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Abstract: Finding motifs and the corresponding binding sites is a critical and challenging problem in 

studying the process of gene expression. String and matrix representations are two popular models 

to represent a motif. However, both representations share an important weakness by assuming that 

the occurrence of a nucleotide in a binding site is independent of other nucleotides.  More 

complicated representations, such as HMM or regular expression, exist that can capture the 

nucleotide dependency. Unfortunately, these models are not practical (with too many parameters 

and require many known binding sites). Recently, Chin and Leung introduced the SPSP 

representation which overcomes the limitations of these complicated models. However, discovering 

novel motifs in SPSP representation is still a NP-hard problem. In this paper, based on our 

observations in real binding sites, we propose a simpler model, the Dependency Pattern Sets (DPS) 

representation, which is simpler than the SPSP model but can still capture the nucleotide 

dependency. We develop a branch and bound algorithm (DPS-Finder) for finding optimal DPS 

motifs. Experimental results show that DPS-Finder can discover a length-10 motif from 22 length-

500 DNA sequences within a few minutes and the DPS representation has a similar performance as 

SPSP representation. 

1 Introduction 

A gene is a segment of DNA that can be decoded to produce functional products like 

protein. To trigger the decoding process, a molecule, called transcription factor, will bind 

to a short region (binding site) preceding the gene. One kind of transcription factor can 

bind to more than one binding site. These binding sites usually have similar patterns and 

are collectively represented by a motif. Finding motifs and the corresponding binding sites 

from a set of DNA sequences is a critical step for understanding how genes work. 

There are two popular models to represent a motif, string representation 

[4,6,10,11,16,17,19-22] and matrix representation [2,8,12-14]. String representation uses 

a length-l string of symbols (or nucleotides) ‘A’, ‘C’, ‘G’ and ‘T’ to represent a motif of 

length l. To improve the descriptive power of the representation, IUPAC symbols 

[6,20,22] can be introduced into the string to represent choices of symbols at a particular 

position (e.g. ‘K’ denotes ‘G’ or ‘T’). Matrix representation further improves the 

descriptive power by using position weight matrices (PWMs) or position specific scoring 

matrices (PSSMs) to represent a motif. PWMs and PSSMs are matrices of size 4 × l with 

the j-th column, which has four elements corresponding to the four nucleotides, 

effectively giving the occurrence probability of each of the four nucleotides at position j. 

While the matrix representation model appears superior, the solution space for PWMs and 
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PSSMs is huge, which consists of 4l real numbers, and thus, algorithms generally either 

produce a sub-optimal motif matrix [2,8,12,13] or take too long to run when the motif is 

longer than 10 [15]. 

However, both the string and the matrix representations share an important common 

weakness: they assume that the occurrence of each nucleotide at a particular position of a 

binding site is independent of the occurrence of nucleotides at other positions. This 

assumption may not represent the actual situation. According to the analysis of wild-type 

and mutant Zif268 (Egr1) zinc fingers by Bulyk et al [5], it gives compelling evidence 

that nucleotides of transcription factor binding sites should not be treated independently, 

and a more realistic motif model should be able to describe nucleotide interdependence. 

Man and Stormo [18] have arrived at a similar conclusion in their analysis of Salmonella 

bacteriophage repressor Mnt: they found that interactions of Mnt with nucleotides at 

positions 16 and 17 of the 21 bp binding site are in fact not independent.  

When there are sufficient number of known binding sites of a transcription factor, 

people can use some complex representations, e.g. the hidden Markov model (HMM) 

[24], Bayesian network [3] or enhanced PWM [9], to represent nucleotide 

interdependence. However, when we want to discover novel motif or describe a motif 

with only a few known binding sites, the input data may not contain enough information 

for deriving the hidden motif. Chin and Leung overcame the problem by introducing the 

SPSP representation [7], a generalized model of string representation and matrix 

representation, that can model the adjacent dependency of nucleotides with much less 

parameters than HMM and regular expression. Since the SPSP representation is simple, it 

can be used to discover novel motifs even if there are only five DNA sequences 

containing the binding sites of the transcription factor. However, like other models, 

discovering novel motifs in SPSP representation is a NP-hard problem. No efficient 

algorithm exists that can guarantee finding the hidden motif in reasonable amount of time. 

After studying the binding sites of real biological data, we found that many motifs 

can be described by a simpler model. In this paper, we further simplify the SPSP 

representation to the Dependency Pattern Sets (DPS) representation. DPS representation 

is a generalized model of string representation, which can model adjacent nucleotide 

dependency. Although it has a lower descriptive power than SPSP representation, 

experimental results on real biological data showed that it has almost the same 

performance as SPSP representation. Besides, since DPS representation uses fewer 

parameters to describe a motif, it is possible to find the “optimal” motif in reasonable 

amount of time. We have introduced a branch and bound algorithm DPS-Finder that 

guarantees finding the “optimal” motif. In practice, DPS-Finder takes only a few minutes 

to discover a length-10 motif from 20 length-600 DNA sequences. For other approaches 

such as HMM, it may take hours or even days for a dataset of similar size. 

This paper is organized as follows. In Section 2, we describe the DPS representation 

and the scoring function for determine the “optimal” motif in a set of DNA sequences. 

We introduce the branch and bound algorithm DPS-Finder in Section 3. Experimental 
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results on real biological data comparing DPS-Finder with some popular software are 

given in Section 4, followed by concluding remarks in Section 5. 

2 Problem Definition 

2.1 DPS Representation 

Motif is an abstract model for a set of binding sites with similar patterns. For example, the 

transcription factor CSRE [25], which activates the gluconeogenic structural genes, can 

bind to the following binding sites. 

CGGATGAATGG 

CGGATGAATGG 

CGGATGAAAGG 

CGGACGGATGG 

CGGACGGATGG 

Note that there is dependence between the fifth and the seventh symbols, and the 

binding sites “CGGATGAATGG” occurs twice in the DNA sequences. The string 

representation models these binding sites by the length-11 string “CGGAYGRAWGG” 

where ‘Y’ denotes ‘T’ or ‘C’, ‘R’ denotes ‘A’ or ‘G’ and ‘W’ denotes ‘A’ or ‘T’. 

However, this representation has a problem that the strings “CGGATGGATGG”, 

“CGGATGGAAGG”, “CGGACGAATGG”, “CGGACGAAAGG” and 

“CGGACGGAAGG” are also considered as binding sites (false positives). Instead of 

modeling the CSRE motif by one string, the SPSP representation uses a pattern P and a 

set of score S (negative of logarithm of the occurrence probability) to represent the CSRE 

motif as follows. 

( ) ( ) ( )GG
T
AA

CGG
TGA

CGGA 










=P  and 

( ) ( ) ( )log(1)-
log(0.8)-

log(0.2)-
log(1)-

log(0.4)-

log(0.6)-
log(1)- 
















=S  

A length-11 string is considered as a binding site of CSRE if it matches with P and its 

score (sum of corresponding entries) is at most some threshold, say 3.1. For example, the 

score of the binding site “CGGATGAATGG” is -log(1)+ -log(0.6) + -log(1) + -log(0.8) + 

-log(1) = 1.05 < 3.1. The score of a non-binding site string “CGGACGGAAGG” is -

log(1)+ -log(0.4) + -log(1) + -log(0.2) + -log(1) = 3.6 > 3.1. The string 

“TGGATGAATGG” does not match with P, so it is not a binding site. In this example, 

the SPSP representation can model the motif with no false positive. 

Although SPSP representation can describe the motif well, it is difficult to determine 

the score S for novel motifs (motifs with no known binding site) in real biological data. A 

challenge is to have a simpler model, which describes real motifs using fewer parameters 

than the SPSP representation while having fewer false positives than string representation. 
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We observed that using only the pattern P without S, we already can describe most real 

motifs. For example, if we consider those strings matching with P as binding sites, we 

only have one false positive “CGGACGGAAGG” (instead of five for the string 

representation). 

Apart from this, SPSP representation allows a motif having any number of wildcard 

pattern sets (positions with more than one possible choice of patterns, i.e. brackets with 

more than one pattern in it). For example, the following pattern P is allowed. 

( ) ( ) ( ) ( ) ( )GG 
T
AA

G
AG

C
TA

TT
GT
GG

C 































=P  

Since the binding sites of a motif should be conserved in most positions, the number of 

wildcard pattern sets should be small. We found that allowing at most two wildcard 

pattern sets is enough for describing most motifs. Based on the above observations, we 

define the Dependency Pattern Sets (DPS) representation as follows. 

A DPS representation P contains a list of patterns sets Pi, 1 ≤ i ≤ L, where at 

most two are wildcard pattern sets Pi containing 2 to k length-li patterns Pi,j of 

symbols ‘A’, ‘C’, ‘G’ and ‘T’, li ≤ lmax where the Hamming distance between 

these patterns is at most dmax. Each of the other pattern set Pi contains exactly 

one length-li pattern Pi,1 and ∑i l i = l. A length-l string σ = σ1σ2…σL where |σi| = 

l i is considered as a binding site of P if σi ∈  Pi, 1 ≤ i ≤ L. 

2.2 Scoring Function and Problem Definition 

Given a set of DNA sequences T with X length-l substrings bound by the same 

transcription factor, we should find many candidate motifs having different number of 

binding sites in T. In order to discover the hidden motif, we should have a scoring 

function for comparing different motifs. Given two motifs P1 and P2, a naive scoring 

function is to count the number of binding sites represented by the motifs, that is, P1 is 

more likely to be the hidden motif if P1 have more binding sites than P2 in the set of 

sequences T. However, this scoring function has a weakness that it has not considered the 

number of possible binding sites for P1 and P2. Consider the following motifs. 

( ) ( ) ( )TC
T
ACC

GT
CG
AT

C
1 




















=P  and ( ) ( )AAA

CT
AG

ACG
2 





=P  

Even P1 has slightly more binding sites than P2, we cannot conclude that P1 is more 

likely to be the hidden motif because P1 has more possible binding site patterns (3 × 2 = 6 

patterns) than P2 (2 patterns). In order to have a fair comparison, given a motif P with b 

binding sites in T, we calculate the probability (p-value) that P has b or more binding sites 

in T by chance based on a background model. Under the assumption that the hidden motif 

should have an unexpectedly large number of binding sites, a motif P with small p-value 

is likely to be the hidden motif. The p-value of a motif can be calculated as follows [7]. 
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Let B be the background model for the non-binding region of the DNA sequences T 

and B(σ) be the probability that a length-l string σ occurs in a particular position in T. B 

can be a Markov Chain or an uniform distribution etc. Given a DPS motif P with w 

possible binding sites s1, s2, …, sw, the probability that P has a binding site at a particular 

position in T is ∑ =

w

i i
sB1 )( . Assuming the probability that motif P has a binding site at any 

positions in T are independent, the probability that P has b or more binding sites in T is 

 ∑ ∑∑
=
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==
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Based on the scoring function in Eq(1), we define the motif discovering problem as 

follows. 

Given a set of DNA sequences T, the background model B and the motif length 

l, we want to discover a length-l DSP motif P with the minimum p-value. 

3 DPS-Finder Algorithm 

In this section, we introduce the DPS-Finder Algorithm for solving the motif discovery 

problem described in Section 2. DPS-Finder Algorithm first constructs a l-factor tree [1], 

a suffix tree with all nodes of depth > l being removed, to represent all possible motifs in 

the input sequences T with different positions of the wildcard pattern sets. For each 

possible motif P, it finds the set of patterns in each wildcard pattern set that minimizes p-

value(P) using a branch and bound approach. Experiments showed that DPS-Finder 

Algorithm has to deal in the best case only 25% of the number of cases to be dealt by the 

brute force algorithm. 

 

 
Figure 1. The 8-factor tree of the sequences “CA(…)(…)GGATGGCA(…)(…)GG”. For examples, the pattern 

“(CA)(…)(…)”, “(A)(…)(…)(G)” and “(…)(…)(GG)” occur twice in the sequences. 

3.1 Factor Tree Representation 

In order to discover the optimal motif, we should consider all possible positions (C(2 + 

l – 2lmax, 2) = O(l
2
)) of the wildcard pattern sets. For example, when the motif length l is 8 

and the maximum wildcard pattern length lmax is 3, the length-8 substring “CGCAGGTG” 
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(binding site of the AC transcription factor) can be a binding site of motifs in the 

following formats, (…)(…)(TG), (…)(A)(…)(G), (…)(AG)(…), (C)(…)(…)(G), 

(C)(…)(G)(…) and (CG)(…)(…), where (…) represents a wildcard pattern set of length 3. 

Note that motifs with wildcard pattern shorter than 3 or with one wildcard pattern set only 

have also been considered in the above formats. For example, (…)(AGG)(..) and 

(…)AGGTG are special case of the motif (…)(AG)(…). When we find the optimal motif 

in form of (…)(AG)(…), we have also considered motifs in form of (…)(AGG)(..) and 

(…)AGGTG. Since it takes O(l) time to convert a length-l substring to a motif and there 

are X length-l substrings in T, brute force method takes O(Xl
3
) time to get the list of O(Xl

2
) 

possible forms of motif. 

However, when a motif of a substring is considered, we can easily get another motif 

for the adjacent substring by shifting one symbol. For example, when the motif 

(CG)(…)(…) of the substring “CGCAGGTG” in the input sequence 

“…CACGCAGGTGGG…” is considered, by shifting one symbol, we will get another 

motif (G)(…)(…)(G) for the substring “GCAGGTGG”. When we represent the input 

sequence in the form of “…CACGCAGGTGGG…”, each length-8 sliding window 

containing the two length-3 brackets represents one possible motif. Based on this 

observation, DPS-Finder Algorithm constructs a generalized l-factor tree [1] of O(l
2
) 

(represent the O(l
2
) motifs for a length-l substring) length-O(X) sequences (input 

sequences with some positions represented by brackets) to represent the O(Xl
2
) possible 

motifs. A l-factor tree is a suffix tree [23] of height l where each path from the root to a 

leaf represents a length-l substring occurring in the input sequence. Figure 1 shows a 

factor tree of height-8 for the sequence “CA(…)(…)GGATGGCA(…)(…)GG”. Since 

constructing the generalized l-factor tree takes O(Xl
2
) time [1] only, DPS-Finder 

Algorithm speeds up the process by a factor of O(l) when compares with the brute force 

algorithm. 

3.2 Branch and Bound Approach 

Each leaf of the l-factor tree represents a candidate motif. These candidate motifs may not 

be in DPS representation because they may have more than k patterns in their wildcard 

pattern sets. Therefore, giving a candidate motif P, we have to reduce the number of 

patterns in each of its wildcard pattern set to at most k and at the same time, to minimize 

the p-value. Although this problem is NP-hard when the value of k is large (see 

Appendix), in practice we usually consider motifs with small k (e.g. k = 4) and finding the 

optimal motif is still feasible. 

When refining a candidate motif P to a motif P’ in DSP representation with the 

minimum p-value(P’), we perform a depth-first-search to check all possible combinations 

of patterns in the two wildcard pattern sets of P. We first pick two patterns, each forms a 

wildcard pattern set of P. Then we pick more patterns for P’ until k patterns have been 

selected for each wildcard pattern set. In the selection process, we consider patterns with 

increasing order of p-values. After picking a new pattern Pi, the additional number of 
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binding sites covered by P’ is upper bounded by the number of binding sites covered by 

Pi. Therefore, in many cases, we can stop picking new patterns because the p-value of the 

refined motif P’ must not be smaller than the suboptimal motif we have already found. 

Apart from applying a branch and bound approach on refining each candidate motif 

P, we also apply similar approach on checking the O(Xl
2
) candidate motifs. We first 

refine those candidate motifs with two patterns, each forms a wildcard pattern set, 

covering the largest number of binding sites. Since the number of binding sites covered by 

a candidate motif is upper bounded by the total number of binding sites covered by the 

top-k patterns in its wildcard pattern sets, many candidate motifs can be pruned out. 

4 Experimental Results 

We compared the performance of some popular motif discovering algorithms, i.e. Weeder 

[19], MEME [13] and SPSP-Finder [7], with DSP-Finder on the yeast data set in SCPD 

[25]. SCPD contains information of the motif patterns and the binding sites for a set of 

transcription factors of yeast. For each transcription factor, we chose the 600 base pairs in 

the upstream of those genes bound by the transcription factor as the input sequences T. 

Given the motif length, the four algorithms were used to discover the hidden motif in T. 

Weeder and MEME used string representation and matrix representation to model a 

motif respectively. Both of them could not model the nucleotide dependency in motifs. 

SPSP-Finder, used the SPSP representation, can model the nucleotide dependency in 

motifs. However, all these algorithms applied a heuristic approach which cannot 

guarantee finding the “optimal” motifs. 

In the experiments, DSP-finder used an order-0 Markov chain calculated based on 

the input sequence to model the non-binding regions. The width of a wildcard pattern set 

was at most 3 (lmax = 3), the Hamming distance between patterns in a wildcard pattern set 

was at most 1 (d = 1) and there were at most 4 patterns in a wildcard pattern set. The 

experimental results were shown in Table 1. All algorithms finished in 10 minutes for 

each dataset. Note that we have not listed out those motifs which could not be discovered 

by any of the algorithms. 

In general, SPSP-Finder and DSP-Finder has better performance than the other 

algorithms because they can model nucleotide dependency. DSP-Finder performs better 

than SPSP-Finder when finding motif of MCM1 because DSP-Finder guarantees finding 

the motif with the lowest p-value while SPSP-Finder is trapped in local minimum. 

DSP-Finder performs worse than MEME and SPSP-Finder in two cases, the 

HAP2/3/4 and SFF datasets. For the HAP2/3/4 dataset, there was nucleotide dependency 

between the fifth and the sixth nucleotides. However, since the Hamming distance 

between the possible patterns is 2, DSP-Finder could not discover the motif in our setting 

(d = 1). DSP-Finder could not discover the motif of SFF while MEME was successful 

because there were no strong bias at most positions of this motif. In these cases, a matrix 

representation can model the motif better than a string representation, i.e. Weeder also 

fails in this case.  
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Table 1. Experimental results on yeast data. 

Name Pattern Weeder MEME SPSPFinder DPSFinder 

13nt ACGAGGCTTACCG - - )T)(TACC)(G(ACGA)(GGC  )GC)(TTACCG(A)(CGA)(G  

ACE2 GCTGGT - - (GCTG)(GT)  ( )( )
CGT

GGT

GCT

GCA
 

ADR1 TCTCC - TCTCC (TCTC)(C)  











TGC

TTC

TCC

(TC)  

AP1 TTANTAA - - ( )(TAA)
C

G
(TTA)  ( )(A)

CTA

GTA
(TTA)  

CCBF CNCGAAA CACGAAA - CGAA)(A)(

T

G

C

A

)C(














 ( )( )(A)

CAA

GAA

CGC

CAC
 

CPF1 TCACGTG CACGTG TCACGTG CACG)(TA)(  ( )
GAG

GTG
(C)

GCA

CCA

TCA











 

CSRE CGGAYRRAWGG - - ( ) )GG(
T

A
A)(

CGG

TAA

TGA

)CGGA( 









 ( ) (GG)

AAG

AAA

AAT

ATA

ATG
(CGG) 










 

CuRE TTTGCTC TTTGCTCA  ( ) C)(
TCG

GCT
)TTT(  ( )(CTC)

GTG

TTG
(T)  

GATA CTTATC CTTATC - )TC)(CTTA(  ( )(ATC)
CTA

CTT
 

HAP2/3/4 CCAATCA - - )A(

CC

TG

TC

)CCAA( 









 - 

LEU CCGNNNNCGG CCGGGACCGG CCGGAACCGG ( ) G))(ACCG(
G

A
CGG)(  ( )( )(GG)

CCC

ACC

GGG

GGT
(CC)  

MAT2 CRTGTWWWW CATGTAATTA - ( )
C

A

TG

TC

TA

AC

)AATT(

TA

GT

GA

























 ( )( )

AAT

ATT

GTT

GTA
(CAT)  

MCM1 CCNNNWWRGG CCCGTTTAGG CCTAATTAGG - 




















AGG

TGG

GGG

AAT

AAC

AAA

(CCTA)  

SFF GTMAACAA - GTCAACAA - - 

UASCAR TTTCCATTAGG - - ( )
AGGA

AGCG
)TT(

TCCA

TCAC

GCCC

)T( 









 ( )(CAT)(TAG)

TGC

TTC
(AT)  

Motifs of transcription factors that cannot be found by any algorithms were not shown in this table. ‘M’ stands 

for ‘A’ or ‘C’, ‘N’ stands for any nucleotide. ‘R’ stands for ‘A’ or ‘G’, ‘W’ stands for ‘A’ or ‘T’, ‘Y’ stands for 

‘C’ or ‘T’. 

5 Conclusion 

In this paper, we introduced the DPS representation to capture the nucleotide dependency 

in a motif, which is simpler than the SPSP representation. We also developed a branch 

and bound algorithm DPS-Finder to locate the optimal DPS motif. Experimental results 

on real biological datasets show that DPS-Finder is efficiency and the DPS representation 
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is powerful enough to capture most of the real motifs. Further directions include 

extending the model and the algorithm to local motif pairs or non-linear motifs.  

References 

1. J. Allali and M.F. Sagot. The at most k-deep factor tree. Internal Report Institut 

Gaspard Monge, University of Marne-la-Vallee, IGM 2004-03, Juillet 2004.  

2. T. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers 

using expectation maximization. Machine Learning, 21:51—80,  1995. 

3. Y.  Barash, G. Elidan, N. Friedman and T. Kaplan. Modeling Dependencies in 

Protein-DNA Binding Sites. RECOMB, 28—37,  2003. 

4.  J. Buhler and M. Tompa. Finding motifs using random projections. RECOMB, 69—

76,  2001. 

5.  M.L. Bulyk, P.L.F. Johnson and G.M. Church. Nucleotides of transcription factor 

binding sites exert interdependent effects on the binding affinities of transcription 

factors. Nuc. Acids Res., 30:1255—1261,  2002. 

6.  F. Chin and H. Leung. An Efficient Algorithm for String Motif Discovery. APBC, 

79—88,  2006. 

7. F. Chin and H. Leung. DNA Motif Representation with Nucleotide Dependency. 

TCBB (to appear) 

8. F. Chin, H. Leung, S.M. Yiu, T.W. Lam, R. Rosenfeld, W.W. Tsang, D. Smith and Y. 

Jiang. Finding Motifs for Insufficient Number of Sequences with Strong Binding to 

Transcription Factor. RECOMB, 125—132,  2004. 

9. S.  Hannenhalli and L.S. Wang. Enhanced Position Weight Matrices Using Mixture 

Models. Bioinformatics, 21(Supp 1):i204—i212,  2005. 

10. U.  Keich and P. Pevzner. Finding motifs in the twilight zone. RECOMB, 195—204,  

2002. 

11.  S. Kielbasa, J. Korbel, D. Beule, J. Schuchhardt and H. Herzel. Combining 

frequency and positional information to predict transcription factor binding sites. 

Bioinformatics, 17:1019—1026,  2001. 

12.  C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald and J. Wootton . 

Detecting subtule sequence signals: a Gibbs sampling strategy for multiple alignment. 

Science 262:208—214,  1993. 

13.  C. Lawrence and A. Reilly. An expectation maximization (em) algorithm for the 

identification and characterization of common sites in unaligned biopolymer 

sequences. Proteins: Structure, Function and Genetics, 7:41—51,  1990. 

14.  H. Leung and F. Chin. Discovering Motifs with Transcription Factor Domain 

Knowledge. PSB, 472—483,  2007. 

15. H. Leung and F. Chin. Finding Exact Optimal Motif in Matrix Representation by 

Partitioning. Bioinformatics, 22:ii86—ii92,  2005. 

16.  M. Li, B. Ma, L. Wang. Finding similar regions in many strings. Journal of 

Computer and System Sciences, 65:73—96,  2002. 

17.  S. Liang. cWINNOWER Algorithm for Finding Fuzzy DNA Motifs. Computer 

Society Bioinformatics Conference, 260—265,  2003. 



10 

18.  T.K. Man and G.D. Stormo. Non-independence of Mnt repressor-operator interaction 

determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) 

assay. Nuc. Acids Res., 29:2471—2478,  2001. 

19.  G. Pavesi, P. Mereghetti, F. Zambelli, M. Stefani, G. Mauri and G. Pesole. MoD 

Tools: regulatory motif discovery in nucleotide sequences from co-regulated or 

homologous genes. Nuc. Acids Res., 34:566—570,  2006. 

20. G.  Pesole, N. Prunella, S. Liuni, M. Attimonelli and C. Saccone. Wordup: an 

efficient algorithm for discovering statistically significant patterns in dna sequences. 

Nucl. Acids Res., 20(11):2871—2875,  1992. 

21. P.  Pevzner and S.H. Sze. Combinatorial approaches to finding subtle signals in dna 

sequences. ISMB, 269—278,  2000. 

22.  S. Sinha S and M. Tompa. A statistical method for finding transcription factor 

binding sites. ISMB, 344—354,  2000. 

23. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249—260,  

1995. 

24.  X. Zhao, H. Huang and T.P. Speed. Finding Short DNA Motifs Using Permuted 

Markov Models. RECOMB, 68—75, 2004. 

25.  J. Zhu and M. Zhang. SCPD: a promoter database of the yeast Saccharomyces 

cerevisiae. Bioinformatics, 15:563—577,  1999. http://cgsigma.cshl.org/jian/ 

Appendix 

In this section, we prove that the Candidate Motif Refinement Problem is NP-hard. 

Candidate Motif Refinement (CMR) Problem: given a motif P, reducing the 

size of P’s wildcard pattern sets to at most k with the minimum p-value. 

We prove it by reducing the Balanced Complete Bipartite Subgraph problem, which is 

NP-hard, to this problem. 

Balanced Complete Bipartite Subgraph (BCBS) Problem: given a bipartite 

graph G = (V,E) and a positive integer k, we want to determine if there are two 

disjoint subsets V1, V2 ⊆  V such that |V1| = |V2| = k and 1Vu ∈ , 2Vv ∈  implies 

that Evu ∈},{ . 

Given a BCBS Problem, we construct a motif P as follows: Let lmax be the smallest 

integer such that 4
lmax ≥ k|V|. Each vertex vi of G is represented by a unique length-lmax 

string s(vi). The candidate motif P is a length-2lmax pattern with exactly two wildcard 

pattern sets, each contains length-lmax string s(vi), representing the vertices in one partite 

of G. There are |E| length-2lmax input DNA sequences T. s(vi)s(vj) is an input DNA 

sequence if and only if Evv ji ∈},{ . 

Under the restriction that the size of the wildcard pattern sets is at most k, the refined 

motif P’ has the minimum p-value when the concatenation of each pair of patterns in the 

two wildcard pattern sets of size k exists in the input DNA sequences T (i.e. P’ has 

exactly k
2
 binding sites). Therefore, the BCBS problem can be solved by solving the 

CMR problem and check if refined motif P’ has exactly k
2
 binding sites.                         ∎  


