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Rapidly increasing numbers of organisms have been completely sequenced and most of their genes
identified; homologies among these genes are also getting established. It thus has become possible to
represent whole genomes as ordered lists of gene identifiersand to study the evolution of these entities
through computational means, in systematics as well as in comparative genomics. While dealing with
rearrangements is nontrivial, the biggest stumbling blockremains gene duplication and losses, leading
to considerable difficulties in determining orthologs among gene families—all the more since orthol-
ogy determination has a direct impact on the selection of rearrangements. None of the existing phyloge-
netic reconstruction methods that use gene orders is able toexploit the information present in complete
gene families—most assume singleton families and equal gene content, limiting the evolutionary op-
erations to rearrangements, while others make it so by eliminating nonshared genes and selecting one
exemplar from each gene family. In this work, we leverage ourpast work on genomic distances, on
tight bounding of parsimony scores through linear programming, and on divide-and-conquer methods
for large-scale reconstruction to build the first computational approach to phylogenetic reconstruction
from complete gene order data, taking into account not only rearrangements, but also duplication and
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loss of genes. Our approach can handle multichromosomal data and gene families of arbitrary sizes and
scale up to hundreds of genomes through the use of disk-covering methods. We present experimental
results on simulated unichromosomal genomes in a range of sizes consistent with prokaryotes. Our
results confirm that equalizing gene content, as done in existing phylogenetic tools, discards important
phylogenetic information; in particular, our approach easily outperforms the most commonly refer-
enced tool, MGR, often returning trees with less than one quarter of the errors found in the MGR trees.

Keywords: phylogenetic reconstruction; whole-genome data; genomic distance; gene inversion; gene
duplication; gene loss

1. Introduction

Phylogenetic reconstruction has for many years been based on alignments of the sequences
of one or more orthologous genes and proteins. The accumulation of full genome sequences
enables one to use much richer data: one can use hundreds of genes to build a more detailed
picture of organismal evolution1–3 or one can be even more ambitious and use every gene
present in the genomes. In the latter category are simple content-based approaches, where
the presence or absence of genes from the global inventory are the informational charac-
ters;4,5 as these approaches represent the data in the form of bit strings where each position
is a character, they can make use of existing software packages for analysis. Obviously,
however, a complete genome sequence contains much information besides the individual
sequences of constituent genes or the presence or absence ofthese genes: the genome se-
quence identifies an ordering of these genes along the chromosomes, as well as a direction
of transcription. Moreover, disruption of this ordering isa relatively rare occurrence—a
“rare genomic event”.6 Thus changes in the ordering are valuable study tools in phyloge-
netics as well as comparative genomics.

Phylogenetic methods based on gene orders are still in theirinfancy—see the survey
of Moret and Warnow:7 the problems faced are mathematically and computationallymuch
more challenging than in sequence-based reconstruction and the models not as well under-
stood. These methods have been applied to simple data, such as organellar genomes across
sets of taxa where the gene content is highly conserved (and where, of course, the number
of genes is quite small, on the order of 40 genes for animal mitochondria and 120 genes for
plant chloroplast).8–12 As one attempts to scale such analyses to cellular organisms, several
problems arise. One is simply a problem with the data: annotations of complete cellular
genomes are still in various stages of completion, so that identifying homologous gene
families with high accuracy is a challenge. Another is the highly variable gene content (just
in bacteria, obligate endosymbionts may have under 1,000 genes, while free-living bacteria
may have over 5,000). A third is the widespread occurrence ofgene duplications and losses:
gene families, while mostly containing a single gene, may contain up to 100 homologs in
bacteria and over 1,000 homologs in eukaryotes. Finally, the difference in scale is a huge
challenge given that most algorithms proposed for the task exhibit exponential growth in
running time as a function of the size of the problem.

Only a few attempts to use gene orders for reconstructing thephylogeny of a group
of cellular organisms have been made to date. The first few reduced the gene-order data
(which forms a single phylogenetic character with an immense number of possible states)
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to a collection of much simpler characters, such as the presence or absence of adjacent
gene pairs,13 an approach later broadened into formal encodings of gene orders used in
parsimony analyses (see the survey of Wang et al.14); other approaches used phylogeneti-
cally informative clusters of genes.15–17More recently Belda et al.18 used a variant of these
approaches on a set of 30-proteobacteria: they chose 247 specific orthologs presentin
all 30 bacteria, thereby both reducing the size of the problems and sidestepping the issue
of gene families. Many papers have appeared on phylogeneticreconstruction from gene-
order data when each gene order is a (signed) permutation of areference set—for a recent
survey, see Moret and Warnow7—, the two most notable ones being our own GRAPPA19

and the multichromosomal tool MGR.20 Finally, Blin et al.21 went one step further on a
subset of 13 of the aforementioned-proteobacteria, by using a local, pairwise restriction
on gene content rather than a global one. None of these attempts to date has explicitly taken
duplications and losses into account nor attempted to modelthem as evolutionary events.
Bayesian MCMC methods, such as BADGER,22 suffer from similar issues.

We earlier developed a measure of genomic distance that, given a pair of genomes, re-
turns an estimate of the total number of evolutionary eventsunder the iDLR (insertions, du-
plications, losses, and rearrangements) separating thesetwo genomes.23,24 (An alternative
based on the closely related notion of common intervals recently appeared.25) Simulations
results show very high accuracy up to a high threshold of saturation (where the estimated
distance starts lagging behind the true number of events). Pairwise distances alone can be
used as a basis for distance-based reconstruction, as was done for 13-proteobacteria (the
same that would later be used by Blinet al.21) in the MS thesis of Earnest-DeYoung,26

who found that the reconstructed phylogeny differed from the reference one of Leratet
al.2 by a single SPR event—that is, a single subtree was misplaced, as would also later be
the case in the reconstruction of Blinet al.21 This work served as a proof of concept, but
used a number ofad hocmeasures to keep the computational work down, such as identi-
fying groups of genes that always formed a contiguous group and taking advantage of the
reference phylogeny to establish an asymmetric cost for gene gains and losses.

In this paper, we combine our genomic distance24 with our tight bounding based on
linear programming (LP)27 to produce the first phylogenetic reconstruction method that at-
tempts to return a most parsimonious tree in terms of a palette of evolutionary events that
include insertion, duplication, and loss of genes (or gene segments) as well as inversions,
using the complete gene orders with full gene families and noprior known orthologies (as
the orthologies will obviously depend on the returned tree). We provide experimental re-
sults comparing our new approach to reconstruction based onthe genomic distances alone
(using neighbor-joining), to reconstruction by our same tool, but from genomes reduced to
equal gene contents, and to reconstruction, again on the basis of equalized gene contents,
by the MGR server20 and by neighbor-joining (NJ).

Our results indicate that computing under the iDLR model (i.e., using the full genomic
gene ordering) regularly improves results over using equalized gene contents, often sig-
nificantly so—errors are commonly reduced by a factor of 4 or more. They also indicate
that the parsimonious trees returned by our LP-based procedure are as good as or better
than those returned by neighbor-joining. Under parameter settings with relatively modest
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numbers of events, the two exhibit similar accuracy, indicating that the iDLR distance es-
timates are both close to additivity and quite distinct fromeach other. These findings echo
practice with sequence data, and, as with sequence data, we find that increased deviations
from ultrametricity (in the form of widely different total amount of evolution on different
paths from the root to the leaves) create situations where NJdoes increasingly worse than
our LP-based procedure—until the pairwise distances grow large enough to prevent accu-
rate reconstruction by any means. We kept the number of taxa low (13 or fewer) in order
to run large series of experiments with the LP-based method and with MGR, but we know
from our past work28 that the LP-based method can be scaled up to much larger numbers
of genomes with very little loss of accuracy by using a disk-covering method.

2. Methods and Models

Our phylogenetic reconstruction algorithm is based on GRAPPA,19,29 which we developed
for analyzing chloroplast gene orders. GRAPPA examines every tree topology, computes a
bound for each, and, for each tree that passes the bound, scores it by computing ancestral
gene orders that minimize the total length of the tree, as measured in terms of inversions.
The original GRAPPA is limited to singleton gene families and equal gene content, just like
the various inference programs developed since, such as MGR, BADGER, etc. Its exhaus-
tive examination of all trees also limits the maximum numberof genomes it can handle,
to about 15 taxa for single runs, 12-14 taxa when running benchmarks, while its method
for scoring a tree requires the repeated computation of an inversion median at each internal
node, an NP-hard problem that limits the lengths of tree edges it can handle. To extend it to
larger numbers of taxa, Tang and Moret used a disk-covering method (in effect, a special-
ized divide-and-conquer approach) and showed that the resulting DCM-GRAPPA scaled
gracefully to at least 1,000 genomes.28 To date, the best way to extend the approach to larger
genomes has been to avoid scoring trees. The original bounding computes a shortest cycle
on the leaves of the tree and was found to eliminate well over 99% of the candidates.29 Tang
and Moret27 later proposed a linear programming (LP) formulation wherevariables are the
lengths of the tree edges and the constraints are simple metric inequalities; this approach
eliminated well over 99.99% of the candidates in their experiments. Their LP formulation
was later improved into a pure covering LP,30 which offers efficient solutions (running inO(n2:5) time, wheren is the number of genes) and even more efficient approximations.

The LP score was close enough to the actual score that Tang andMoret proposed using
the LP score in lieu of scoring the tree, avoiding any median computation. The resulting
reconstruction lacks ancestral orderings, but gives a topology, an estimated score, and esti-
mated edge lengths (the values of the LP variables), much as amaximum-likelihood recon-
struction does for sequence data. We still lack a good approach to the inference of ancestral
gene orders under the iDLR model, both from the point of view of computational effort
(medians again) and from that of accuracy. Indeed, Earnest-DeYounget al.,31 in a study of
the 13-proteobacteria, found that internal gene orders were seriously underconstrained
and so could not be reliably inferred—we need a more detailedand sensitive model of the
evolutionary operations on a gene ordering.
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The triangle inequalities that form the LP rely on a direct computation of the distances
between selected pairs of leaves. Thus we can generalize theLP formulation directly to
the iDLR model by using an estimate of the distance between two arbitrary genomes with
varied gene families. We had proposed and tested just such a measure,23,24which estimates
the total number of insertions (including duplications), losses, and inversions needed to
transform one unichromosomal genome into another. The measure is readily extended to
multichromosomal genomes by replacing inversions with double-cut-and-joinoperations,32

since the latter cover fusion, fission, and translocation among chromosomes, yet can be
handled just like inversions.

Our final algorithm thus combines DCMs for scaling to large numbers of genomes,
a specific LP formulation to estimate branch lengths and total score of the trees, and the
intergenomic distance of Swensonet al.24 to provide input values to the LP. More specifi-
cally, we first compute the pairwise intergenomic distances; we then enumerate all possible
trees, following the strategy of GRAPPA, attempting to eliminate as many trees as possible.
The bounding is done first using the circular lower bound as described in Moretet al.;33

if the tree passes that test, we then proceed to set up a linearprogram for it. In the linear
program, the variables are the edge lengths; the constraints are derived using the triangle
inequality—basically, a leaf-to-leaf path in the tree, corresponding to a particular sum of
variables, should have length no less than the pairwise intergenomic distance between the
two leaves. It should be noted that, whereas the constraintsin the original use of the LP
approach27 were mathematically correct because all measures used wereedit distances, the
constraints used here have no such guarantee, since we are now using estimates of the true
evolutionary distance. On the basis of the results of Swenson et al.,24 we expect most of
them to be correct, with a few possibly off by small deviations. Then again, we also expect
the LP score to be even closer to optimal than in its original use, as the distances used in the
constraints are much closer to the true evolutionary distances than was the case in the study
of Tang and Moret. Finally, the score returned by the LP, rounded up to the nearest integer,
is assigned as the score of that tree and the algorithm returns the trees with the lowest score.

3. Experimental Design

Our objective is to verify that computing under the full iDLRmode, i.e., handling both
rearrangements and changes in gene content, allows for better reconstruction than handling
only rearrangements on genomes reduced to signed permutations. Relative accuracy is thus
our main evaluation criterion. However, absolute accuracyis needed in order to put the
comparison in perspective. Since, in phylogenetic reconstruction, error rates larger than
10% are considered unacceptable, there is obviously littleuse in improving the error rate by
a factor of two if the result is just bringing it from 60% down to 30%. We also need to test a
wide range of parameters in the iDLR model, as well as to test the sensitivity of the methods
to the rate of evolution. These considerations argue for testing on simulated data, where we
can conduct both absolute and relative evaluations of accuracy, before we move to applying
the tools to biological data, where only relative assessments of scores can be made. The
range of dataset sizes need not be large, however, as we know that applying DCM methods
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scales up results from datasets of fewer than 15 taxa to datasets of over one thousand taxa
with little loss in accuracy and very little distortion overthe range of parameters. As we
can run many more tests on small datasets and as our primary interest is the effect of model
parameters on accuracy, we generated datasets in the range of 10 to 13 taxa.

Simulated trees are often generated under the Yule-Hardingmodel—they are birth-
death trees. Many researchers observed that these trees arebetter balanced than most pub-
lished ones. Other simulations have used trees chosen uniformly at random from the set
of all tree topologies, so-called “random” trees; these, incontrast, are more imbalanced
than most published trees. Aldous34 proposed the�-split model to generate trees with a tai-
lored level of balance; depending on the choice of�, this model can produce random trees
(� = �1:5), birth-death trees (� = 0), and even perfectly balanced trees. We use all three
types of trees in our experiments; for�-split trees, Aldous recommended using� = �1 to
match the balance of most published trees; instead, we chosethe parameter to match the
computational effort on the datasets from which those treeswere computed, which led us
to using� = �0:8. On random and�-split trees, expected edge lengths are set after the
tree generation by sampling from a uniform distribution on values in the setf1; 2; : : : ; rg,
wherer is a parameter that determines the overall rate of evolution. In the case of birth-
death trees, we used both the same process and the edge lengths naturally generated by the
birth-death process, deviated from ultrametricity and then scaled to fit the desired diameter.

We generate the true tree by turning each edge length into a corresponding number of
iDLR evolutionary events on that edge. The events we consider under the iDLR model are
insertions, duplications, losses, and inversions of genesor contiguous segments made of
several genes—in particular, inserting, duplicating, or deleting a block ofk consecutive
genes has the same cost regardless of the value ofk. We forced the expected number of in-
serted and duplicated elements to equal the expected numberof deleted elements, in order
to keep genome sizes within a general range. We varied the percentage of inversions as a
function of the total number of operations from 20% to 90%. The remaining percentages
were split evenly between insertions/duplications and losses, with the balance of insertions
and duplications tested at one quarter, one half, and three quarters. The expected Gaussian-
distributed length of each operation filled a range of combinations from 5 to 30 genes.
These are conditions similar to, but broader in scope than, those used in the experiments
reported in Swensonet al.24

In all our simulations, we used initial (root) genomes of 1’000 genes. The resulting leaf
genomes are large enough to retain phylogenetic information while exhibiting large-scale
changes in structure. These sizes correspond to the smallerbacterial genomes and allow us
to conclude that our results will extend naturally to all unichromosomal bacterial genomes.

The collections of gene orders produced by these simulations are then fed to our various
competing algorithms. These are of two types: (i) algorithms running on the full gene or-
ders, namely NJ and our new LP-based algorithm; and (ii) algorithms running on equalized
gene contents, which include NJ again (running on the inversion distance matrix produced
by GRAPPA), GRAPPA, and MGR. Gene contents are equalized by removing gene fami-
lies with more than one gene, then keeping only singleton genes common to all genomes.
On some of these datasets, the equalized gene content is minuscule—with high rates of
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evolution, the number of genes shared by all 12 taxa is occasionally in the single digits, ob-
viously leading to serious inaccuracies on the part of reconstruction algorithms. We collect
the data (including running times, the actual trees, internal inferred gene orders, inferred
edge lengths, etc.) and compute basic measures, particularly the Robinson-Foulds35 dis-
tance from the true tree—the most common error measure in phylogenetic reconstruction.

4. Results and Discussion

We ran collections of 100 datasets of 10 to 13 genomes, each of1’000 genes, under various
models of tree generation and various parameters of the iDLRmodel. We used birth-death,
random, and�-split (with � = �0:8) models, with evolutionary diameters (the length of
the longest path, as measured in terms of evolutionary operations, in the true tree) of 200,
400, 500, and 800 operations. (We ran tests with diameters of800, but noted that most
resulting instances exhibited strong saturation—that is,that many of the true edge lengths
were significantly larger than the edit distances between the genomes at the ends of the
edge; since no reconstruction method can do well in the presence of strong saturation, we
did not pursue diameters larger than 800.) For each tree returned, we measured its RF error
rate (the percent of edges in error with respect to the true tree) and then averaged the ratios
over the set of test instances for each fixed parameter. We computed the ratio of the RF rate
for our approach with that for NJ on full genomic distances and with those for the three
approaches with equalized gene contents, binning the results into one “losing” bin (the
other method did better), one bin of ties, and 5 bins of winners, according to the amount of
improvement. Not all 100 instances are included in these averages, because some instances
had equalized gene contents of just 2 or 3 genes and could not be run with GRAPPA.

We present below a few snapshots of our results. Table 1 showsthe results of using full
genomic distances for�-split trees on datasets of diameters 200, 400, and 500, using 80%
inversions. In this case, no difference was found between the results returned by our LP-
based method and those returned by NJ using full genomic distances. The average RF error
rate for MGR was 23% for diameter 200, 32% for diameter 400, and 42% for diameter 500.
As simple a method as NJ handily beats existing methods that must rely on equalized gene
contents, often by large factors (e.g., factors of 4 or more in 26% of the cases with diameter
200 with respect to MGR). The reduction in error rate was sufficient in many cases to turn
unacceptable results (with error rates well in excess of 10%) into acceptable ones.

Table 1. Accuracy results for NJ on full genomic distances and for three evolutionary
diameters compared to three methods on equalized gene contents. Column triples show
wins, ties, and losses, in percent. Quintiles in the winningcolumns denote error reductions
by factors larger than 4, 3, 2, 1.5, and 1.

Dataset NJ GRAPPA MGR
200 16-4-25-1-0 50 4 14-0-11-4-0 1 3 26-6-21-4-1 36 6
400 4-0-5-4-0 23 0 3-0-6-1-0 0 0 5-1-7-6-12 1 4
500 5-5-5-8-0 69 8 11-2-14-17-15 18 23 17-7-14-17-14 24 7

w t l w t l w t l
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Experience with sequence data leads us to expect that an MP method, should do better
than NJ when the diameter and deviation from ultrametricityget large. Our LP-based ap-
proach is a hybrid: unlike an MP method, it does not reconstruct ancestral labels, but like
an MP method, it attempts to minimize the total length of the tree; thus it should at least
occasionally outperform NJ. We tested this hypothesis on random trees and birth-death
trees where, in both cases, we generated edge lengths by uniform sampling from the setf1; 2; : : : ; rg, for values ofr ranging from 20 to 100, still using 80% inversions. Tables 2
and 3 present the results, this time limited to the referenceMGR and to the two methods
using full genomic data. Both tables show gains for the LP-based method over simple NJ

Table 2. Error rates, in percent, on random trees for the two approaches using full genomic
data and for MGR on equalized gene contents.

20 40 60 80 100
LP 0.9 8.0 7.8 6.0 26.0
NJ 0.5 8.5 8.7 9.5 25.5

MGR 11.3 31.8 34.0 35.0 49.0

Table 3. Error rates, in percent, on birth-death trees for the two approaches using full
genomic data and for MGR on equalized gene contents.

20 40 60 80 100
LP 0.2 8.5 7.6 5.7 19.4
NJ 1.4 9.0 8.5 8.0 18.0

MGR 9.7 31.7 31.8 33.7 51.4

as evolutionary rates increase, until both methods start failing at r = 100. Note that the
accuracy gains over MGR are consistently very high.

Keeping the proportions of inversions to 80%, however, is neither very realistic, as gene
duplications and losses are presumably more frequent in nature than rearrangements, nor
very challenging, as, given a bounded set of possible gene choices, duplications and losses
will saturate sooner than inversions. The experiments of Swensonet al.24 did not test low
percentages of inversions, so we ran sets of tests with 20% inversions only, keeping all other
relative percentages of events identical. Table 4 shows these results. We were pleased, and
somewhat surprised, to observe actual improvements in the quality of trees for rates up tor = 40; the threshold effect tor = 60 corresponds to a type of saturation caused by too
many insertions and deletions. (Approaches with equalizedgene contents are not reported,
since they failed completely, as expected.)

Table 4. Error rates, in percent, on birth-death trees with only 20% inversions.

20 40 60 80
LP 3.8 3.0 21.0 37.8
NJ 3.1 4.9 18.9 33.7
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Finally, we reproduced the results of Earnest-DeYoung26 on the dataset of 13 bacteria,
with genome sizes ranging from 1’000 to over 5’000 genes and gene families of up to 70
members, this time without any special preprocessing, and using our LP-based approach
rather than NJ. Once again the resulting phylogeny is one SPR(subtree) move away from
that of Lerat et al. The large disparity in gene content between species in this dataset was
handled automatically, for the first time for this dataset (or, indeed, for any other set of
cellular genomes).

5. Conclusion

Our algorithm offers, for the first time, the possibility to evaluate the phylogenetic informa-
tion present in the gene families and in the change in gene content among genomes while
at the same time taking into account the complete gene orders; and they can do so on scales
compatible with the smaller cellular genomes, such as bacterial genomes. Most importantly,
our experiments indicate clearly the benefit to be derived from considering the full gene or-
derings of the genomes rather than some simplified subset—inalmost all of our test cases,
even the simple NJ procedure outperformed, often by large margins, the best reconstruction
algorithms running on data with equalized gene contents. Much work remains to be done, of
course: we need to generalize the distance computation of Swensonet al. to multichromo-
somal genomes (not particularly difficult using the DCJ model, but the introduction of ad-
ditional parameters means further modelling questions) and to start using the algorithm on
biological data, which should enable us to refine the model. And, while being able to esti-
mate the true edge lengths of the tree is a help, we are still very far from being able to recon-
struct ancestral genomes, because we have no viable algorithm to solve the vexing problem
of the median of three genomes and because the iDLR model remains underconstrained.
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