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In this paper, we consider the problem of structural alignment of a target RNA sequence of length n 
and a query RNA sequence of length m with known secondary structure that may contain embedded 
simple pseduoknots. The best known algorithm for solving this problem (Dost et al. [13]) runs in 
O(mn4) time with space complexity of O(mn3), which requires too much memory making it 
infeasible for comparing ncRNAs (non-coding RNAs) with length several hundreds or more. We 
propose a memory efficient algorithm to solve the same problem. We reduce the space complexity to 
O(mn2 + n3) while maintaining the same time complexity of Dost et al.’s algorithm. Experimental 
reslts show that our algorithm is feasible for comparing ncRNAs of length more than 500. 
Availability: The source code of our program is available upon request. 

1 Introduction 

A non-coding RNA (ncRNA) is a RNA molecule which is not translated into a protein. It 
is a general belief that ncRNAs are involved in many cellular functions. The number of 
ncRNAs within the genome was underestimated before, but recently some databases 
reveal over 30,000 ncRNAs [1] and more than 500 ncRNA families[2]. Large discoveries 
of ncRNAs and families show the possibilities that ncRNAs may be as diverse as protein 
molecules [3]. Identifying these ncRNAs becomes an important problem.  

It is known that the secondary structure of an ncRNA molecule usually plays an 
important role in its biological functions. Some researches attempted to identify ncRNAs 
by considering the stability of secondary structures formed by the substrings of a given 
genome [15]. However, this method is not effective because a random sequence with 
high GC composition also allows an energetically favorable secondary structure [8]. A 
more promising direction is comparative approach which makes use of the idea that if a 
substring of genome from which a RNA is transcribed with similar sequence and 
structure to a known ncRNA, then this genome region is likely to be an ncRNA gene 
whose corresponding ncRNA is in the same family of the known ncRNA. Thus, to locate 
ncRNAs in a genome, we can use a known ncRNA as a query and searches along the 
genome for substrings with similar sequence and structure to the query. The key of this 
approach is to compute the structural alignment between a query sequence with known 
structure and a target sequence with unknown structure. The alignment score represents 
their sequence and structural similarity. RSEARCH [9], FASTR [10], and a recent tool 
INFERNAL [11] for Rfam are using this approach.  

However, all of these tools do not support pseudoknots. Given two base-pairs at 
positions (i, j) and (i’, j’), where i < j and i’ < j’, pseudoknots are base-pairs either i < i’ < 
j < j’ or i’ < i < j’ < j. In some studies, secondary structures including pseudoknots are 
found involved in some functions such as telomerase [5], catalytic functions [6], and self-
splicing introns [7]. The presence of pseudoknots makes the problem computationally 
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harder, so finding ncRNA genes with secondary structure including pseudoknots are 
limited. Usually the large time complexity and considerable memory required for these 
algorithms make it impractical to search long pseudoknotted ncRNA along the genome. 
Among over 500 known ncRNA families in Rfam, only 24 families that are in 
pseudoknotted structure exist. The small number may reflect the uncommon situation of 
pseudoknotted ncRNA, but it may also reflect the difficulty of finding pseudoknotted 
ncRNAs due to the limitation of existing tools. 

Matsui et al. [12] developed a method of computing the structural alignment to 
support a pseudoknot structure. They used a pseudoknot definition that a secondary 
structure has m-clossing property if and only if there exists m base pairs in which any 
two of them are crossing each other. For 2-crossing pseudoknots, their algorithm runs in 
O(mn5) with space complexity of O(mn4) where m is the length of the query sequence 
and n is the length of the searching sequence. The large time and space complexity 
makes the method infeasible for practical use. Pseudoknots can exist within another 
pseudoknot forming recursive pseudoknots. Since known ncRNA families are found to 
have a simpler structure (with only a single level of recursion), called embedded simple 
pseudoknots. Some focuses on this simpler structure. Dost et al. [13] developed a tool 
called PAL using dynamic programming approach that supports secondary structures 
with embedded simple pseudoknots. By restricting their supporting structure to be a 
subset of the structures having 2-crossing properties, their dynamic programming 
algorithm runs faster and uses less memory with time complexity of O(mn4) and space 
complexity of O(mn3).  

However, their algorithm is still not feasible for long RNA sequences due to the 
extensive memory required. For example, for the pseduknotted ncRNA family RF00024 
(found in the database Rfam), the average length of the members is about 548. It is 
estimated that performing a pair-wise structural alignment for members in this family 
using PAL requires at least 10GB memory. Therefore, the tool becomes impractical for 
ncRNA families with members of length several hundreds or more. In this paper, we 
proposed a memory-efficient algorithm for solving the same structural alignment 
problem with space complexity reduced to O(mn2 + n3) while maintaining the same time 
complexity of O(mn4). 

2.  Definitions 

Let A = a1a2…am be a RNA sequence and M be the secondary structure of A. M is 
represented as a set of base pairs (ai, aj), 1 ≤ i < j ≤ m. Let Mx,y ⊆ M be the set of base 
pairs in the subsequence axax+1…ay, 1 ≤ x < y ≤ m. Mx,y = {(ai, aj) ∈ M | x ≤ i < j ≤ y}. 

Mx,y is a regular structure if there does not exist two pairs (i, j), (k, l) ∈ Mx,y such that 
I < k < j < l or k < i < l < j. Note that an empty set is considered as a regular structure. 

Mx,y is a simple pseudoknot if ∃ x < x1, x2 < y such that  
1. each (i, j) ∈ Mx,y satisfies either x ≤ i < x1 ≤ j < x2 or x1 ≤ i < x2 ≤ j ≤ y; and, 
2. ML and MR are both regular where ML = {(i, j) ∈ Mx,y | x ≤ i < x1 ≤ j < x2} and  

MR = {(i, j) ∈ Mx,y | x1 ≤ i < x2 ≤ j ≤ y}. 
An embedded simple pseudoknot structure is defined as follows [13]. 
M is an embedded simple pseudoknot structure if ∃ 1≤ x1 < y1 <…< xs < ys ≤ m such that 
1. Mxi,yi, for 1 ≤ i ≤ s, is a simple pseudoknot structure; and, 
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Note that simple pseudoknot structure is a subset of embedded simple pseudoknot 
structure. In this paper, our method is designed for ncRNAs with embedded simple 
pseudoknot structures. 

3.  Algorithm 

3.1 Structural alignment 

Let S[1…m] be a query sequence with known secondary structure M, and T[1…n] be a 
target sequence with unknown secondary structure. S and T are sequences from the 
character set {A, C, G, U}. A structural alignment between S and T can be represented by 
a pair of sequences S’[1…r] and T’[1…r] where r ≥ m, n. S’ is from S and T’ is from T 
with spaces inserted in between the characters to make both sequences of the same 
length. A space cannot appear in the same position of S’ and T’. The score of the 
alignment, which determines the sequence and structure similarity between S’ and T’, is 
defined as follows. 
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where )(iη  is the corresponding position in S according to the position i in S’; ),( 21 ttγ  

and ),,,( 2211 yxyxδ , where t1,t2∈{A,C,G,U, ‘_’} and x1,x2,y1,y2∈{A,C,G,U}, are the 
score for sequence similarity and the score for structural similarity respectively. The 
calculation of structural alignment score is not restricted to any kind of secondary 
structure. It works in the same way for pseudoknot structure. The objective is to find an 
alignment such that the corresponding score is maximized. Higher score represents 
higher similarity between the two sequences according to their sequences and structures. 
Also, if the score is high, then the alignment can reasonably reveal the secondary 
structure of the target sequence. 

3.2 Structural alignment for simple pseudoknot 

 
 
Consider a length-m subsequence S[i0…k0] with a simple pseudoknot structure, there 
exists i0≤x1, x2≤k0 such that the simple pseudoknot structure M can be divided into two 
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regular structures ML and MR as mentioned in Section 2. A subpseudoknot P(i,j,k) of S is 
defined as the union of subinterval [i0..i] and [j..k], where i0≤i<x1, x1≤j<x2, x2≤k≤k0, as 
shown in Figure 1. Let B[p,q,r,i,j,k] be the optimal alignment score between P(i,j,k) of S 
and P(p,q,r) of another length-n subsequence T[p0…r0] whose structure is unknown. 
Consider the case of (i, j)∈ML, the following recurrence equation [13] gives the value for 
B. The case for (i, j)∈MR is similar. 
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As shown in Figure 2, P(x1-1,x1,k0) represents the whole pseudoknot structure of 
S[i0…k0]. Therefore, the score of an optimal alignment between S[i0,k0] and T[p0,r0] is 
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. Note the changes of indices of (i,j,k) in the recursive 

calculation. The value of i decreases from x1-1 to i0, the value of j increases from x1 to x2-
1 and the value of k deceases from k0 to x2. That sequence of triples can be first built 
from a simple-pseudoknot structure in linear time [13]. The triple (x1-1,x1,k0) is chosen as 
the first item (called root). The sequence of triples ensures each nucleotide is touched by 
at least one triple, and every base pair is reached by one and only one triple (i.e. for each 
base pair B(x,y), there must exist one and only one triple (i,j,k) such that i=x and j=y if 
B∈ML or j=x and k=y if B∈MR). The number of triples in the sequences is O(m), where m 
is the length of the query sequence S. 

By using this sequence of triples, the function B can be rewritten as B[p,q,r,v] where 
v is a triple in the sequence. The recurrence relationship for the case of v∈ML can be 
modified as follows. 
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where vi,vj is the i value and j value of the triple v respectively. Next(v) represents the 
next triple after v in the sequence of triples. The cases for v∈MR, v∉ ML or MR are similar 
[13]. Since p0 ≤ p < q < r ≤ r0 and the number of v = O(m), then both time and space 
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complexities are O(mn3). The score of an optimal alignment between S[i0,k0] and T[p0,r0] 
is ],,,1[max 0
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.  

3.3 Our memory-efficient algorithm 

A simple-pseudoknot has two interesting features. Firstly, as shown in the Figure 3a, the 
reversal of a simple pseudoknot is also a simple pseudoknot. The subpseudoknot P(i,j,k) 
becomes the upper region including (i,j,k) in the reverse structure. If we consider the 
alignment between a reverse query sequence and a reverse target sequence, the previous 
algorithm should also work, but the order of B calculation will be in reversed order 
according to the reverse sequence of triples in which the root becomes (x2+1,x2, i0) 
instead of (x1-1,x1,k0). 

Secondly, as shown in the Figure 3b, a simple pseudoknot can be separated into two 
simple-pseudoknots according to a triple (i,j,k): the upper region including (i,j,k) and the 
lower region excluding (i,j,k). This indicates that the alignment problem between a pair 
of sequences can be divided into two alignment problems between two pairs of shorter 
sequences. Based on these two features and inspired by Hirschberg’s algorithm [14], we 
derive a method which can reduce the memory consumption of structural alignment 
algorithm for simple pseudoknots from O(mn3) to O(n3), while maintaining the same time 
complexity of O(mn3). 

 
For the sake of simplicity, we rename the indices of S[i0,k0] as S[1…m] and T[p0,r0] as 
T[1…n]. We first show a score-only algorithm is to compute B[p,q,r,root] where 
1≤p<q<r≤n. B is calculated triple by triple, from the last triple in the triple sequence up to 
root. At the end of every iteration, we discard all values of B calculated in the previous 
iterations and only keep those calculated in this iteration for the B calculation in the next 
iteration. 
 
score-only (V, T) 
1. Initialize Bprev 
2. for v = last-item to root in the sequence of triples V 
3. for all p,q,r where 1≤p<q<r≤n 
4. compute B[p,q,r] with respect to current value of v and Bprev 
5. Swap the pointer Bprev with B 
6. return Bprev 
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The score-only algorithm can compute B[p,q,r,root] where 1≤p<q<r≤n in O(mn3) time 
and requires O(n3) memory space. The score-only algorithm can only give the alignment 
scores. 

Let SR[1…m] be the reversal of a query sequence S (i.e. SR[i] = S[m-i+1] for 1≤i≤m). 
Let vr be the corresponding triple v of S for SR and let vi,vj,vk

 be the positions i,j,k of triple 
v, respectively. vr=((vr)i,(vr)j,(vr)k)=(m-vk+1,m-vj+1,m-vi+1). As illustrated in Figure 4, the 
subpseudoknot P(vr) of SR is the upper region including the triple v of S. The union of the 
subpseudoknot P(vi-1,vj+1,vk-1) of S and the subpseudoknot P(vr) of SR is the whole 
pseudoknot of S. If a triple (p,q,r) of T is mapped to v of S in the optimal alignment 
between S and T, then the optimal alignment score between S and T = the optimal 
alignment score between P(vi-1,vj+1,vk-1) of S and P(p-1,q+1,r-1) of T + the optimal 
alignment score between P(vr) of SR and P((p,q,r)r) of TR. 
 

 
Figure 4: Union of P(vi-1,vj+1,vk-1) of S and P(vr) of SR is the whole pseudoknot of S. 

 
The following is a divide-and-conquer approach to get the alignment between S[1..m] 
and T[1..n]. 

1. Select the middle triple w of S and prepare the triple sequences for the reverse 
of the upper region Vupper

R and for the lower region Vlower 
a. Build the sequence of triples V[1…mv] for S. 

b. Let w =  ⎥⎦
⎤

⎢⎣
⎡

2
vmV , the middle triple in the sequence. 

c. As in Figure 3b, partition S into two subseudoknots: upper region 
including w and lower region excluding w (i.e. Supper = [wi,wj]∪[wk,m], 
Slower=[1,wi-1] ∪[wi+1,wk-1]) 

d. Reverse sequence Supper to obtain Supper
R 

e. Build the triple sequence Vupper
R and Vlower for Supper

R and Slower 
respectively. Note that the root of Vupper

R is corresponding to wr on S 
and the root of Vlower is (wi-1,wj+1,wk-1). 

2. Find ph,qh,rh such that triple (ph,qh,rh) of T is mapped to triple w of S in the 
optimal alignment between S and T. 

a. Use score-only(Vlower,T) to compute B[p,q,r] ∀ 1≤p<q<r≤n for 
alignment between T and Vlower. 

b. Use score-only(Vupper
R, TR) to compute BR[p,q,r] ∀ 1≤p<q<r≤n for 

alignment between TR and Vupper
R. 

c. Find out ph,qh,rh such that B[ph-1,qh+1,rh-1]+ BR[p’,q’,r’] is maximum 
where p’= n-rh+1,q’=n-qh+1,r’=n-ph+1. 
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3. As in Figure 3b, partition T into two subseudoknots. Tupper : upper region 
including (ph,qh,rh) and Tlower : lower region excluding (ph,qh,rh). 

4. Recursively find out the optimal alignment of Supper and Tupper. 
5. Recursively find out the optimal alignment of Slower and Tlower. 
6. Combine results from Steps 4 and 5 to obtain the optimal alignment. 

Lemma 1. The above procedure runs in O(mn3) time with space complexity of O(n3). 
Proof.  

To analyze the total time complexity required for the whole procedure, let K[m,n] be 
the total time required to align S of length m and T of length n. Both Steps 1 and 6 
require O(m) time. Step 2 takes O(mn3) time. For Step 4, it takes K[m/2,n1] time where, 
n1=length of Tupper and for Step 5, it takes K[m/2,n2] time, n2=length of Tlower.  
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Thus, the whole procedure requires O(mn3) time. Since the memory space for the 
table in the score-only algorithm can be reused during the recursion, the total space 
required is O(n3).  

3.4 Structural alignment for embedded simple pseudoknot 

When considering the structural alignment for embedded-simple-pseudoknot, we extend 
the algorithm in [13] in order to apply the above procedure. We first binarize the query 
RNA converting it into a binary tree structure [13]. Each node represents a pair of 
nucleotides (which may not be a base-pair). Node A is a descendant of node B if pair B is 
inside pair A. A node would have two children if the region bounded by the pair can be 
partitioned into two embedded simple pseudoknot regions. If the pair bounds a simple 
pseudoknot region, then the node will be indicated as a simple pseudoknot and has no 
child but the corresponding triple sequence is formed and attached under the node. The 
tree ensures that each nucleotide is touched by at least one node, and every base pair is 
reached by one and only one node. No two pairs represented by two nodes are crossing 
each other. Let A[i,j,v] be the score of optimal alignment between a target sequence 
T[i…j] and the subtree rooted at the node v (vi,vj), which is also the subinterval (vi, vj) of 
the query sequence. The following shows the algorithm for embedded simple pseudoknot 
alignment. 
 
ALIGN(S[1..m],T[1..n]) 
1. Binarizing the query S to obtain the binary tree M’. 
2. for i = n-1 downto 1 
3. for all nodes v = (vi,vj) in M’ (from leaves to root) 
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4. if v is a simple pseudoknot 
5. let V be the triple sequence of v 

// return a set of optimal simple pseudoknot alignment scores 
// between V and T[i,j] where i+1≤j≤n 

6. C[i+1…n] = score-only-SP(V,T,i) 
7. for j = i+1 to n 
8. if v is NIL 
9. then A[i,j,NIL]=A[i,j-1,NIL]+γ(T[j],’_’) 
10. if v is a pseudoknot 
11. then A[i,j,v]=C[j] 
12. if v∈M’ 

13. 
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14. if v∉M’ and has less than 2 children, A can be computed 
similarily as in Step 13 [10]. 

15. if v∉M’ and has 2 children 
16. { )]}(_,,[)](_,1,[max],,[

1
vchildrightjkAvchildleftkiAvjiA

jki
+−=

+≤≤

 

The function score-only-SP(V, T[1…n], p0) is to compute a set of optimal simple 
pseudoknot alignment scores between V and T[p0,j] where p0+1≤j≤n. 
 
score-only-SP(V, T[1…n], p0) 
1. Initialize Bprev 
2. for v = last-item to root in the triple sequence V 
3. for all p,q,r such that p0≤p<q<r≤n 
4. compute B[p,q,r] with respect to current v and Bprev 

5. Bprev ↔ B 
6. Initialize C 
7. for k = p0+2 to n 
8. for j = p0+1 to k-1 
9. if C[k]<Bprev[j-1,j,k] 
10. C[k]=Bprev[j-1,j,k] 
11. return C[p0+1…n] 
 
The total time and space complexity for ALIGN() procedure (with score-only-SP()) is 
O(mn4) and O(mn2+n3) respectively. After running the ALIGN() procedure, although the 
optimal alignments between S and T for the pseudoknotted regions are still unknown, we 
know the locations of the regions on T. Then, for each pseudoknotted region of T 
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mapped to a pseudoknotted region of S, the previous divide-and-conquer procedure can 
be used to obtain the corresponding alignments. The time and space complexities for this 
are O(mn4) and O(n3), respectively. Therefore, we have the following lemma. 

Lemma 2. The overall time and space complexities required for aligning S[1..m] and 
T[1..n] with embedded simple pseudoknots are O(mn4) and O(mn2 + n3), respectively. 

4.  Experimental Results 

We implemented the memory efficient algorithm in C++. Since PAL [13] program is not 
available, we also implement their method for comparison on the performance. We 
selected ten RNA families which have embedded simple pseudoknot structures for the 
experiment. The sequence and structural information of all seed members in the family 
were downloaded from Rfam database [2]. For each family, we randomly picked one of 
the seed members as a query sequence and aligned it with the other members one by one.  

In the experiment, we found that the time required for both algorithms are almost the 
same, however the difference between the memory consumption is large, especially for 
the families with long sequences. Our memory consumption is less than theirs in all ten 
families. For the families with short sequence length, say less than 70, their algorithm 
does not need much memory. However, their memory consumption increases 
dramatically for the families with long sequence length compared with ours. Table 1 
shows the comparison of memory usage between our space-efficient algorithm and their 
algorithm for the families with sequence length greater than 70. For the family 
Telomerase-vert, their algorithm cannot be executed in our server because it consumes 
more than 4G memory. We estimated that the actual memory consumption would be 
more than 10G.  
 
Table 1: Comparison on memory usage between our space-efficient algorithm and their 
algorithm for the families with sequence length greater than 70. Mp is the number of 
triples for the pseudoknotted region and N is the number of members. 

RNA Family Rfam Id N 
Ave. 

length Mp 
Ave. memory 
usage in our 

algorithm (M) 

Ave. memory 
usage in their 
algorithm (M) 

Corona_FSE RF00507 23 82 53 5.2 30 
Tymo_tRNA-like RF00233 28 83 12 6.4 10 

Parecho CRE RF00499 5 112 21 11.0 31 
IFN-gamma RF00259 5 168 73 23.0 282 

Telomerase-vert RF00024 37 548 100 839.0 >4,000 

5. Discussion and Conclusions 

Since we are mainly interested in the RNA sequences (or substrings in the given genome) 
that have a high score with the given query sequence, we expect that the distances 
between the bases in two mapped base pairs will not differ a lot. In practice, we can 
impose an upper bound Δ on the difference of the lengths between the mapped base pairs 
in order to decrease the time complexity of the algorithm.  

The algorithms in this paper are only designed for the embedded simple pseudoknot 
structures. We have scanned through the existing families and found that there exist other 
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pseudoknot structures. Developing time and memory efficient algorithms for other 
pseudoknot structures would be essential and helpful for discovery of new members for 
these pseudoknotted ncRNA families. 

6. Acknowledgments 

The project is partially supported by Seed Funding Programme for Basic Research of the 
University of Hong Kong (200611159001). 

7. References 

1.  Noncoding RNA database http://biobases.ibch.poznan.pl/ncRNA/ 
2.  Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an 

RNA family database. NucleicAcid Research, 31(1):439–441, Jan. 2003. 
http://www.sanger.ac.uk/Software/Rfam/ 

3.  Eddy S (2001) Non-coding RNA genes and the modern RNA world. Nature 
Reviews in Genetics 2, 919-929 

4.  Rietveld K, Van Poelgeest R, Pleij CW, Van Boom JH, Bosch L (1082) The tRNA-
like structure at the 3’terminus of turnip yellow mosaic virus RNA. Differences and 
similarities with canonical tRNA. Nucleic Acids Res 10: 1929-1946 

5.  Hen J, Greider CW (2005) Functional analysis of the pseudoknot structure in human 
telomerase RNA. PNAS, 102(23):8080-8085 

6.  Dam E, Pleij K, Draper D (1992) Structural and functional aspects of RNA 
pseudoknots. Biochemistry, 31(47):11665-11676 

7.  Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA (2004) Crystal structure of 
a self-splicing group I intron with both exons. Nature 430: 45-50 

8.  Rivas E and Eddy S (2000) Secondary structure alone is generally not statistically 
significant for the detection of noncoding RNAs. Bioinformatics, 16(7):583-605 

9.  Klein R and Eddy S (2003) Rsearch: Finding homologs of single structured rna 
sequences. BMC Bioinformatics, 4(1):44 

10.  Zhang S, B Hass, E Eskin, V Bafna. (2005) Searching genomes for noncoding RNA 
using FastR, IEEE/ACM Transactions on Computational Biology and 
Bioinformatics, 2(4) October-December 2005. 

11.  Nawrocki EP, Eddy SR (2007) Query-Dependent Banding (QDB) for Faster RNA 
Similarity Searches, PLoS Comput. Biol., 3:e56 

12.  Matsui H, Sato K, Sakakibara Y (2005) Pair Stochastic Tree Adjoining Grammars 
for Aligning and Predicting Pseudoknot RNA Structures. Bioinformatics 21 2611-
2617 

13.  Dost B, Han B, Zhang S, Bafna V (2006) Structural Alignment of Pseudoknotted 
RNA. RECOMB 2006, LNBI 3909, 43-158 

14.  Hirschberg DS (1975) A linear space algorithm for computing maximal common 
subsequences. Comm. A.C.M. 18(6) 341-343 

15.  Le SY, Chen JH, Maizel J (1990) Structure and Methods: Human Genome Initiative 
and DNA Recombination, volume 1, chapter Efficient searches for unusual folding 
regions in RNA sequences, 127-130 


