1;y�1 +Mx;yFx�1;y +Mx;y � dFx;y�1 +Mx;y � d0 1CCA ; (4)

whered is the gap penalty. Equation (4) is based on Smith-Waterman algorithm.9 For ob-
taining the optimal and suboptimal locally best matched alignments, we use the algorithm
presented by Gotoh.10 This method can greatly reduce the storage requirement, while the
computational time remainsO(mamb).
2.3. Nucleotide-level alignmentCgaln applies the nucleotide-level alignment within the restricted areas that were com-
posed of cells included in the block-level local alignments. For the nucleotide-level align-
ment, we use the seed finding approach likeBlast2,3 orPatternHunter.4 In each cell, the

Fig. 2. The nucleotide-level alignment in a cell. (A) Finding seed matches and integrating into HSPs. (B) Com-
puting a maximal-scoring ordered subset of HSPs, and chaining them.

October 3, 2007 21:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc059a

5

Table 1. The computational complexity of CGAT algorithm

Time Space

Block-level making two tables O(min(La; Lb)) the word table O(4k)
alignment matrix scoring O(LaLb=4k) the index table O(min(ma;mb))(O(min(La; Lb)))

the DP alignment O(mamb) the DP matrix O(min(ma;mb))
total O(mamb+ min(La; Lb)) total O(4k+ min(ma;mb))(O(4k+ min(La; Lb)))

Nucleotide-level generating HSPs O(JN
) the two tables O(min(La; Lb))
alignment chaining HSPs O(nh2Nl) the HSPs O(nh2)

total O(JN
 + nh2Nl) total O(min(La; Lb) + nh2)
seed matches (hits) are searched for by using the word table and the index table once again.
Figure 2 shows the nucleotide-level alignment within a cell. A group of hits are integrated
into one larger matching segment if the hits are closer to each other than a threshold with
no gap (laid on the same diagonal in the dot matrix). We define such a gap-less matching
segment as a high scoring pair (HSP). Next,Cgaln computes a maximal-scoring ordered
subset of HSPs, and the HSPs are chained to one global alignment within each block-level
local alignment. This step can eliminate the noise such as repeats.

2.4. Computational complexity

Here we describe the computational complexity of CGAT (see Table 1.) The block-level
alignment phase takes space for the word table, the index table, and the DP matrix as major
components. The word table requiresO(4k) space, wherek is the size of a word. Both
the index table and the DP algorithm requireO(min(ma;mb)) space. However, we also
use the index table at the nucleotide-level alignment, and hence the space requirement is
formally O(min(La; Lb)). Then, the space requirement for the block-level alignmentisO(4k+ min(La; Lb)).

The time complexity isO(min(La; Lb)) for making the two tables,O(LaLb=4k) for
preparing the similarity matrix, andO(mamb) for DP alignment. As we choosek such that
min(La; Lb)=4k is not much greater than1, the computational complexity isO(mamb+
min(La; Lb)).

The nucleotide-level alignment phase takesO(JN
) time for generating HSPs, andO(nh2Nl) time for chaining, whereN
 is the number of cells included in the block-
level local alignments,Nl is the number of the block-level local alignments, andnh is
the average number of HSPs included in each block-level local alignment. Then, the time
requirement for the nucleotide-level alignment isO(JN
 + nh2Nl). The space require-
ment isO(min(La; Lb)) for the two tables andO(nh2) for chaining HSPs, and the total isO(min(La; Lb) + nh2).

October 3, 2007 21:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc059a

6

2.5. Preparation of data

Whole genome sequences ofE:
oli CFT073 (5,231,428 bp),E:
oli O157 (5,498,450
bp), andS: dysenteriae (4,369,232 bp) were obtained from DDBJ.a Before apply-
ing the genomic sequences to alignment programs, we masked repetitive sequences byWindowMasker16 with default parameters. AsWindowMasker can mask genome se-
quences without a library of known repetitive elements, it is suitable for a comparative
genome analysis.

All experiments were performed on a 2.0 GHz(�2) Xeon dual core PC with 4 Gbyte
memory.

3. Results

3.1. Comparison of accuracy by dotplots

We compare the accuracy and computational time ofCgaln with Blastz.3 Blastz is a
pairwise alignment tool for long genomic DNA sequences, andit is used as an internal
engine of several multiple genomic sequence alignment tools such asMultiP ipMaker,13TBA,14 MultiZ,14 and Choi’s algorithm.15

We obtained the global view of the results ofCgaln andBlastz by the dotplot outputs
(Figure 3) for two kinds of pairwise alignments: (A)E:
oli CFT073 vs.E:
oli O157,
and (B)E:
oli CFT073 vs.S: dysenteriae. TheCgaln results were generated by gnu-
plotb whereas theBlastz results were generated byPipMaker.
 We examinedBlastz
with two sets of parameter values; with the default parameter set and with a tuned parame-
ter set (T=2,C=2). The option “T=2” disallows transitions, which speeds up computation
but slightly reduces sensitivity. The option “C=2” directs “chain and extend”, which con-
tributes to reduction in noise.

We did not consider segmental inversion in comparison of thetwo E:
oli strains,
because the tight evolutionary relationship between the two sequences precludes such a
possibility. In the case of cross-species comparison, we did consider the possibility of in-
versions. We adjusted the value for parameter
 for each case of comparison, but the other
parameters were unchanged.

3.2. Comparison of computational time and memory

Table 2 summarizes the actual computation time and memory used in our experiments.Blastz with the default parameters took nearly 200 s for either intra- or inter-species
comparison. The computation time was considerably reducedwith the tuned parameter
set (T=2 andC=2). However,Cgaln runs faster thanBlastz even with this tuned param-
eter set, spending only 40 s and 14 s (including inversions) for the intra- and inter-species
comparisons, respectively. Of these total computation times, 7 s and 11 s were consumed

ahttp://www.ddbj.nig.ac.jp/
bhttp://www.gnuplot.info/
chttp://pipmaker.bx.psu.edu/pipmaker/

October 3, 2007 21:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc059a

7

(A)
blastz (default)

blastz (T=2, C=2)

Cgaln

(B)
blastz (default)

blastz (T=2, C=2)

Cgaln

Fig. 3. (A) The dotplot outputs of the alignment betweenE:
oli CFT073 andE:
oli O157. (B) The dotplot
outputs of the alignment betweenE:
oli CFT073 andS: dysenteriae. Top: alignment byBlastz with the
default parameter set. Middle: alignment byBlastz with a tuned parameter set (T=2,C=2). Bottom: alignment
byCgaln. In each alignment, the abscissa indicatesE:
oli CFT073 and the ordinate indicates the counterpart.Cgaln did not consider the inversions in (A), but considered the inversions in (B).

October 3, 2007 21:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc059a

8

Table 2. Comparison of computational time and
memory used byBlastz andCgaln.

time (s) memory (MB)

(E:
oli CFT073 -E:
oli O157)Blastz (default) 224 222Blastz (T=2,C=2) 51 197Cgaln 40 155

(E:
oli CFT073 -S: dysenteriae)Blastz (default) 192 201Blastz (T=2,C=2) 36 179Cgaln 14 143

by the block-level alignment. When the inversions were omitted,Cgaln took only 7 s for
overall alignment and 5 s for the block-level alignment betweenE:
oli CFT073 andS:dysenteriae. Cgaln requires a slightly smaller memory size thanBlastz. This is reason-
able becauseCgaln uses 11 mer (11 match positions out of 18 word width) whileBlastz
uses 12 mer (12 match positions out of 19 word width) to index discrete words in their
default settings, respectively. A largerk-mer generally increases both speed and memory
consumption.

4. Discussion

Comparison of the results presented in Figure 3 indicates that Cgaln is as sensitive asBlastz, when appropriate parameters are given. Moreover, the results also indicate thatCgaln is considerably more specific thanBlastz as illustrated by the drastic reduction in
the level of noise. Although the noise level ofBlastz output is appreciably attenuated by
application of the “C=2” option,Cgaln appears to generate better outputs with respect to
S/N ratios.

Because the performance ofCgaln strongly depends on the outcome of the block-level
alignment, a proper choice of parameter values at this level(e.g
, d, andJ) is essential for
the overall accuracy ofCgaln. Although we currently determine these values in anad ho

manner, it would be desired to develop a method for finding a suitable set of the parameter
values automatically. More quantitative evaluation of theperformance ofCgaln with more
examples, in comparison with those ofBlastz and other aligners, remains as a future task.

For the nucleotide-level alignment, we adopted a seed-extension strategy used in ho-
mology search programs such asBlast2,3 andPatternHunter.4 In view of sensitivity, this
scheme can be improved by adding a recursive step which searches for the seed matches
with progressively smallerk-mers in the inter-HSPs regions. The overall computational
speed and memory requirement ofCgaln was superior to that ofBlastz. This result sug-
gests thatCgalnmay be used for alignment of longer sequences such as entire mammalian
chromosomes. In fact, we have already proved that the CGAT algorithm is successfully ap-
plied to all-by-all comparison of human and mouse chromosomes. However, it still requires
prohibitively large memory to be executed on an ordinary computer. Further improvement

October 3, 2007 21:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc059a

9

in the algorithm would be necessary to reduce time and memoryrequirements.
The very short time consumed by the block-level alignment also suggests the capability

of CGAT to be extended to the fast multiple genomic sequence alignment. For this purpose,
it is necessary to solve the problems of how to adapt the block-level alignment to progres-
sive or iterative algorithms, and how to treat the rearrangement such as inversions. These
problems will be tackled in future work.

Acknowledgments

The authors would like to thank Drs. T. Yada and N. Ichinose for valuable discussions. This
work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas
”Comparative Genomics” from the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

References

1. Myers, E. and Miller, W. Optimal alignments in linear space. Computer Applications in the
Biosciences(CABIOS), Vol.4, No.1, pp. 11–17, 1988.

2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. Basic local alignment search
tool. Journal of Molecular Biology, Vol.215, No.3, pp. 403–410, 1990.

3. Schwartz, S., Kent, W.J., Smit, A., Zheng, Z., Baertsch, R., Hardison, R. C., Haussler, D. and
Miller, W. Human-mouse alignments with BLASTZ.Genome Research, Vol.13, No.1, pp. 103–
107, 2003.

4. Ma, B., Tromp, J. and Li, M. PatternHunter: faster and moresensitive homology search.Bioin-
formatics, Vol.18, No.3, pp. 440–445 2002.

5. Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O. and Salzberg, S.L. Align-
ment of whole genomes.Nucleic Acids Research, Vol.27, No.11, pp. 2369–2376, 1999.

6. Brudno, M., Steinkamp, R. and Morgenstern, B. The CHAOS/DIALIGN WWW server for mul-
tiple alignment of genomic sequences.Nucleic Acids Research, Vol.32(Web Server issue), pp.
w41–w44, 2004.

7. Edgar, R.C. Local homology recognition and distance measures in linear time using compressed
amino acid alphabets.Nucleic Acids Research, Vol.32, No.1, pp. 380–385, 2004.

8. Jones, D.T., Taylor, W.R. and Thornton, J.M. The rapid generation of mutation data matrices
from protein sequences.Computer Applications in the Biosciences(CABIOS), Vol.8, No.3, pp.
275–282, 1992.

9. Smith, T.F. and Waterman, M.S. Identification of common molecular subsequences.Journal of
Molecular Biology, Vol.147, No.1, pp. 195–197, 1981.

10. Gotoh, O. Pattern matching of biological sequences withlimited storage.Computer Applications
in the Biosciences(CABIOS), Vol.3, No.1, pp. 17–20, 1987.

11. Brudno, M., Do, C.B., Cooper, G. M., Kim, M. F., Davydov, E., NISC Comparative Sequencing
Program, Green, E. D., Sidow, A. and Batzoglou, S. LAGAN and Multi-LAGAN: Efficient Tools
for Large-Scale Multiple Alignment of Genomic DNA.Genome Research, Vol.13, No.4, pp.
721–731, 2003.

12. Bray N. and Pachter L. MAVID: Constrained Ancestral Alignment of Multiple Sequences.
Genome Research, Vol.14, No.4, pp. 693–699, 2004.

13. Schwartz, S., Elnitski, L., Li, M., Weirauch, M., Riemer, C., Smit, A., NISC Comparative Se-
quencing Program, Green, E.D., Hardison, R.C. and Miller, W. MultiPipMaker and supporting
tools: alignments and analysis of multiple genomic DNA sequences.Nucleic Acids Research,
Vol.31, No.13, pp. 3518–3524, 2003.

October 3, 2007 21:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc059a

10

14. Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F. A., Roskin, K.M., Baertsch,
R., Rosenbloom, K., Clawson, H., Green, E.D., Haussler, D. and Miller, W. Aligning Multiple
Genomic Sequences With the Threaded Blockset Aligner.Genome Research, Vol.14, No.4, pp.
708–715, 2004.

15. Choi J., Choi, K., Cho, H. and Kim, S. Multiple Genome Alignment by Clustering Pairwise
Matches.Lecture Notes in Computer Science, Vol.3388, pp. 30–41, 2005.

16. Morgulis, A., Gertz, E.M., Schaffer, A.A. and Agarwala,R. WindowMasker: window-based
masker for sequenced genomes.Bioinformatics, Vol.22, No.2, pp. 134–141 (2006).

