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Genomic sequence alignment is a powerful tool for finding w@n subsequence patterns shared
by the input sequences and identifying evolutionary refethips between the species. However, the
running time and space requirement of genome alignment bfige been very extensive. In this
research, we propose a novel algorithm called Coarse-&tailignmenT (CGAT) algorithm, for
reducing computational complexity necessary for crogsi®s whole genome sequence alignment.
The CGAT first divides the input sequences into "blocks” vatfixed length and aligns these blocks
to each other. The generated block-level alignment is thfinad at the nucleotide level. This two-step
procedure can drastically reduce the overall computaltiitma and space necessary for an alignment.
In this paper, we show the effectiveness of the proposeditigo by applying it to whole genome
sequences of several bacteria.
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1. Introduction

With the rapid increase in genomic sequence data availalvkrient years, there is a great
demand for alignment programs that can allow direct corsparpf the DNA sequences
of entire genomes. However, whole genome sequence aligrimardifficult problem in
the points of time and space complexity. Optimal pairwisgrathent using Dynamic Pro-
gramming (DP) require®(L?) time andO(L) space, wherd. is the length of an input
sequencé.As the length of an entire bacterial genome usually excestts application
of full-blown DP is impractical, therefore, it is necesstmydevise more efficient methods.
There are several existing algorithms for pairwise genmaguence alignment. These
algorithms generally apply fast word-search algorithmshsas suffix tree, suffix array, and
look-up table, to extract high scoring pairs (HSPs) of sgheaces from the input genome
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sequences. The HSPs are then chained to conform to cohdigmment?—® If neces-
sary, the chained HSPs may serve as anchor points to thegagimees between which
are aligned by a standard DP algorithm. In this report, w@@se a novel algorithm for
pairwise alignment named Coarse-Grained AlignmenT (CGAgorithm. We developed
a preliminary version of computer prografigaln, that implements the proposed algo-
rithm. Comparison of the results 6fgaln with those of Blastz® indicated thatC galn

is as sensitive aBlastz while considerably more specific thdHastz, when appropriate
parameters are given. The block-level local alignmentgarerated in a very short period
of time, and the overall computation speed was an order ohihale faster than that of
Blastz with the default setting.

2. Method
2.1. Outline

Figure 1 shows the flow of CGAT. CGAT divides the input seq@sninito "blocks” with

a fixed length. These blocks are taken as "elements” to baedigThe similarity between
two blocks, each from the two input sequences, is evaluayefelguency of words K-
mers) commonly found in the blocks. Similar methods baseword counts have been
used for rapid estimation of the degree of similarity betwteo protein sequencés. For
block-level alignment, we apply the Smith-Waterman lodigiranent algorithrl modified
so that sub-optimal similarities are also report@he nucleotide-level alignment is con-
ducted upon the restricted regions included in the blogktlalignment found in the first
stage. For the nucleotide-level alignment, we adopt a setahsion strategy widely used
in homology search programs suchB&st?2 and Pattern Hunter.*

2.2. Block-level alignment

Let’s denote the given input genome sequeriggandG,. Let L, andL, be the lengths of
G., Gy, respectively, aneh, andm; be the numbers of blocks i@, andG,, respectively.
Thusm, = [L,/J] andm, = [L,/J], whereJ is the length of a block. Lel? be the
z-th block of G, and bz be they-th block of G;. The measure of similarity betweef)
andbz is denoted by\/, ,. We evaluaté\/, , by the frequency of words commonly found
in bothb? andbz, where a word is a contiguous or discrete series of nuclestid length
k (k-mer). (In the discrete case, the value forefers to the "weight”, i.e. the number of
positions where nucleotide match is examiftg@hus,

May =Y (e~ logpip})da(k])oy (kY), (1)

where the summation is taken for &limers, and, (k') = 1if k; is presentib?, otherwise
8(k?) = 0. The same notation applies ép(k?) as well.p? andp? are the probabilities
that the wordk; appears irg andbg, respectively, assuming its random distribution along
the entire genome. Thus,

pi = ng,J/La > ng, /ma, (2)
p? = nzl J/Lb ~ ’I’I,zi /’Inb7 (3)
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(1) Input sequences are divided into “blocks” with a fixed length, J.
Each cell of the mesh-like structure is associated with the
block-to-block similarity score M,, ,.
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(2) Block-level local alignments are (2)) A multiple block-level alignment is
obtained based on the M, ,score and obtained with a progressive algorithm.
a gap penalty with a DP algorithm.
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within the aligned block-level cells. hyper-cubes.

Fig. 1. The flow of CGAT algorithm. (1)-(2)-(3) is a pairwiskgmment flow, and (1)-(2)-(2')-(3’) is a multiple
alignment flow (future work).
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wherenj. andn]_are the total numbers df in G, andG,, respectively. The termis a
constant that may be estimated with some evolutionary mdédehis moment, however,
we treated: as an adjustable parameter.

The block-level local alignment uses two tables, the “waltlé” and the “index table.”
The word table stores the number of occurrences of each waadjenomen; andn), ,
whereas the index table stores the list of positions whei@tcplark-mer resides. These
tables are made only once for each genomic sequence. Usiag thbles, the similarity
measure matrix)/, , (z = 1..m,,y = 1..m;), is obtained irO(L, L, /4*).

The block-level alignment is conducted using DP as follows:

mel,yfl +Ma:,y
mel Yy + M.t y d

: : 4
Fay 14 My—d|’ 4)
0

F, , = max

whered is the gap penalty. Equation (4) is based on Smith-Waterrggtitom ® For ob-
taining the optimal and suboptimal locally best matchegratients, we use the algorithm
presented by Gotolf. This method can greatly reduce the storage requiremenie e
computational time remair@(m,my).

2.3. Nucleotide-levd alignment

Cgaln applies the nucleotide-level alignment within the restdcareas that were com-
posed of cells included in the block-level local alignmeiftsr the nucleotide-level align-
ment, we use the seed finding approach Kest?3 or Pattern Hunter.* In each cell, the

A B

Fig. 2. The nucleotide-level alignment in a cell. (A) Fingiseed matches and integrating into HSPs. (B) Com-
puting a maximal-scoring ordered subset of HSPs, and cigthem.
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Table 1. The computational complexity of CGAT algorithm
Time Space
Block-level making two tables O(min(La, L)) the word table  O(4*)
alignment matrix scoring  O(Lq Ly /4%) the index table  O(min(mq,my))
(O(MIn(La, 1))
the DP alignment  O(mamy) the DP matrix ~ O(min(mgq, my))
total O(mamp+ min(La, Ly)) total O(4* + min(ma, my))

(O(4*+ min(La, Iy)))

Nucleotide-level ~ generating HSPs O(.JN.) the two tables  O(min(Lq, Ly))
alignment chaining HSPs  O(mx2N;) the HSPs O(mx?)
total O(JN. +7r2Ny) total o(min(Lq, Ly) + 732)

seed matches (hits) are searched for by using the word taBlitha index table once again.
Figure 2 shows the nucleotide-level alignment within a.c®ljroup of hits are integrated
into one larger matching segment if the hits are closer th etiter than a threshold with
no gap (laid on the same diagonal in the dot matrix). We defilch & gap-less matching
segment as a high scoring pair (HSP). N&xgaln computes a maximal-scoring ordered
subset of HSPs, and the HSPs are chained to one global aligmviikin each block-level
local alignment. This step can eliminate the noise suchpests.

2.4. Computational complexity

Here we describe the computational complexity of CGAT (saleld 1.) The block-level
alignment phase takes space for the word table, the indéx taid the DP matrix as major
components. The word table requir@$4*) space, wheré is the size of a word. Both
the index table and the DP algorithm requipémin(m,,ms)) space. However, we also
use the index table at the nucleotide-level alignment, até the space requirement is
formally O(min(L,, Ly)). Then, the space requirement for the block-level alignnient
O(4F+ min(L,, Ly)).

The time complexity isD(min(L,, L;)) for making the two tables)) (L, L;/4*) for
preparing the similarity matrix, and(m,m;) for DP alignment. As we choogesuch that
min(L,, Ly)/4* is not much greater thah the computational complexity i (m,mg+
min(L,, Lp)).

The nucleotide-level alignment phase takes/N..) time for generating HSPs, and
O(nr?N;) time for chaining, whereV, is the number of cells included in the block-
level local alignments)V; is the number of the block-level local alignments, andis
the average number of HSPs included in each block-level ldigmment. Then, the time
requirement for the nucleotide-level alignmenti$JN. + n,2N;). The space require-
ment isO(min(L,, L)) for the two tables and(n;?) for chaining HSPs, and the total is
O(min(L,, Ly) + 752).
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2.5. Preparation of data

Whole genome sequences Bf coli CFT073 (5,231,428 bp)y. coli 0157 (5,498,450
bp), andS. dysenteriae (4,369,232 bp) were obtained from DDBJBefore apply-
ing the genomic sequences to alignment programs, we masiaditive sequences by
Window M asker'® with default parameters. Ad/ indow M asker can mask genome se-
quences without a library of known repetitive elementssisuitable for a comparative
genome analysis.

All experiments were performed on a 2.0 GHz2) Xeon dual core PC with 4 Gbyte
memory.

3. Results
3.1. Comparison of accuracy by dotplots

We compare the accuracy and computational tim€ géin with Blastz.® Blastz is a
pairwise alignment tool for long genomic DNA sequences, #rns used as an internal
engine of several multiple genomic sequence alignmens &ath as\/ulti PipM aker,*®
TBAY MultiZ,* and Choi's algorithnt?

We obtained the global view of the results@§aln andBlastz by the dotplot outputs
(Figure 3) for two kinds of pairwise alignments: (&). coli CFT073 vs.E. coli 0157,
and (B) E. coli CFTO73 vs.S. dysenteriae. The Cgaln results were generated by gnu-
plot> whereas theBlastz results were generated WipM aker.c We examinedBlastz
with two sets of parameter values; with the default paransgttand with a tuned parame-
ter set ('=2, C=2). The option 7'=2" disallows transitions, which speeds up computation
but slightly reduces sensitivity. The optiod'=2" directs “chain and extend”, which con-
tributes to reduction in noise.

We did not consider segmental inversion in comparison ofttve E. coli strains,
because the tight evolutionary relationship between the daquences precludes such a
possibility. In the case of cross-species comparison, @ednsider the possibility of in-
versions. We adjusted the value for parametiar each case of comparison, but the other
parameters were unchanged.

3.2. Comparison of computational time and memory

Table 2 summarizes the actual computation time and memag usour experiments.
Blastz with the default parameters took nearly 200 s for eitheraintr inter-species
comparison. The computation time was considerably redudtdthe tuned parameter
set (['=2 andC'=2). HoweverCgaln runs faster tha3lastz even with this tuned param-
eter set, spending only 40 s and 14 s (including inversiamsihe intra- and inter-species
comparisons, respectively. Of these total computatioesin7 s and 11 s were consumed

8http://www.ddbj.nig.ac.jp/
bhttp://www.gnuplot.info/
Chttp://pipmaker.bx.psu.edu/pipmaker/
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(A) The dotplot outputs of the alignment betweéncoli CFT073 andF. coli O157. (B) The dotplot

outputs of the alignment betwedn. coli CFT073 andS. dysenteriae. Top: alignment byBlastz with the
default parameter set. Middle: alignment Byastz with a tuned parameter sef£2, C'=2). Bottom: alignment

by Cgaln. In each alignment, the abscissa indicaies:oli CFT073 and the ordinate indicates the counterpart.
Cgaln did not consider the inversions in (A), but considered tiveiisions in (B).
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Table 2. Comparison of computational time and
memory used by3lastz andCgaln.

time (s) memory (MB)

(E. coli CFTO073 -E. coli O157)

Blastz (default) 224 222
Blastz (T=2,C=2) 51 197
Cgaln 40 155

(E. coli CFTO73 -S. dysenteriae)

Blastz (default) 192 201
Blastz (T=2,C=2) 36 179
Cgaln 14 143

by the block-level alignment. When the inversions were teditC galn took only 7 s for
overall alignment and 5 s for the block-level alignment begwE. coli CFT073 andS.
dysenteriae. Cgaln requires a slightly smaller memory size th&fustz. This is reason-
able becaus€'galn uses 11 mer (11 match positions out of 18 word width) while stz
uses 12 mer (12 match positions out of 19 word width) to indiexrdte words in their
default settings, respectively. A largesmer generally increases both speed and memory
consumption.

4. Discussion

Comparison of the results presented in Figure 3 indicatas(haln is as sensitive as
Blastz, when appropriate parameters are given. Moreover, thdtseslso indicate that
Cgaln is considerably more specific thdtastz as illustrated by the drastic reduction in
the level of noise. Although the noise level Biastz output is appreciably attenuated by
application of the €=2" option, Cgaln appears to generate better outputs with respect to
SIN ratios.

Because the performance@faln strongly depends on the outcome of the block-level
alignment, a proper choice of parameter values at this ([evet, d, and.J) is essential for
the overall accuracy af'galn. Although we currently determine these values irudrhoc
manner, it would be desired to develop a method for findingtalsie set of the parameter
values automatically. More quantitative evaluation ofpleeformance o€ galn with more
examples, in comparison with thoseBfastz and other aligners, remains as a future task.

For the nucleotide-level alignment, we adopted a seedisiie strategy used in ho-
mology search programs suchi@h:st*3 andPattern Hunter.* In view of sensitivity, this
scheme can be improved by adding a recursive step whichte=afor the seed matches
with progressively smallek-mers in the inter-HSPs regions. The overall computational
speed and memory requirement@faln was superior to that aBlastz. This result sug-
gests thaC'galn may be used for alignment of longer sequences such as ertirgmalian
chromosomes. In fact, we have already proved that the CGd(rigthm is successfully ap-
plied to all-by-all comparison of human and mouse chromasfdowever, it still requires
prohibitively large memory to be executed on an ordinary potrar. Further improvement
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in the algorithm would be necessary to reduce time and meneguyirements.

The very short time consumed by the block-level alignmest aliggests the capability
of CGAT to be extended to the fast multiple genomic sequeligaraent. For this purpose,
it is necessary to solve the problems of how to adapt the Hioai alignment to progres-
sive or iterative algorithms, and how to treat the rearramg@ such as inversions. These
problems will be tackled in future work.
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