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The intra-nuclear organisation of proteins is based on possibly transient interactions
with morphologically defined compartments like the nucleolus. The fluidity of trafficking
challenges the development of models that accurately identify compartment member-
ship for novel proteins. A growing inventory of nucleolar proteins is here used to train a
support-vector machine to recognise sequence features that allow the automatic assign-
ment of compartment membership. We explore a range of sequence-kernels and find that
while some success is achieved with a profile-based local alignment kernel, the problem
is ill-suited to a standard compartment-classification approach.
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1. Introduction

By virtue of its architecture, the cell nucleus not only encloses the genetic material

but also controls its expression. Recent discoveries have exposed morphologically

well-defined compartments with which proteins and RNA associate.1,2 This paper

uses emerging experimental data to develop a basic predictive model of intra-nuclear

protein association.

Similar to cytoplasmic organelles, intra-nuclear compartments seem to special-

ize in particular functions (like ribosomal RNA synthesis, spliceosome recycling and

chromatin remodeling). However, intra-nuclear compartments are not membrane-

bound and thus employ different principles to sustain their functional integrity.

Indeed, compartments are in perpetual flux, with some proteins and RNA stably

associated and others just transiently binding before they move on to another com-

partment. Proteins and RNA are trafficked by non-directed, passive diffusion and

association with a compartment is based on molecular interactions with its resi-

dents.1,2 The largest compartment inside the nucleus is the nucleolus. With func-

tions primarily related to ribosomal biogenesis, the nucleolus is conveniently located

at sites of ribosomal genes. Apart from being involved in producing ribosomes, ex-

amples of nucleolar functions include the maturation of tRNA and snRNA of the

spliceosome, pre-assembly of the signal recognition particle and the sequestration
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of several important regulatory proteins.3

Recent efforts using mass spectrometry have resulted in the identification of a

substantial number of nucleolar proteins in human cells.4 With the view that pro-

teins are only transiently associated with one or more compartments, we ask if we

can build a classifier that is able to distinguish between proteins with nucleolar

association from those without. Specifically, a growing protein inventory is lever-

aged using state-of-the-art machine learning algorithms–support-vector machines

equipped with sequence kernels. This paper develops an appropriate data set, and

a sequence data-driven model. The model is evaluated on its ability to capture

in terms of sequence features the possibly loose association of proteins with the

nucleolus.

2. Background

Analysis has shown that there seems to be no single feature that allows the auto-

matic sorting of proteins into nuclear compartments.5 Several characteristics, like

iso-electric point, molecular weight, and amino acid and domain composition may

need to be used in conjunction to accurately assign their compartmental associa-

tion.5 The nucleolus has the largest number of known proteins, but there appears

to be few generic motifs shared by its residents, the so-called DEAD-box helicase

and the WD40 repeat being two notable exceptions each occurring in about 6% of

known members.5

Using the Nuclear Protein Database,6 Lei and Dai7,8 developed a predictor using

machine learning of six different nuclear compartments including the nucleolus.

Multi-compartmental proteins were removed from the data set (prior to training)

to avoid the ambiguous presentation of data to a classifier. In their most refined

model, there is a Gene Ontology (GO) module which relies on the identification

of GO terms of the protein and its homologs (via a BLAST search). Additionally,

a separate support-vector machine is trained to map the sequence to one of the

six classes. Notably, inclusion of the GO term module elevates overall performance

considerably (the correlation coefficient for nucleolus improves from 0.37 to 0.66).

However, the GO terms (a) include specific annotations of localisation and (b) need

to be known in advance.

Hinsby et al.3 devised a system from which novel nucleolar proteins could be

semi-automatically identified. By cross-checking protein-protein interactions involv-

ing known nuclear proteins with mass spectrometry data of the nucleolus, they

identified prioritised nucleolar protein complexes and subsequently eleven novel nu-

cleolar proteins (by targeted search for 55 candidates in the raw mass spectrometry

data). The approach indicates the potential of assigning intra-nuclear compartment

membership in terms of interactions with residents rather than possibly elusive

compartment-unifying features.



September 28, 2007 13:15 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc066a

3

3. Methods

3.1. Data set

We re-use the data set of Hinsby et al.,3 sourced primarily from the Nucleolar

Proteome Database (NOPdb9), then adding the eleven novel proteins from Hinsby

et al.’s study, resulting in 879 human nucleolus-localised proteins. We further per-

formed redundancy reduction using BlastClust ensuring that only 30% sequence

similarity was present in the remaining set of 767 positives. This set consists of

proteins which are either stable or transient residents of the nucleolus. Importantly,

they could also be present in other locations to varying degrees.

Preliminary investigations which did not employ a negative training set were un-

successful. More specifically, we used one-class support-vector machines to generate

a decision function that included only all positives. Test performance on known neg-

atives clearly indicated the need for pursuing a full discriminative approach. Thus, a

negative, non-nucleolar protein set was devised from two sources: the Nuclear Pro-

tein Databank6 and UniProt R51–restricted to mammalian proteins. NPD-extracted

proteins had one or more intra-nuclear compartments assigned, not including the

nucleolus. UniProt proteins were similarly required to have a non-ambiguous nu-

clear subcellular localisation with further intra-nuclear association explictly stated,

not including the nucleolus. We further cleaned the negative set by removing all

proteins that were in the original positive set (or homologs thereof). Finally, to

prevent over-estimation of test accuracy, the negative set was reduced so that the

remaining sequences had less than 30% similarity.

The final negative 359-sequence set thus represents nuclear proteins with no ex-

perimentally confirmed association with the nucleolus. However, due to the inherent

fluidity of nuclear proteins, the negative set may still contain proteins that are tran-

siting through the nucleolus. It should be noted that the final data sets differ from

the sets used by Lei and Dai who removed any protein not exclusively associated

with one of the six compartments. Additionally, 35 nucleolar proteins were found

in the original 879-set that were incorrectly assigned exclusively to a non-nucleolar

compartment in their study.

3.2. Model

Support-vector machines (SVMs10) are trained to discriminate between positive and

negative samples, i.e. to generate a decision function

f(x) =

n
∑

i=1

yiαiK(xi,x) + b (1)

where yi ∈ {−1, +1} is the target class for sample i ∈ {1, ..., n}, xi is the ith

sample, αi is the ith Lagrange multiplier and b is a threshold. All multipliers and

the threshold are tuned by training the SVM.

To determine the Lagrange multipliers, Platt’s sequential minimal optimiza-

tion11 with convergence improvements12 is used. Note that only multipliers directly
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associated with samples on the margin separating positives from negatives are non-

zero (these samples are known as the support-vectors). Models based on support-

vector machines have previously garnered success for classifying cytoplasmic protein

compartmentalisation.13–16

Due to the graded membership of intra-nuclear compartments, the SVM output

is converted to a probabilistic output, using a sigmoid function

p(x) =
1

1 + eA·f(x)+B
(2)

where A and B are estimated by minimizing the negative log-likelihood from train-

ing samples.17 The training data assigned to the model is divided internally so that

approximately 4/5 is used for tuning the support-vector machine, and 1/5 for tuning

the sigmoid function.

A number of sequence-based kernels have been developed recently, primarily

targeted to protein classification problems. We evaluate the performance of the

Spectrum kernel,18 the Mismatch kernel,19 Wildcard kernel,19 the Local Alignment

(LA) kernel20 and a profile-based Local Alignment kernel, each replacing K(·, ·) in

Equation 1.

We refer the reader to the literature for detailed information regarding the ker-

nels. Essentially, spectrum-based kernels (including the Mismatch and Wildcard

kernels) are based on the sharing of short sequence seqments (of length k, with

provision of minor differences, m is the allowed number of “mismatches” in the

Mismatch kernel, x is the number of “wildcard” symbols in the Wildcard kernel).19

The Local Alignment kernel compares two sequences by exploring their align-

ments.20 We explore some details of the Local Alignment kernel to describe the only

novel kernel in this paper–the Profile Local Alignment kernel.

An alignment between two sequences is quantified using an amino acid substi-

tution matrix, S, and a gap penalty setting, g. A further parameter, β, controls the

contribution of non-optimal alignments to the final score. Let Π(x1,x2) be the set

of all possible alignments between sequences x1 and x2. The kernel can be expressed

in terms of alignment-specific scores, ςS,g (for details of this function see20).

KLA
β (x1,x2) =

∑

π∈Π(x1,x2)

exp(βςS,g(x1,x2, π)) (3)

When the Local Alignment kernel is used herein, S is the BLOSUM62 matrix.

Evidence is mounting that so-called position-specific substitution matrices

(PSSMs; a.k.a. “profiles”) disclose important evolutionary information tied to each

residue.21,22 We adapt the alignment-specific function, ς , in the Local Alignment

kernel to use such substitution scores generated by PSI-Blast (max three iterations,

E-value threshold is 0.001, using Genbank’s non-redundant protein set) in place of

the generic substitution matrix, S. Specifically, we define the substitution score as

the average of the PSSM-entries for the two sequences (where the entry coordinates

are determined from the sequence position of one sequence and the symbol of the

other).
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Table 1. Accuracy of classification for different kernel settings when the output cut-off
is set to 0.5. Mean correlation coefficient on test data in 10-fold crossvalidation, re-
peated 10 times, is shown (1.0 indicates ideal agreement, 0.0 indicates chance agreement
with target data). The standard deviation is provided for each configuration after ±.

Kernel Parameters Correlation coefficient

Spectrum k = 3 0.340 ± 0.016
Wildcard k = 3, x = 1 0.391 ± 0.012
Wildcard k = 4, x = 1 0.388 ± 0.013
Mismatch k = 3, m = 1 0.382 ± 0.015
Mismatch k = 4, m = 1 0.420 ± 0.017
Local Alignment β = 0.1 0.399 ± 0.012
Profile Local Alignment β = 0.1 0.447 ± 0.017

4. Results

Models are trained and tested using 10-fold crossvalidation. Essentially, the available

data is first partitioned into ten evenly sized sub-sets. Second, ten models are trained

on 9 of the ten sub-sets, each sub-set combination chosen so that it is unique. Third,

each of the ten models is tested only on their respective remaining sub-set. Note that

no model is trained on any of their test samples, and each of the original samples

is used as a test sample by exactly one model. Finally, the test results are collated

and the whole crossvalidation procedure is repeated ten times to establish variance

in prediction accuracy.

All kernels are normalised, i.e. kernel values are adjusted such that the diagonal

of the kernel matrix is 1.0. Due to substantive computation requirements, only a few

kernel parameters were trialled but care was exercised to explore the configurations

most successful in the literature.

Support-vector machines require the manual setting of regularisation parameters

(C-values). Preliminary parameter-sweeps with two C-values (one for the positive

and one for the negative set) identified that when they exceed 1.0 the support-

vector machine generalised stably for all kernels. C-values were thus fixed at 1.0

throughout.

We use the correlation coefficient (CC) between experimentally confirmed asso-

ciation with the nucleolus and the prediction to illustrate the accuracy.

CC =
tp · tn − fp · fn

√

(tp + fn)(tp + fp)(tn + fp)(tn + fn)
(4)

where tp, tn, fp and fn is the number of true positives, true negatives, false positives

and false negatives, respectively.

The classification of proteins as nucleolar-associated (or not) reached 77% accu-

racy on our data set with a SVM equipped by the Profile Local Alignment kernel.

This corresponds to a correlation of CC = 0.447 (±0.017) between observed and

predicted nucleolar association. All classification results when using the default out-

put cut-off at 0.5 are presented in Table 1.

To further illustrate the accuracy we generated ROC curves for the SVMs with
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the Profile Local Alignment kernel and the Mismatch kernel (see Figure 1). That is,

by varying the threshold which needs to be exceeded by the probabilistic output,

the sensitivity and specificity of the model is monitored.
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Fig. 1. ROC curves illustrating the change in sensitivity as a function of specificity. The area
under the ROC is 0.811 for the Profile LA kernel (β = 0.1) and 0.794 for the Mismatch kernel
(k = 4, m = 1). Maximum correlation coefficient 0.451 of the Profile LA SVM is seen at an output
threshold of 0.66 (sensitivity=0.71, specificity=0.76). Sensitivity is defined as tp/(tp + fn) and
specificity as tn/(tn + fp).

The probabilistic output has the potential of indicating the certainty of the

prediction. We computed the mean output for the four classification outcomes using

a 0.5 cut-off (again over 10 runs using our best configuration, i.e. over (767+359)·10

test samples). (a) A true positive is 0.81 (±0.12), (b) a false positive is 0.71 (±0.12),

(c) a true negative is 0.26 (±0.13) and (d) a false negative is 0.34 (±0.12). Hence,

it is reasonable to regard a prediction closer to the cut-off as uncertain.

In the absence of known motifs clearly identifying nucleolar association, we at-

tempted to characterise the basis of generalisation of the best predictive model by

qualifying the mistakes made by it.

Over all ten runs, we collated all proteins mistakenly predicted to be nucleolar.

These false positives were divided into their location as assigned by the Nuclear

Protein Database6 and as used as training data by Lei and Dai.7 Available assign-

ments are shown in Table 2. The reader is reminded that this data set has limited

coverage, thus we present ratios based on available data. The mistakes are seem-

ingly distributed evenly between alternative intra-nuclear locations. Noteworthy,
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we discovered one protein (O95347) that was consistently misclassified as nucleolar.

O95347 is indeed nucleolar according to NPD but associated with Chromatin in

UniProt.

Table 2. Number of proteins falsely classified as nucleolar and their location
according to the Nuclear Protein Database as used by Lei and Dai. Aver-
age counts (of 359 possible) are shown over 10 repeats of 10-fold crossvalida-
tion tests. The “absolute” percentage of a mistaken location refers to the lo-
cation-count over the total number of false positives. The “relative” percentage
refers to the location-count relative the number of proteins known in each loca-
tion in Lei and Dai’s data set (assuming the distribution of proteins is uniform).

Location Proteins (count) % (absolute) % (relative)

Chromatin 26.4 15 21
Lamina 30.4 17 27

Nucleolus 1.0 1 0
Nucleoplasm 25.4 15 17
PML 14.8 8 19
Speckles 17.9 10 16
Unknown 58.6 34

We similarly collated all proteins that were incorrectly predicted to not asso-

ciate with the nucleolus. The false negatives were cross-checked by identifying their

function according to the Nucleolar Proteome Database.9 Hence, the tabulation

seen in Table 3 illustrates functions commonly confused with alternative locations.

Not surprising, beside the “unknowns”, at the top of the list there are functions

that relate to alternative compartments rather than being uniquely nucleolar, e.g

speckles are associated with both splicing and transcription related factors2 and the

nuclear lamina consists mainly of filament proteins, lamins.

On average a model in one fold of a cross-validation run is trained on about 1000

samples. Of these, about 600 were usually selected to be support-vectors, ultimately

defining the model’s decision boundary. To further qualify the nature of subscribed

generalisation, about 10% of all support-vectors of one model were analysed using

a kernelised hierarchical cluster analysis (using normalised Profile Local Alignment

kernel and average-linkage). The cluster dendrogram is shown in Figure 2. Each

support-vector is labelled with its target label (Pos=Nucleolar or Neg=Other loca-

tions), function as determined from the Nucleolar Proteome Database or location

as used by Lei and Dai. Proteins without functional annotation or location were

excluded. Functional groups are visible (e.g. splicing/transcription, chromatin, lam-

ina/cytoskeleton) further indicating that generalisation is based on protein function

rather than intra-nuclear location.

5. Conclusion

We develop a model that is able to predict nucleolar association of proteins from

their sequence. A support-vector machine fitted with a profile-based adaptation of
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Fig. 2. A cluster dendrogram illustrating the organisation of the support-vectors implemented by
one arbitrarily selected model. The distance in feature-space is indicated by the horisontal axis.
Several clusters exemplify the mixing of location but coherence of function, e.g. on top nucleolar
splicing and transcription factors are mixed with speckles-native proteins (the primary site for
such functions).
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Table 3. Number of proteins falsely predicted as non-nucleolar
and their function according to the
Nucleolar Proteome Database. Average counts (out of 767 posi-
tives) are shown over 10 repeats of 10-fold crossvalidation tests.

Function Proteins (count)

Function unknown 49.9
Cell cycle related factor 4.7
Transcription factor 3.9
Splicing related factor 3.8
Ubiquitin related protein 2.2
DNA binding protein 1.8
Lamina 1.8
Kinase/phosphatase 1.7

WD-repeat protein 1.7
Contaminant 1.6
RNA binding protein 1.5
RNA modifying enzymes 1.4
p53 activating 1.3
DNA repair 1.0
Intermediate filaments 1.0
RNA polymerase 1.0
Chromatin related factor 0.5
Chaperone 0.4
Other translation factors 0.4
DNA methyltransferase 0.1
Exonuclease mRNA 0.1

the Local Alignment kernel and a probabilistic output achieves a correlation co-

efficient of about 0.45 (or 77% on our specific data set). It is difficult to directly

compare this result with Lei and Dai’s work since their ensemble predictor distin-

guishes between six classes as well as using differently scoped training and test data.

Their SVM-only model has a lower correlation coefficient, but their GO term model

(which requires the prior identification of such terms, some of which are explicitly

concerned with location) exceeds the accuracy presented herein.

Compartmentalisation of proteins inside the nucleus is fluid and categorically

discriminating between such compartments may thus be objectionable. To alleviate

issues with multiple localisations, positive data used for model-tuning did not ex-

clude proteins for which additional compartments were known. Moreover, the model

presented here incorporates a probabilistic output which allows graded membership

to be reflected.

Analysis shows that false positive predictions are drawn evenly from other intra-

nuclear compartments. Conversely, nucleolar proteins not recognised as such are

sometimes involved in functions also associated with alternative locations, suggest-

ing that generalisation is based on functional features. Compartment-specific fea-

tures are thus largely eluding an approach that has garnered success for cytoplasmic

localisation, suggesting that to combat intra-nuclear trafficking we may need to re-

consider model designs.
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