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The similarity of two gene products can be used to solve many problems in information

biology. Since one gene product corresponds to several GO (Gene Ontology) terms, one
way to calculate the gene product similarity is to use the similarity of their GO terms.

This GO term similarity can be defined as the semantic similarity on the GO graph.

There are many kinds of similarity definitions of two GO terms, but the information
of the GO graph is not used efficiently. This paper presents a new way to mine more

information of the GO graph by regarding edge as information content and using the

information of negation on the semantic graph. A simple experiment is conducted and, as
a result, the accuracy increased by 8.3 percent in average, compared with the traditional

method which uses node as information source.
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1. Introduction

1.1. Gene Ontology

Gene Ontology (GO)1 was created to describe the attributes of genes and gene
products using a controlled vocabulary. It is a powerful tool to support the research
related to gene products and functions. For example, it is widely used in solving the
problems including identifying functionally similar genes, and the protein subcellu-
lar or subnuclear location prediction. GO has not been completed and the number
of biological concepts in it is still increasing. As GO puts its primary focus on
coordinating this increasing number of concepts, at the risk of losing the character-
istics of formal ontology, it has some differences from the ontology in Philosophy or
Computer Science.2,3 Gene Ontology Next Generation (GONG)4 was established to
solve this problem and discuss the maintenance of the large-scale biological ontology.
Recently, as the use of similarities on GO is increasing, some convenient databases
and softwares5–8 are developed and freely available, which makes it easier to use
GO semantic similarity.

∗To whom correspondence should be addressed.
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Fig. 1. Example of ontology.

The Gene Ontology9 is made up of three ontologies: Biological Process, Molec-
ular Function and Cellular Component. On May 2007, there are 13,552 terms for
Biological Process, 7,609 for Molecular Function and 1,966 for Cellular Component.

From the graph point of view, each of these ontologies is a connected directed
acyclic graph (DAG), with only one root node in that ontology. It is also true that
a special node can be set to combine these three ontologies into one, i.e., the special
node has the three root nodes of each ontology as its children.

Each node represents a concept, or an ontology term. If two concepts have some
relationship, an edge is drawn from one to the other. Gene Ontology only has
“is a” relationship and “part of” relationship. “is a” relationship indicates that the
concept in the in-node of the edge contains the concept in the out-node. The example
in Figure 1 is not Gene Ontology, but just an ordinary ontology for explanation.
In the ontology, edge 3 means that “Truck” is a kind of “Car”. “is a” relationship
can also be regarded as a standard that distinguishes a concept from other concepts
contained in the parent concept. Here, “Truck” is distinguished from “Hovercraft”
by the standard the edge 3 provides. “part of” relationship denotes that the in-node
concept has the out-node concept as one of its parts.

If a concept is contained in another concept, then this information is considered
positive information. On the other hand, when a concept is NOT contained in
another concept, this information is considered negative information. In Figure 1,
edge 4 is negative information for “Truck”.

1.2. GO and Similarity between Gene Products

The final aim of this research is to define the similarities between gene products using
GO information. Since each gene product has several GO terms, the similarity of
gene product can be calculated from the similarities of these GO terms. There are
two steps in this process.

The first step is to obtain the similarity of two GO terms from the GO graph.
This is the main focus of this paper.

The second step is to get the gene product similarity from the GO term simi-
larities. Let g1 and g2 be the GO term vectors of two gene products A and B, in
which 1 means the gene product has the GO term, while 0 means it does not. In
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Fig. 2. Example of gene products and their corresponding GO terms.

the example of Figure 2a, g1 and g2 will be as follows.

g1 = (0, 1, 1, 1, 0, 0)T g2 = (0, 1, 0, 0, 1, 0)T

Also, let M be a square matrix, in which the value of the ith row and the jth
column represents the similarity of the ith and the jth GO terms, obtained in the
first step. Then the similarity of two gene products Sim(A,B) ,or Sim(g1, g2), can
be defined as follows.

Sim(g1, g2) = g1
T Mg2 (1)

This research is conducted to fully mine the information in GO graph and define
similarities between GO terms. In other words, to get a better similarity matrix M .

1.3. Related Work

There are many semantic similarity definitions of GO terms. Some representative
ones can be classified by two kinds of standards (Table 1).

The first standard is to divide the definitions into probability-based and
structure-based ones. The probability-based methods depend on the occurrence fre-
quency of each GO term in some database. Resinik,10 Jiang and Conrath,11 and
Lin12 provided their definitions from this point of view. Lord13 introduced these
definitions into Gene Ontology. Later, Couto14 proposed a method to better apply
them to DAGs rather than trees. This kind of methods is based on information
theory, and seems to be reasonable. However, it relies on a particular database,
SWISS-PROT. On the other hand, another idea is developed to define the simi-
larity from the structure of ontology. The definitions proposed by Rada,15 Wu,16

Zhang,6 and Gentleman7 are examples of this idea. They made it possible to reason-
ably obtain the similarity of two GO terms in any database, even if the distribution
of the data is highly unbalanced or the size of the database is quite small.

aPicture source is [http://lectures.molgen.mpg.de/ProteinStructure/Levels/index.html].
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Table 1. Similarity definition methods.

Probability-based Structure-based

Distance Jiang and Conrath Rada

Info content Resinik Zhang, Wu
Content ratio Lin Gentleman

The definition measures can also be classified by another standard into three
groups. The first group is to define the similarity of two nodes by the distance
between them. Rada15 proposed the original framework of this idea. Jiang and
Conrath11 investigated the weights of the edges to make it more reasonable. The
second group of definitions is to calculate the shared information content of two
nodes. Resinik10 first proposed the using of information content. Zhang6 and Gen-
tleman7 provided similar definitions based on the structure of ontology. The third
group of definitions is to compare the shared information of the two concepts and all
the information needed to describe both of these concepts. Lin12 and Gentleman7

did some work concerning this idea.

2. Method

2.1. Notations

c denotes a term, or a node, in an ontology graph. An edge e fluxes into c means
that there exists a path from the root node to c which contains e. The induced
graph V (c) of c is the graph made up of all paths from the root node to c. |V |n and
|V |e denote the number of nodes and the number of edges in V .

In Figure 1, for example, if c is “Hovercraft”, the edge e = 4 fluxes into c, be-
cause there exists a path {{“Transportation”, “Car”, “Hovercraft”}, {1, 4}} from
the root node “Transportation” to c, which contains e (Figure 3(a), left). The in-
duced graph V (c) is {{“Transportation”, “Car”, “Ship”, “Hovercraft”}, {1, 2, 4,
5}}(Figure 3(b)). |V (c)|n = |{“Transportation”, “Car”, “Ship”, “Hovercraft”}| = 4
and |V (c)|e = |{1, 2, 4, 5}| = 4.

Fig. 3. The paths and the induced graph of “Hovercraft”.
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2.2. Traditional Definition

The idea of Gentleman7 is used as a traditional definition. The similarity is defined
as the number of nodes that the two induced graphs share in common, divided by
the number of nodes contained in at least one of the two induced graphs.

SimUI(c1, c2) =
|V (c1) ∩ V (c2)|n
|V (c1) ∪ V (c2)|n (2)

In the example of Figure 1, the similarity of “Truck” and “Hovercraft” is 0.4
since they have 2 nodes in both induced graphs and 5 in at least one induced graph.

The basic idea is similar to that of Lin. Here, the information content of a node
is regarded as being represented by its ancestor nodes. The shared information of
two nodes is the intersection of their ancestor node sets. All information needed to
describe the concepts of two nodes is the union of their ancestor node sets.

The ideas proposed in this paper can be considered as the counterparts of this
method, and one of the differences is that the proposed ideas use edges, instead of
nodes, to calculate information content. Therefore, SimUI should be chosen as a
traditional method to be compared with the new ones.

2.3. Proposed Similarity Definitions

The first new method provides the positive similarity of two nodes c1 and c2. It is
similar to SimUI, but edges are used instead of nodes.

SimPE(c1, c2) =
|V (c1) ∩ V (c2)|e
|V (c1) ∪ V (c2)|e (3)

Since GO is a DAG, unlike tree, edges contain more information than nodes
(SEE 4.1). In Figure 1, the induced graphs of “Truck” and “ Hovercraft” have one
edge in common and 5 different edges altogether. Therefore the similarity is 0.2.

On the other hand, for a node c and an edge e, if e has its in-node as an
ancestor of c, but e does not flux into c, it means that the node c does not meet
the standard provided by the edge e. To define the negative similarity, the negative
edge set should be defined first. The negative edge set of c, NES(c), denotes the
set of edges that have in-nodes in the induced graph of c, but not their out-nodes.
This consideration of out edges of each node can also be found in the local density
introduced by Jiang and Conrath.11

NES(c) = {< cin, cout >∈ E|cin ∈ V (c), cout /∈ V (c)} (4)

Here, E is the set of all edges in the GO graph. Then the negative similarity can
be defined as follows.

SimNE(c1, c2) =
|NES(c1) ∩NES(c2)|
|NES(c1) ∪NES(c2)| (5)
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Here, the numerator means the size of shared negative information of both nodes,
i.e., the number of the standards that c1 and c2 both do NOT meet. And the
denominator indicates the number of standards that at least one of the nodes does
NOT meet. In Figure 1, the similarity of “Truck” and “Hovercraft” is 0.

To combine these two similarities, the easiest way is to multiple them together.

SimEG(c1, c2) = SimPE(c1, c2) · SimNE(c1, c2) (6)

For an edge e that has both its in-edge and out-edge NOT in V (c), whether
c meets the standard provided by e is unknown, or meaningless. In Figure 1, the
standard of edge 3 makes the concept “Truck” different from the concept “Car”. But
this standard is meaningless when applied to the concept “Tanker”, since “Tanker”
is not a “Car” at all. Therefore, such edge is not considered to contain either positive
or negative information of c.

3. Results

To evaluate the methods UI, PE and EG, an experiment of protein subcellular
location prediction was conducted. The experiment was composed of several steps.
Firstly, the proteins were randomly chosen, and the corresponding GO terms were
found. Secondly, the chosen proteins were divided into training and test samples.
Thirdly, a classifier was used to predict the subcellular locations of test samples
from the subcellular locations of the train samples, using their similarities.

3.1. Dataset

The Gene Ontology structural data are from the Gene Ontology.9 As the whole
ontology contains 32,297 of “is a” relationships, but only 4,759 of “part of” rela-
tionships, all “part of” relationships are ignored to make the problem simple.

The training and test data were obtained by choosing from the dataset created by
Park and Kanehisa.18 The GO terms corresponding to these proteins were obtained
through the InterPro. i.e., corresponding InterPros were first found from the protein,
and then the GO terms of the InterPros were marked to the protein. If one protein
was marked by more than one exactly the same GO terms, only one of them was left.
In the experiment, several large classes (Table 2) of subcellular locations were used.
To avoid the unbalance between the classes, 600 samples were randomly chosen for
each of these classes. Each of these samples had at least one GO term so that the
similarity of any two chosen proteins could be found via their GO term similarities.

3-fold cross validation was used to assess the performances of the definitions.
Each class was divided into three sets of samples randomly. Then, two of these sets
in each class were chosen and mixed as a training set and the one left over was used
in a test set. Consequently, three groups of training and test sets were preparedb.

b[http://bcmi.sjtu.edu.cn/˜liyuanpeng/APBC2008/{train,test}{1,2,3}.txt].



October 3, 2007 20:46 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc084a

7

Table 2. Number of samples in each class.

Class Subcellular location # of Samples

1 Chloroplast 600

2 Cytoplasmic 600
3 Extracellular 600

4 Mitochondrial 600
5 Nuclear 600

Total 3000

3.2. Classifier

k-Nearest Neighbor (k-NN) classifier was designed to predict the subcellular loca-
tions, or classes, of the test samples. The distance of two samples was defined as the
minus value of their similarity, and majority voting method was used. If two classes
appeared the same number of times in the k-nearest neighbors of a test sample, one
of them was selected randomly as the predicted class of that test sample.

3.3. Tables and Graphs

The prediction accuracies of the experiments are listed on Table 3 as percentages,
followed by the corresponding k values that brought the best results. The three
graphs in Figure 5 demonstrate the accuracies for each group as the change of k

values. In each of these graphs, the horizontal axis represents the value of k and
the vertical axis represents the accuracy percentage. The accuracies of each class,
corresponding to the best k values, are listed on Table 4, for each group and the
average. Their increases are plotted in Figure 6. In all tables and graphs, “Increase”
means the difference between the values of the EG and UI methods.

4. Discussion

4.1. The Use of Edges and Negative Information

From the results, it is obvious that PE has advantage over UI, and EG has advantage
over PE. The reason can be found in information gain. Consider a small ontology
example in Figure 4, SimUI(B,D) will not change even if the edge from A to D
is deleted. In other words, the information of the edge is ignored. SimPE(B,D)
can contain this information, but the information of the edge from A to C is not

Fig. 4. Example of ontology structure.
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Table 3. The accuracies of each group (%)

group UI (k) PE (k) EG (k) Increase

1 63.5 (40) 69.0 (21) 71.1 (5) 7.6
2 59.6 (8) 65.8 (6) 68.1 (7) 8.5

3 60.5 (47) 67.6 (23) 69.2 (3) 8.7

average 61.2 67.5 69.5 8.3
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Fig. 5. The relationship of total accuracies and values of k for each group and method.

included. And when SimEG(B,D) is used, this edge information can also be included.
Therefore, more information can be used in PE than in UI, and in EG than in PE.

4.2. The Difference among Classes

Table 4 and Figure 6 show that different classes prefer different methods of classi-
fication. For class 5, the accuracy was already close to 100% when the UI method
was applied, and this could be the reason for the less change of the accuracies when
the PE and EG methods were used.

4.3. More Comparison Results

An experiment, without cross validation, was conducted for each kind of structure-
based methods. The results were 65.2% for method of Rada,15 61.4% for Wu,16

66.0% for Zhang6 and Gentleman,7 64.5% for UI, 69.4% for PE ,and 70.8% for EG.
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Table 4. Class accuracies corresponding to the best k values (%).

group 1

Class UI PE EG Increase

1 28.5 39.0 40.0 11.5
2 62.5 71.0 77.0 14.5

3 70.5 83.5 83.5 13.0

4 60.5 57.0 60.5 0.0
5 95.5 94.5 94.5 -1.0

group 2

Class UI PE EG Increase

1 35.0 38.0 45.0 10.0
2 58.0 64.0 65.0 7.0

3 56.5 71.0 74.0 17.5

4 54.5 61.5 61.5 7.0
5 94.0 94.5 95.0 1.0

group 3

Class UI PE EG Increase

1 44.5 43.0 47.5 3.0

2 58.5 74.5 73.5 15.0
3 62.0 75.5 81.5 19.5

4 41.0 50.0 47.5 6.5
5 96.5 95.0 96.0 -0.5

average

Class UI PE EG Increase

1 36.0 40.0 44.2 8.2

2 59.7 69.8 71.8 12.1
3 63.0 76.7 79.7 16.7

4 52.0 56.2 56.5 4.5
5 95.3 94.7 95.2 -0.1

Fig. 6. Increases in each class and group.

5. Conclusions

From the experiment, it can be concluded that the use of edges as information
carriers is better than the use of nodes, and that negative information, combined
with positive information, provides further support for better predictability.

6. Acknowledgments

The authors thank Bo Yuan, Yang Yang and Wen-Yun Yang for their valuable
comments and suggestions. This research is partially supported by the National
Natural Science Foundation of China via the grant NSFC 60473040.



October 3, 2007 20:46 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc084a

10

References

1. The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology.
Nature Genet, 25:25-29, 2000.

2. B. Smith, J. Williams, S. Schulze-Kremer. The Ontology of the Gene Ontology. AMIA
Symposium Proceedings, 609-613, 2003.

3. M. E. Aranguren, S. Bechhofer, P. Lord, U. Sattler and R. Stevens. Understanding
and using the meaning of statements in a bio-ontology: recasting the Gene Ontology
in OWL. BMC Bioinformatics, 8:57, 2007.

4. Gene Ontology Next Generation [http://gong.man.sc.uk]
5. E. Camon, M. Magrane, D. Barrell, V. Lee, E. Dimmer, J. Maslen, D. Binns, N.

Harte, R. Lopez, and R. Apweiler. The Gene Ontology Annotation (GOA) Database:
sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Research, 32:D262-
D266, 2004.

6. P. Zhang, J. Zhang, H. Sheng, J. J Russo, B. Osborne and K. Buetow. Gene functional
similarity search tool (GFSST). BMC Bioinformatics, 7:135, 2006.

7. R. Gentleman. Visualizing and Distances Using GO. 2006.
8. H. Froehlich, N. Speer, A. Poustka, T. Beissbarth. GOSim - An R-package for com-

putation of information theoretic GO similarities between terms and gene products.
BMC Bioinformatics, 8:166, 2007.

9. the Gene Ontology [http://www.geneontology.org].
10. P. Resnik. Using Information Content to Evaluate Semantic Similarity in a Taxonomy.

Proc. the 14th International Joint Conference on Artificial Intelligence, 448-453, 1995.
11. J. J. Jiang and D. W. Conrath. Semantic Similarity Based on Corpus Statistics and

Lexical Taxonomy. Proc. International Conference Research on Computational Lin-
guistics, ROCLING X, 1997.

12. D. Lin. An Information-Theoretic Definition of Similarity. Proc. of 15th International
Conference on Machine Learning, 296-304, 1998.

13. P. Lord, R. Stevens, A. Brass and C. Goble. Investigating semantic similarity mea-
sures across the Gene Ontology: the relationship between sequence and annotation.
Bioinformatics, 19(10):1275-1283, 2003.

14. F. Couto, M. Silva, P. Coutinho. Semantic Similarity over the Gene Ontology: Fam-
ily Correlation and Selecting Disjunctive Ancestors. Conference in Information and
Knowledge Management, 2005.

15. R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and Application of
a Metric on Semantic nets. IEEE Transaction on Systems, Man and Cybernetics,
19(1):17-30, 1989.

16. H. Wu, Z. Su, F. Mao, V. Olman and Y. Xu. Prediction of functional modules based on
comparative genome analysis and Gene Ontology application. Nuceic Acids Research,
33(9):2822-2837, 2005.

17. J. L. Sevilla, V. Segura, A. Podhorski, E. Guruceaga, J. M. Mato, L. A. Martinez-Cruz,
F. J. Corrales, and A. Rubio. Correlation between Gene Expression and GO Seman-
tic Similarity. IEEE/ACM Transactions on Computional Biology and Bioinformatics,
2(4), 2005.

18. K. J. Park and M. Kanehisa. Prediction of protein subcellular locations by support
vector machines using compositions of amino acids and amino acid pairs. Bioinfor-
matics, 19(13):1656-1663, 2003.

19. Z. Lei, Y. Dai. Assessing protein similarity with Gene Ontology and its use in subnu-
clear localization prediction. BMC Bioinformatics, 7:491, 2006.


