
1

A MEMORY EFFICIENT ALGORITHM FOR STRUCTURAL
ALIGNMENT OF RNAS WITH EMBEDDED SIMPLE PSEUDOKNOTS

THOMAS WONG, Y. S. CHIU, T. W. LAM, S. M. YIU
Department of Computer Science, The University of Hong Kong

Pokfulam Road, Hong Kong

In this paper, we consider the problem of structural alignment of a target RNA sequence of length n
and a query RNA sequence of length m with known secondary structure that may contain embedded
simple pseduoknots. The best known algorithm for solving this problem (Dost et al. [13]) runs in
O(mn4) time with space complexity of O(mn3), which requires too much memory making it
infeasible for comparing ncRNAs (non-coding RNAs) with length several hundreds or more. We
propose a memory efficient algorithm to solve the same problem. We reduce the space complexity to
O(mn2 + n3) while maintaining the same time complexity of Dost et al.’s algorithm. Experimental
reslts show that our algorithm is feasible for comparing ncRNAs of length more than 500.
Availability: The source code of our program is available upon request.

1 Introduction

A non-coding RNA (ncRNA) is a RNA molecule which is not translated into a protein. It
is a general belief that ncRNAs are involved in many cellular functions. The number of
ncRNAs within the genome was underestimated before, but recently some databases
reveal over 30,000 ncRNAs [1] and more than 500 ncRNA families[2]. Large discoveries
of ncRNAs and families show the possibilities that ncRNAs may be as diverse as protein
molecules [3]. Identifying these ncRNAs becomes an important problem.

It is known that the secondary structure of an ncRNA molecule usually plays an
important role in its biological functions. Some researches attempted to identify ncRNAs
by considering the stability of secondary structures formed by the substrings of a given
genome [15]. However, this method is not effective because a random sequence with
high GC composition also allows an energetically favorable secondary structure [8]. A
more promising direction is comparative approach which makes use of the idea that if a
substring of genome from which a RNA is transcribed with similar sequence and
structure to a known ncRNA, then this genome region is likely to be an ncRNA gene
whose corresponding ncRNA is in the same family of the known ncRNA. Thus, to locate
ncRNAs in a genome, we can use a known ncRNA as a query and searches along the
genome for substrings with similar sequence and structure to the query. The key of this
approach is to compute the structural alignment between a query sequence with known
structure and a target sequence with unknown structure. The alignment score represents
their sequence and structural similarity. RSEARCH [9], FASTR [10], and a recent tool
INFERNAL [11] for Rfam are using this approach.

However, all of these tools do not support pseudoknots. Given two base-pairs at
positions (i, j) and (i’, j’), where i < j and i’ < j’, pseudoknots are base-pairs either i < i’ <
j < j’ or i’ < i < j’ < j. In some studies, secondary structures including pseudoknots are
found involved in some functions such as telomerase [5], catalytic functions [6], and self-
splicing introns [7]. The presence of pseudoknots makes the problem computationally

2

harder, so finding ncRNA genes with secondary structure including pseudoknots are
limited. Usually the large time complexity and considerable memory required for these
algorithms make it impractical to search long pseudoknotted ncRNA along the genome.
Among over 500 known ncRNA families in Rfam, only 24 families that are in
pseudoknotted structure exist. The small number may reflect the uncommon situation of
pseudoknotted ncRNA, but it may also reflect the difficulty of finding pseudoknotted
ncRNAs due to the limitation of existing tools.

Matsui et al. [12] developed a method of computing the structural alignment to
support a pseudoknot structure. They used a pseudoknot definition that a secondary
structure has m-clossing property if and only if there exists m base pairs in which any
two of them are crossing each other. For 2-crossing pseudoknots, their algorithm runs in
O(mn5) with space complexity of O(mn4) where m is the length of the query sequence
and n is the length of the searching sequence. The large time and space complexity
makes the method infeasible for practical use. Pseudoknots can exist within another
pseudoknot forming recursive pseudoknots. Since known ncRNA families are found to
have a simpler structure (with only a single level of recursion), called embedded simple
pseudoknots. Some focuses on this simpler structure. Dost et al. [13] developed a tool
called PAL using dynamic programming approach that supports secondary structures
with embedded simple pseudoknots. By restricting their supporting structure to be a
subset of the structures having 2-crossing properties, their dynamic programming
algorithm runs faster and uses less memory with time complexity of O(mn4) and space
complexity of O(mn3).

However, their algorithm is still not feasible for long RNA sequences due to the
extensive memory required. For example, for the pseduknotted ncRNA family RF00024
(found in the database Rfam), the average length of the members is about 548. It is
estimated that performing a pair-wise structural alignment for members in this family
using PAL requires at least 10GB memory. Therefore, the tool becomes impractical for
ncRNA families with members of length several hundreds or more. In this paper, we
proposed a memory-efficient algorithm for solving the same structural alignment
problem with space complexity reduced to O(mn2 + n3) while maintaining the same time
complexity of O(mn4).

2. Definitions

Let A = a1a2…am be a RNA sequence and M be the secondary structure of A. M is
represented as a set of base pairs (ai, aj), 1 ≤ i < j ≤ m. Let Mx,y ⊆ M be the set of base
pairs in the subsequence axax+1…ay, 1 ≤ x < y ≤ m. Mx,y = {(ai, aj) ∈ M | x ≤ i < j ≤ y}.

Mx,y is a regular structure if there does not exist two pairs (i, j), (k, l) ∈ Mx,y such that
I < k < j < l or k < i < l < j. Note that an empty set is considered as a regular structure.

Mx,y is a simple pseudoknot if ∃ x < x1, x2 < y such that
1. each (i, j) ∈ Mx,y satisfies either x ≤ i < x1 ≤ j < x2 or x1 ≤ i < x2 ≤ j ≤ y; and,
2. ML and MR are both regular where ML = {(i, j) ∈ Mx,y | x ≤ i < x1 ≤ j < x2} and

MR = {(i, j) ∈ Mx,y | x1 ≤ i < x2 ≤ j ≤ y}.
An embedded simple pseudoknot structure is defined as follows [13].
M is an embedded simple pseudoknot structure if ∃ 1≤ x1 < y1 <…< xs < ys ≤ m such that
1. Mxi,yi, for 1 ≤ i ≤ s, is a simple pseudoknot structure; and,

3

2.
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≤≤
U

si1
,yixiMM is a regular structure

Note that simple pseudoknot structure is a subset of embedded simple pseudoknot
structure. In this paper, our method is designed for ncRNAs with embedded simple
pseudoknot structures.

3. Algorithm

3.1 Structural alignment

Let S[1…m] be a query sequence with known secondary structure M, and T[1…n] be a
target sequence with unknown secondary structure. S and T are sequences from the
character set {A, C, G, U}. A structural alignment between S and T can be represented by
a pair of sequences S’[1…r] and T’[1…r] where r ≥ m, n. S’ is from S and T’ is from T
with spaces inserted in between the characters to make both sequences of the same
length. A space cannot appear in the same position of S’ and T’. The score of the
alignment, which determines the sequence and structure similarity between S’ and T’, is
defined as follows.

])[',]['],['],['()]['],['(
_'']['],['],['],['))(),(.(.,1

jTiTjSiSiTiSscore
jTiTjSiSandMjitsji

r

i
∑∑

≠∈=

+=
ηη

δγ

where)(iη is the corresponding position in S according to the position i in S’;),(21 ttγ

and),,,(2211 yxyxδ , where t1,t2∈{A,C,G,U, ‘_’} and x1,x2,y1,y2∈{A,C,G,U}, are the
score for sequence similarity and the score for structural similarity respectively. The
calculation of structural alignment score is not restricted to any kind of secondary
structure. It works in the same way for pseudoknot structure. The objective is to find an
alignment such that the corresponding score is maximized. Higher score represents
higher similarity between the two sequences according to their sequences and structures.
Also, if the score is high, then the alignment can reasonably reveal the secondary
structure of the target sequence.

3.2 Structural alignment for simple pseudoknot

Consider a length-m subsequence S[i0…k0] with a simple pseudoknot structure, there
exists i0≤x1, x2≤k0 such that the simple pseudoknot structure M can be divided into two

4

regular structures ML and MR as mentioned in Section 2. A subpseudoknot P(i,j,k) of S is
defined as the union of subinterval [i0..i] and [j..k], where i0≤i<x1, x1≤j<x2, x2≤k≤k0, as
shown in Figure 1. Let B[p,q,r,i,j,k] be the optimal alignment score between P(i,j,k) of S
and P(p,q,r) of another length-n subsequence T[p0…r0] whose structure is unknown.
Consider the case of (i, j)∈ML, the following recurrence equation [13] gives the value for
B. The case for (i, j)∈MR is similar.

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

+−
+−
+−

+++−
+++−+
+++−−

++
++−+−

=

)_''],[(],,,1,,[
)_''],[(],,,,1,[
)_''],[(],,,,,1[

//
])[,_'('])[,_'('],1,1,,,[

])[],[(])[,_'('],1,1,,1,[
])[,_'('])[],[(],1,1,,,1[

//
])[],[(])[],[(

])[],[],[],[(],1,1,,1,1[
//

max],,,,,[

rTkjirqpB
qTkjirqpB
pTkjirqpB

insert
jSiSkjirqpB

jSqTiSkjirqpB
jSiSpTkjirqpB

delete
jSqTiSpT

jSiSqTpTkjirqpB
match

kjirqpB

γ
γ
γ

γγ
γγ
γγ

γγ
δ

As shown in Figure 2, P(x1-1,x1,k0) represents the whole pseudoknot structure of
S[i0…k0]. Therefore, the score of an optimal alignment between S[i0,k0] and T[p0,r0] is

],,1,,,1[max 0110
00

kxxrppB
rpp

−−
≤≤

. Note the changes of indices of (i,j,k) in the recursive

calculation. The value of i decreases from x1-1 to i0, the value of j increases from x1 to x2-
1 and the value of k deceases from k0 to x2. That sequence of triples can be first built
from a simple-pseudoknot structure in linear time [13]. The triple (x1-1,x1,k0) is chosen as
the first item (called root). The sequence of triples ensures each nucleotide is touched by
at least one triple, and every base pair is reached by one and only one triple (i.e. for each
base pair B(x,y), there must exist one and only one triple (i,j,k) such that i=x and j=y if
B∈ML or j=x and k=y if B∈MR). The number of triples in the sequences is O(m), where m
is the length of the query sequence S.

By using this sequence of triples, the function B can be rewritten as B[p,q,r,v] where
v is a triple in the sequence. The recurrence relationship for the case of v∈ML can be
modified as follows.

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

+−
+−
+−

++

+++

++−

++

++−

=

)_''],[(],1,,[
)_''],[(],,1,[
)_''],[(],,,1[

//

])[,_'('])[,_'(')](,,,[

])[],[(])[,_'(')](,,1,[

])[,_'('])[],[()](,,,1[
//

])[],[(])[],[(

])[],[],[],[()](,,1,1[
//

max],,,[

rTvrqpB
qTvrqpB
pTvrqpB

insert

vSvSvnextrqpB

vSqTvSvnextrqpB

vSvSpTvnextrqpB
delete

vSqTvSpT

vSvSqTpTvnextrqpB
match

vrqpB

ji

ji

ji

ji

ji

γ
γ
γ

γγ

γγ

γγ

γγ

δ

where vi,vj is the i value and j value of the triple v respectively. Next(v) represents the
next triple after v in the sequence of triples. The cases for v∈MR, v∉ ML or MR are similar
[13]. Since p0 ≤ p < q < r ≤ r0 and the number of v = O(m), then both time and space

5

complexities are O(mn3). The score of an optimal alignment between S[i0,k0] and T[p0,r0]
is],,,1[max 0

00

rootrppB
rpp

−
≤≤

.

3.3 Our memory-efficient algorithm

A simple-pseudoknot has two interesting features. Firstly, as shown in the Figure 3a, the
reversal of a simple pseudoknot is also a simple pseudoknot. The subpseudoknot P(i,j,k)
becomes the upper region including (i,j,k) in the reverse structure. If we consider the
alignment between a reverse query sequence and a reverse target sequence, the previous
algorithm should also work, but the order of B calculation will be in reversed order
according to the reverse sequence of triples in which the root becomes (x2+1,x2, i0)
instead of (x1-1,x1,k0).

Secondly, as shown in the Figure 3b, a simple pseudoknot can be separated into two
simple-pseudoknots according to a triple (i,j,k): the upper region including (i,j,k) and the
lower region excluding (i,j,k). This indicates that the alignment problem between a pair
of sequences can be divided into two alignment problems between two pairs of shorter
sequences. Based on these two features and inspired by Hirschberg’s algorithm [14], we
derive a method which can reduce the memory consumption of structural alignment
algorithm for simple pseudoknots from O(mn3) to O(n3), while maintaining the same time
complexity of O(mn3).

For the sake of simplicity, we rename the indices of S[i0,k0] as S[1…m] and T[p0,r0] as
T[1…n]. We first show a score-only algorithm is to compute B[p,q,r,root] where
1≤p<q<r≤n. B is calculated triple by triple, from the last triple in the triple sequence up to
root. At the end of every iteration, we discard all values of B calculated in the previous
iterations and only keep those calculated in this iteration for the B calculation in the next
iteration.

score-only (V, T)
1. Initialize Bprev
2. for v = last-item to root in the sequence of triples V
3. for all p,q,r where 1≤p<q<r≤n
4. compute B[p,q,r] with respect to current value of v and Bprev
5. Swap the pointer Bprev with B
6. return Bprev

6

The score-only algorithm can compute B[p,q,r,root] where 1≤p<q<r≤n in O(mn3) time
and requires O(n3) memory space. The score-only algorithm can only give the alignment
scores.

Let SR[1…m] be the reversal of a query sequence S (i.e. SR[i] = S[m-i+1] for 1≤i≤m).
Let vr be the corresponding triple v of S for SR and let vi,vj,vk

 be the positions i,j,k of triple
v, respectively. vr=((vr)i,(vr)j,(vr)k)=(m-vk+1,m-vj+1,m-vi+1). As illustrated in Figure 4, the
subpseudoknot P(vr) of SR is the upper region including the triple v of S. The union of the
subpseudoknot P(vi-1,vj+1,vk-1) of S and the subpseudoknot P(vr) of SR is the whole
pseudoknot of S. If a triple (p,q,r) of T is mapped to v of S in the optimal alignment
between S and T, then the optimal alignment score between S and T = the optimal
alignment score between P(vi-1,vj+1,vk-1) of S and P(p-1,q+1,r-1) of T + the optimal
alignment score between P(vr) of SR and P((p,q,r)r) of TR.

Figure 4: Union of P(vi-1,vj+1,vk-1) of S and P(vr) of SR is the whole pseudoknot of S.

The following is a divide-and-conquer approach to get the alignment between S[1..m]
and T[1..n].

1. Select the middle triple w of S and prepare the triple sequences for the reverse
of the upper region Vupper

R and for the lower region Vlower
a. Build the sequence of triples V[1…mv] for S.

b. Let w = ⎥⎦
⎤

⎢⎣
⎡

2
vmV , the middle triple in the sequence.

c. As in Figure 3b, partition S into two subseudoknots: upper region
including w and lower region excluding w (i.e. Supper = [wi,wj]∪[wk,m],
Slower=[1,wi-1] ∪[wi+1,wk-1])

d. Reverse sequence Supper to obtain Supper
R

e. Build the triple sequence Vupper
R and Vlower for Supper

R and Slower
respectively. Note that the root of Vupper

R is corresponding to wr on S
and the root of Vlower is (wi-1,wj+1,wk-1).

2. Find ph,qh,rh such that triple (ph,qh,rh) of T is mapped to triple w of S in the
optimal alignment between S and T.

a. Use score-only(Vlower,T) to compute B[p,q,r] ∀ 1≤p<q<r≤n for
alignment between T and Vlower.

b. Use score-only(Vupper
R, TR) to compute BR[p,q,r] ∀ 1≤p<q<r≤n for

alignment between TR and Vupper
R.

c. Find out ph,qh,rh such that B[ph-1,qh+1,rh-1]+ BR[p’,q’,r’] is maximum
where p’= n-rh+1,q’=n-qh+1,r’=n-ph+1.

7

3. As in Figure 3b, partition T into two subseudoknots. Tupper : upper region
including (ph,qh,rh) and Tlower : lower region excluding (ph,qh,rh).

4. Recursively find out the optimal alignment of Supper and Tupper.
5. Recursively find out the optimal alignment of Slower and Tlower.
6. Combine results from Steps 4 and 5 to obtain the optimal alignment.

Lemma 1. The above procedure runs in O(mn3) time with space complexity of O(n3).
Proof.

To analyze the total time complexity required for the whole procedure, let K[m,n] be
the total time required to align S of length m and T of length n. Both Steps 1 and 6
require O(m) time. Step 2 takes O(mn3) time. For Step 4, it takes K[m/2,n1] time where,
n1=length of Tupper and for Step 5, it takes K[m/2,n2] time, n2=length of Tlower.

⎥⎦
⎤

⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡+++=

⎥⎦
⎤

⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡+=

22211211
3

2
3

1
3

21
3

,
4

,
4

,
4

,
4

)
2

()
2

()(

,
2

,
2

)(

],[

nmKnmKnmKnmKnmOnmOmnO

nmKnmKmnO

nmK

Since (n1+n2)=n, (n11+n12+n21+n22)=n, and so on, and the fact that ∑∑ ≥⎟
⎠

⎞
⎜
⎝

⎛

i
i

i
i nn 3

3

)(,

therefore, n1
3+n2

3 ≤ n3 , n11
3+n12

3+n21
3+n22

3 ≤ n3 and so on
)(.....)

4
()

2
()(],[3333 mnOnmOnmOmnOnmK =+++=

Thus, the whole procedure requires O(mn3) time. Since the memory space for the
table in the score-only algorithm can be reused during the recursion, the total space
required is O(n3).

3.4 Structural alignment for embedded simple pseudoknot

When considering the structural alignment for embedded-simple-pseudoknot, we extend
the algorithm in [13] in order to apply the above procedure. We first binarize the query
RNA converting it into a binary tree structure [13]. Each node represents a pair of
nucleotides (which may not be a base-pair). Node A is a descendant of node B if pair B is
inside pair A. A node would have two children if the region bounded by the pair can be
partitioned into two embedded simple pseudoknot regions. If the pair bounds a simple
pseudoknot region, then the node will be indicated as a simple pseudoknot and has no
child but the corresponding triple sequence is formed and attached under the node. The
tree ensures that each nucleotide is touched by at least one node, and every base pair is
reached by one and only one node. No two pairs represented by two nodes are crossing
each other. Let A[i,j,v] be the score of optimal alignment between a target sequence
T[i…j] and the subtree rooted at the node v (vi,vj), which is also the subinterval (vi, vj) of
the query sequence. The following shows the algorithm for embedded simple pseudoknot
alignment.

ALIGN(S[1..m],T[1..n])
1. Binarizing the query S to obtain the binary tree M’.
2. for i = n-1 downto 1
3. for all nodes v = (vi,vj) in M’ (from leaves to root)

8

4. if v is a simple pseudoknot
5. let V be the triple sequence of v

// return a set of optimal simple pseudoknot alignment scores
// between V and T[i,j] where i+1≤j≤n

6. C[i+1…n] = score-only-SP(V,T,i)
7. for j = i+1 to n
8. if v is NIL
9. then A[i,j,NIL]=A[i,j-1,NIL]+γ(T[j],’_’)
10. if v is a pseudoknot
11. then A[i,j,v]=C[j]
12. if v∈M’

13.

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

++

++−

+++

++
+−

++

+−+

=

)_''],[()_''],[()](,,[

])[],[()_''],[()](,1,[

)_''],[(])[],[()](,,1[
//

])[,_'('],,1[
])[,_'('],1,[

//

])[],[(])[],[(

])[],[],[],[()(,1,1[
//

max],,[

ji

ji

ji

ji

ji

vSvSvchildjiA

jTvSvSvchildjiA

vSiTvSvchildjiA
deletion

jTvjiA
jTvjiA

insertion

jTvSiTvS

jTiTvSvSvchildjiA
match

vjiA

γγ

γγ

γγ

γ
γ

γγ

δ

14. if v∉M’ and has less than 2 children, A can be computed
similarily as in Step 13 [10].

15. if v∉M’ and has 2 children
16. {)]}(_,,[)](_,1,[max],,[

1
vchildrightjkAvchildleftkiAvjiA

jki
+−=

+≤≤

The function score-only-SP(V, T[1…n], p0) is to compute a set of optimal simple
pseudoknot alignment scores between V and T[p0,j] where p0+1≤j≤n.

score-only-SP(V, T[1…n], p0)
1. Initialize Bprev
2. for v = last-item to root in the triple sequence V
3. for all p,q,r such that p0≤p<q<r≤n
4. compute B[p,q,r] with respect to current v and Bprev

5. Bprev ↔ B
6. Initialize C
7. for k = p0+2 to n
8. for j = p0+1 to k-1
9. if C[k]<Bprev[j-1,j,k]
10. C[k]=Bprev[j-1,j,k]
11. return C[p0+1…n]

The total time and space complexity for ALIGN() procedure (with score-only-SP()) is
O(mn4) and O(mn2+n3) respectively. After running the ALIGN() procedure, although the
optimal alignments between S and T for the pseudoknotted regions are still unknown, we
know the locations of the regions on T. Then, for each pseudoknotted region of T

9

mapped to a pseudoknotted region of S, the previous divide-and-conquer procedure can
be used to obtain the corresponding alignments. The time and space complexities for this
are O(mn4) and O(n3), respectively. Therefore, we have the following lemma.

Lemma 2. The overall time and space complexities required for aligning S[1..m] and
T[1..n] with embedded simple pseudoknots are O(mn4) and O(mn2 + n3), respectively.

4. Experimental Results

We implemented the memory efficient algorithm in C++. Since PAL [13] program is not
available, we also implement their method for comparison on the performance. We
selected ten RNA families which have embedded simple pseudoknot structures for the
experiment. The sequence and structural information of all seed members in the family
were downloaded from Rfam database [2]. For each family, we randomly picked one of
the seed members as a query sequence and aligned it with the other members one by one.

In the experiment, we found that the time required for both algorithms are almost the
same, however the difference between the memory consumption is large, especially for
the families with long sequences. Our memory consumption is less than theirs in all ten
families. For the families with short sequence length, say less than 70, their algorithm
does not need much memory. However, their memory consumption increases
dramatically for the families with long sequence length compared with ours. Table 1
shows the comparison of memory usage between our space-efficient algorithm and their
algorithm for the families with sequence length greater than 70. For the family
Telomerase-vert, their algorithm cannot be executed in our server because it consumes
more than 4G memory. We estimated that the actual memory consumption would be
more than 10G.

Table 1: Comparison on memory usage between our space-efficient algorithm and their
algorithm for the families with sequence length greater than 70. Mp is the number of
triples for the pseudoknotted region and N is the number of members.

RNA Family Rfam Id N
Ave.

length Mp
Ave. memory
usage in our

algorithm (M)

Ave. memory
usage in their
algorithm (M)

Corona_FSE RF00507 23 82 53 5.2 30
Tymo_tRNA-like RF00233 28 83 12 6.4 10

Parecho CRE RF00499 5 112 21 11.0 31
IFN-gamma RF00259 5 168 73 23.0 282

Telomerase-vert RF00024 37 548 100 839.0 >4,000

5. Discussion and Conclusions

Since we are mainly interested in the RNA sequences (or substrings in the given genome)
that have a high score with the given query sequence, we expect that the distances
between the bases in two mapped base pairs will not differ a lot. In practice, we can
impose an upper bound Δ on the difference of the lengths between the mapped base pairs
in order to decrease the time complexity of the algorithm.

The algorithms in this paper are only designed for the embedded simple pseudoknot
structures. We have scanned through the existing families and found that there exist other

10

pseudoknot structures. Developing time and memory efficient algorithms for other
pseudoknot structures would be essential and helpful for discovery of new members for
these pseudoknotted ncRNA families.

6. Acknowledgments

The project is partially supported by Seed Funding Programme for Basic Research of the
University of Hong Kong (200611159001).

7. References

1. Noncoding RNA database http://biobases.ibch.poznan.pl/ncRNA/
2. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an

RNA family database. NucleicAcid Research, 31(1):439–441, Jan. 2003.
http://www.sanger.ac.uk/Software/Rfam/

3. Eddy S (2001) Non-coding RNA genes and the modern RNA world. Nature
Reviews in Genetics 2, 919-929

4. Rietveld K, Van Poelgeest R, Pleij CW, Van Boom JH, Bosch L (1082) The tRNA-
like structure at the 3’terminus of turnip yellow mosaic virus RNA. Differences and
similarities with canonical tRNA. Nucleic Acids Res 10: 1929-1946

5. Hen J, Greider CW (2005) Functional analysis of the pseudoknot structure in human
telomerase RNA. PNAS, 102(23):8080-8085

6. Dam E, Pleij K, Draper D (1992) Structural and functional aspects of RNA
pseudoknots. Biochemistry, 31(47):11665-11676

7. Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA (2004) Crystal structure of
a self-splicing group I intron with both exons. Nature 430: 45-50

8. Rivas E and Eddy S (2000) Secondary structure alone is generally not statistically
significant for the detection of noncoding RNAs. Bioinformatics, 16(7):583-605

9. Klein R and Eddy S (2003) Rsearch: Finding homologs of single structured rna
sequences. BMC Bioinformatics, 4(1):44

10. Zhang S, B Hass, E Eskin, V Bafna. (2005) Searching genomes for noncoding RNA
using FastR, IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2(4) October-December 2005.

11. Nawrocki EP, Eddy SR (2007) Query-Dependent Banding (QDB) for Faster RNA
Similarity Searches, PLoS Comput. Biol., 3:e56

12. Matsui H, Sato K, Sakakibara Y (2005) Pair Stochastic Tree Adjoining Grammars
for Aligning and Predicting Pseudoknot RNA Structures. Bioinformatics 21 2611-
2617

13. Dost B, Han B, Zhang S, Bafna V (2006) Structural Alignment of Pseudoknotted
RNA. RECOMB 2006, LNBI 3909, 43-158

14. Hirschberg DS (1975) A linear space algorithm for computing maximal common
subsequences. Comm. A.C.M. 18(6) 341-343

15. Le SY, Chen JH, Maizel J (1990) Structure and Methods: Human Genome Initiative
and DNA Recombination, volume 1, chapter Efficient searches for unusual folding
regions in RNA sequences, 127-130

