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This paper presents a novel method for recovering signalingpathways from protein-protein interaction
networks automatically. Given an undirected weighted protein interaction network, finding signaling
pathways is treated as searching for the optimal subnetworks from the network according to some cost
function. To approach this optimum problem, an integer linear programming model is proposed in
this work to model the signal pathways from the protein interaction network. The numerical results on
three known yeast MAPK signal pathways demonstrate the efficiency and effectiveness of the proposed
method.

1. Introduction

Signal transduction is the primary means that cells response to the external stimulus of the
environment such as growth factors, nutrients, and so on. Furthermore, signal transduction
plays an important role in coordinating metabolism, cell proliferation and differentiation.
Generally, external signal or stimulus is transduced into acell through an ordered sequence
of biochemical reactions inside the cell. In many signal transduction processes, the number
of proteins and other molecules participating in these events increases as the process pro-
ceeds from the initial stimulus, which results in a “signal cascade”. Despite the success of
traditional methods in detecting components involved in signaling networks, they can only
generate specific linear signal pathways. The knowledge of complex signaling networks
and their internal interactions is still unclear now. Therefore, it is necessary to develop new
computational methods to capture the details of signaling pathways by exploiting high-
throughout genomic and proteomic data.

Recently, with the advance in high-throughput bio-technology, the large-scale genomic
and proteomic data provide insights into the components involved in signal transduction.
For example, protein interactions and microarray data havebeen utilized to reconstruct
signaling networks1,2,3,4. Since signal transduction is a process of biochemical reactions
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achieved by a cascade of protein interactions, protein interaction data can provide an al-
ternative approach to understanding signaling networks. Idekeret al. 4 have proposed a
variant of the color coding algorithm to reconstruct signaling networks from yeast protein
interaction networks. In the color coding method, a number of candidate pathways are
found, with a score assigned to each candidate. The highest scoring candidate is assumed
to be the putative pathway and the top scoring pathways are then assembled into a signaling
network. Steffenet al. 2 have developed an algorithm, namely Netsearch, to reconstruct
signaling networks by utilizing both gene expression data and protein interaction data. In
the Netsearch method, they also rank the candidate pathwaysand aggregate top scoring
pathways into a signaling network. Zhaoet al. 1 have also proposed a method for rank-
ing signal transduction pathways by utilizing both proteininteraction and microarray data.
In the methods described above, signaling network is not detected as a whole, on the other
hand, the separate linear pathways are detected and used to assemble the signaling network.

In this work, we present a new simple and efficient method for detecting signaling
pathways from protein interaction data by an integer linearprogramming technique. In our
method, we treat the finding of signal pathways as an optimization problem and wish to find
out an optimal subnetwork starting from membrane proteins and ending at transcription
factors with respect to some cost functions. The objective of our method is similar to the
color coding method. The difference lies in that our method treats a signaling network as
a whole entity and detect it by running the model once insteadof ranking individual linear
pathways and assembling them into a network. The numerical experiments on yeast protein
interaction data demonstrate the effectiveness of the proposed method.

The rest of the paper is organized as follows: Section 2 describes the proposed integer
linear programming model; Section 3 presents the experimental results; Section 4 draws
conclusions.

2. Methods

In this section, we present a method for detecting a signaling network given the possible
end points (e.g. membrane proteins and transcription factors (TFs)) of signal pathways and
a protein interaction network. Given a protein interactionnetwork, it can be represented as
a weighted undirected graphG(V, E), where the vertices are proteins and the edgeE(i, j)

denotes the experimentally observed interaction between proteinsi andj. In this study,
the weight of each edge represents the interaction reliability between the corresponding
proteins. In literature, there are many methods proposed for estimating the reliability of
protein interactions5,6,7. In this work, we utilize the method proposed by Sharanet al.
8 to estimate the reliability of protein interactions. With the assumption that proteins in
the same signal pathway will interact with one another with high probability, the weighted
protein interaction network can be utilized to find putativesignaling pathways.

In the weighted network, given a starting node, the linear path of a specific length of
m from the starting node to another node can be assigned a scorewhich equals to the sum
or the product of the weights for the edges in the path. With a series of paths of length
m starting from specific proteins generated this way, the top ranking paths are possible
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candidates for true linear signal transduction pathways. In this case, the specific starting
proteins are membrane proteins because the signal transduction process starts from receptor
proteins.

In this work, the weight of each edgeE(i, j) is defined asai,j = −p(i, j), wherep(i, j)

is the interaction reliability between proteinsi andj. The score for each linear path is the
sum of the weights for the edges in the path, and the length of the path is the number of
proteins involved in the path. Similarly, the score of a subnetwork is the sum of the weights
for the edges it contains, and the network size is the number of proteins it contains. Given
an undirected weighted networkG(V, E, w) and the possible end points of signal pathways,
i.e. membrane proteins and TFs, we wish to find out the minimum-weight subnetwork of
specific size from the networkG.

To accomplish the above mission, we proposed a novel integerlinear programming
(ILP) model to find out signal pathways, given membrane proteins, TFs and a weighted
protein interaction network. The model is described as follows:

Min
|V |∑

i=1

|V |∑

j=1

aijeij + λ

|V |∑

i=1

|V |∑

j=1

eij

s.t. eij ≤ xi

eij ≤ xj
∑

j

eij ≥ 1, if i is a membrane protein or TF

∑

j

eij ≥ 2xi, if i is not a membrane protein or TF

xi = 1 , if i is a membrane protein or TF

xi ∈ {0, 1}, i = 1, 2, · · · , |V |

eij ∈ {0, 1}, i, j = 1, 2, · · · , |V |

whereaij is the weight for edgeE(i, j) of the undirected weighted network,xi is a binary
variable for proteini to denote whether proteini is selected as a component of the signaling
network or not,eij is also a binary variable to denote whether the biochemical reaction
represented by protein-protein interactionE(i, j) is a part of the signaling network or not.λ

is the punishment parameter to control the subnetwork size.The constraint
∑

j eij ≥ 2xi is
to ensure thatxi has at least two linking edges once it is selected in the signaling network so
that the selected subnetwork is as connected as possible, whereas the constraint

∑
j eij ≥ 1

makes sure that each membrane protein or TF has at least one link to other proteins. On
the other hand, the constraintseij ≤ xi andeij ≤ xj ensure that only when proteini and
proteinj are selected as components of the signaling network, the biochemical reaction
denoted by the edgeeij would be considered.

The first term of the above cost function implies that we want to find out the minimum-
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weight subnetwork, while the second term is used to control the subnetwork size and the
number of biochemical reactions involved in the subnetworkbecause each protein interac-
tion is actually a biochemical reaction. The idea behind themodel is that we want to find
out a minimum-weight subnetwork of specific size which accomplishes the signal transduc-
tion process with as few biochemical reactions as possible,where biochemical reactions are
represented by protein interactions, i.e.eij in the cost function. The assumption is reason-
able because cells usually accomplish their missions with as less energy as possibl. This
criterion is also consistent with the parsimony principle widely adopted in other areas of
biology such as phylogeny tree construction and haplotype inference11,12.

The model described above is a standard integer linear programming which can be
solved efficiently in polynomial time. To make the model suitfor large-scale interaction
networks, we can relax the constraintsxi ∈ {0, 1}, eij ∈ {0, 1} to 0 ≤ xi ≤ 1, 0 ≤

eij ≤ 1 which make the ILP model become a linear programming (LP) model. Experiment
results show such a relaxation does not reduce the performance, and at the same time highly
improve the computation efficiency. Although the model has aparameterλ, it can be tuned
in a relatively easy manner.

3. Experimental results

Our proposed ILP model was applied to find the signaling networks in the yeast protein-
protein interaction network. In this work, the protein interaction data were obtained from
the DIP database9, which includes 4839 proteins and 14319 interactions. Thisdata set has
also been used by Idekeret al. 4 To evaluate the performance of the proposed methods,
we applied it to find the three known yeast MAPK signaling pathways. The three yeast
signal pathways are pheromone response, filamentous growthinvasion and cell wall in-
tegrity, respectively. To reduce the computation complexity, the ILP model was applied to
a smaller protein interaction network generated by depth first search (DFS) algorithm start-
ing from membrane proteins and ending at TFs. This smaller network consists of the paths
of length 6-8, and the interactions among proteins in this network were borrowed from the
original protein interaction network. Therefore, three smaller protein interaction networks
were generated by DFS for the three MAPK signal pathways, respectively. The sequential
experiments were conducted on these three smaller protein interaction networks.

For the pheromone response pathway, the ILP model was applied to look for the sig-
naling network starting from membrane protein STE3 and ending at transcription factor
STE12. By varying theλ in the ILP model, we can get signaling networks of different size,
e.g. linear pathway or signaling network. Fig.1 (a) shows the main chain of pheromone re-
sponse pathway deposited in KEGG, Fig.1 (b) shows the linearsignaling pathway found by
color coding, and Fig.1 (c) shows the linear path found by ILPmodel, where the blue point
is the starting point and the red one is the end point. Comparing (b) against (c), we can see
that in the linear path we found, AKR1 links directly to STE5 instead of through STE4,
CDC24 and BEM1 like that detected by color coding because there is a direct interaction
between AKR1 and STE5. Although we failed to detect STE4, CDC24 and BEM1 in the
main chain compared with color coding, we can successfully detect the linear signaling



September 29, 2007 3:42 Proceedings Trim Size: 9.75in x 6.5in apbc101a

5

pathway with fewer components involved in the main chain. Fewer proteins imply fewer
biochemical reactions which is biologically reasonable because signals may be transduced
in a parsimonious way that consume less energy.

Figure 1. The linear signal pathways for pheromone response: (a) the pathway from KEGG; (b) the pathway
detected by color coding; (c) the pathway detected by ILP model.

Fig.2 shows the signaling network detected by our method, where the blue point is the
starting point and the red one is the end point. This signaling network consists of 19 genes.
By comparing the detected signaling network with those found by Netsearch2 and color



September 29, 2007 3:42 Proceedings Trim Size: 9.75in x 6.5in apbc101a

6

coding4, we can learn that most of the components of the three signaling networks are the
same. Compared with the signaling network of the same size asours detected by Netsearch,
the ILP model failed to detect proteins SST2, DIG1, DIG2 and SPH1, but detect four new
proteins (STE50, BEM3, BEM4 and CDC28) which are related to the pheromone response
pathway10. Furthermore, protein STE50 has also been detected by colorcoding method4,
which confirms the effectiveness of the ILP model. Compared with the color coding model,
the ILP model failed to detect CDC42, DIG1 and DIG2, but detected MPT5 which has also
been detected by the Netsearch method. Such a result demonstrates that our method can
be a helpful complement to existing algorithms. The ILP model failed to detect DIG1 and
DIG2 due to our assumption that signal transduction is assumed to be accomplished with
as few biochemical reactions as possible, whereas DIG1 and DIG2 introduce many links to
other proteins that have already been detected by the ILP model.

CDC24 FUS3

CDC28BEM1STE50 STE7

STE5

AKR1

MPT5

KSS1 GPA1

STE12

FAR1

STE18 STE11

STE4

BEM3

BEM4

STE3

Figure 2. The signaling network for pheromone response.

For the filamentous growth invasion pathway, the ILP model was applied to detect the
signaling network starting from membrane protein RAS2 and ending at transcription factor
STE12. Fig.3 respectively shows the signal pathway of the same size that are deposited
in KEGG, detected by color coding and ILP model, where the blue point is starting point
while the red one is the end point. It can be seen from Fig.3 (a)and (c) that the signaling
pathway recovered by the ILP model matches the known signal pathway to a large extent.
The CDC25 and HSP82 were detected due to the missing links between RAS2 and CDC42
in the protein interaction network. Comparing Fig.3 (b) with Fig.3 (c), we can see that
the ILP model can find the identical signaling pathway of the same size as that detected by
color coding. Furthermore, the ILP model found out the additional links compared with the
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color coding method, where the additional links may imply alternative signal pathways.

Figure 3. The signal pathways for filamentous growth invasion: (a) the pathway from KEGG; (b) the pathway
by color coding; (c) the pathway by ILP model.

Furthermore, Fig.4 shows the signaling network of larger size detected by the ILP
model, where the blue point is starting point while the red one is the end point. The left fig-
ure in Fig.4 shows a signaling network of size 13. Compared tothe network generated by
Netsearch2, all of the proteins involved in the detected signaling network by ILP have also
been found by Netsearch except GIN4, NAP1 and RIM11. The GIN4, NAP1 and RIM11
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were detected because they appear in the same complex together with CDC2510, and GIN4
and NAP1 have the function of cell polarity and filament formation 10. Therefore, they are
related to the filamentous signaling pathway. The right figure in Fig. 4 shows another
signaling network of size 19, where we assume that the proteins SPA2, CYR1, FUS3 and
BEM1 are known to be involved in the signaling pathway. Although it is difficult to know
exactly all the proteins involved in a signaling pathway, our assumption is reasonable be-
cause we can know some proteins in the signaling pathway fromthe published results by
other researchers. It can be seen from Fig.4 that our detected signaling network matches
that found by Netsearch2 to a large extent. The HSC82 detected by Netsearch was not
in our network because there is a direct interaction betweenSTE11 and HSP82. The ILP
model failed to detect proteins ABP1, DIG1, DIG2 and BNI1, while included two other
proteins COF1 and LAS17 because COF1, LAS17, BEM1, BUD6 and SRV2 occur in the
same complex10 and therefore may have similar functions.
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Figure 4. The signaling network for filamentous growth invasion.

For the cell wall integrity pathway, the ILP model was applied to detect the signalling
network starting from MID2 and ending at RLM1. Fig.5 shows the linear signal pathways
detected by the ILP model and color coding, and the one deposited in KEGG, where the
blue point is starting point while the red one is the end point. It can be seen from Fig.5 that
the ILP model can detect the identical signaling pathway as that by color coding. It is not
surprising to see the same results because we use the same interaction data set as the one
used by color coding. The detected signal pathway matches most of the known pathway
except ROM2 due to the missing links between MID2 and RHO1.

From the results described above, we can see that the proposed ILP model is indeed ef-
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Figure 5. The linear signal pathways for cell wall integrity: (a) the pathway from KEGG; (b) the pathway by
color coding; (c) the pathway by ILP model.

fective for finding signaling networks from protein interaction networks. Furthermore, the
ILP model is very simple and can detect the signalling network directly instead of working
in multiple-stage like Netsearch and color coding: find the candidate signal pathways, rank
the candidate pathway, and assemble the top scoring pathways.

4. Conclusions

In this paper, we presented a new method for recovering signaling networks from protein
interaction networks. The proposed method utilizes integer linear programming to find out
the subnetwork with minimum weight of specific size. The results on three known MAPK
signal pathways using yeast protein interaction network show that the ILP model can re-
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cover most of the signaling pathway and the reconstructed signaling networks match most
of those published results, which confirm the effectivenessand efficiency of the proposed
method. Compared with existing methods, our method is much simpler because it can de-
tect the signaling networks from protein interaction network directly instead of ranking the
candidate signal pathways and assembling the top scoring signal pathways into a signal-
ing network. Despite the success of the proposed method, it depends on the quality of the
protein interactions and the estimated probabilities of the interactions. In this work, the
probability of protein interactions are estimated precisely. However, most of the protein
interactions are not assigned reliable scores to representexactly the probability of protein
interactions. One alternative approach to this problem is to utilize the microarray data in-
formation because there are large amount of microarray dataavailable nowadays, and the
combination of protein interactions and microarray data may provide insights into signal
transduction discovery. In the future, we will explore thispoint in reconstructing signaling
networks.
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