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In this paper we propose new methods of chemical structure classification based on the integration of
graph database mining from data mining and graph kernel functions from machine learning. In our
method, we first identify a set of general graph patterns in chemical structure data. These patterns are
then used to augment a graph kernel function that calculates the pairwise similarity between molecules.
The obtained similarity matrix is used as input to classify chemical compounds via a kernel machines
such as the support vector machine (SVM). Our results indicate that the use of a pattern-based ap-
proach to graph similarity yields performance profiles comparable to, and sometimes exceeding that
of the existing state-of-the-art approaches. In addition, the identification of highly discriminative pat-
terns for activity classification provides evidence that our methods can make generalizations about
a compound’s function given its chemical structure. While we evaluated our methods on molecular
structures, these methods are designed to operate on general graph data and hence could easily be
applied to other domains in bioinformatics.

1. Introduction

The development of accurate models for chemical activity prediction has a range of appli-
cations. They are especially useful in the screening of potential drug candidates, currently a
difficult and expensive process that can benefit enormously from accurate in silico methods.
These models have proved difficult to design, due to the complex nature of most biological
classification problems. For example, the toxicity of a particular chemical compound is de-
termined by a large variety of factors, as there are innumerable ways that a foreign chemical
might interfere with an organism, and the situation is further complicated by the possibility
that a benign chemical may be broken down into toxic metabolites in vivo. Clearly, there
is no single set of chemical features that can be easily applied to to all problems in all situ-
ations, and therefore the ability to isolate problem-specific chemical features from broader
data collections is a critical issue.

Here we address the problem of identifying structure characteristics that link a chemi-
cal compound to its function by integrating graph database mining methods from the data
mining community with graph kernel functions from the machine learning community.
Graphs are powerful mathematical structures and have been widely used in bioinformatics
and other research 1, and are ubiquitous in the representation of chemical compounds. In
our method, we identify frequently occurring subgraphs from a group of chemical struc-
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tures represented as graphs, and define a graph similarity measure based on the obtained
subgraphs. We then build a model to predict the function of a chemical structure based on
the previously generated similarity measures.

Traditional approaches to graph similarity rely on the comparison of compounds using
a variety of molecular attributes known a priori to be involved in the activity of interest.
Such methods are problem-specific, however, and provide little assistance when the rele-
vant descriptors are not known in advance. Additionally, these methods lack the ability
to provide explanatory information regarding what structural features contribute to the ob-
served chemical activity. Our proposed method alleviates both of these issues through the
mining and analysis of structural patterns present in the data in order to identify highly dis-
criminating patterns, which then augment a graph kernel function that computes molecular
similarity.

We have applied our methods to three chemical structure-activity benchmarks: predic-
tive toxicology, human intestinal absorption, and virtual screening. Our results indicate
that the use of a pattern-based approach to graph similarity yields performance profiles
comparable to, and sometimes exceeding that of previous non-pattern-based approaches.
In addition, the presence and identification of highly discriminative patterns for chemical
activity classification provides evidence that our methods can make generalizations about
a compound’s function given its chemical structure.

The rest of the paper is organized in the following way. In Section 2, we present an
overview of related work on graph kernels and frequent subgraph mining. In Section 3,
we present background information about graph representation of chemical structures. In
Section 4, we present the algorithmic details of the work and in Section 5, we present our
empirical study of the proposed algorithm using several chemical structure benchmarks.
We conclude our paper with a short discussion about pros and cons of our proposed meth-
ods.

2. Related Work

The term kernel function refers to an operation for computing the inner product between
two vectors in a feature space, thus avoiding the explicit computation of coordinates in that
feature space. Graph kernel functions are simply kernel functions that have been defined to
compute the similarity between two graph structures. In recent years a variety of graph ker-
nel functions have been developed, with promising results as described by Ralaviola et al2.
Here we review the two methods that are most similar to ours. The first compares graphs
using random, linear substructures; and the second is based on matching and aligning the
vertices of two graphs. We also review the technique used to identify substructure patterns
in our proposed method.

2.1. Marginalized and Optimal Assignment Graph Kernels

The work of Kashima et al.3 is based on the use of shared label sequences in the computa-
tion of graph kernels. Their marginalized graph kernel uses a Markov model to randomly
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generate walks of a labeled graph. The random walks are created using a transition prob-
ability matrix combined with a walk termination probability. These collections of random
walks are then compared and the number of shared sequences is used to determine the
overall similarity between two molecules.

The optimal assignment kernel, described by Frölich et al4, differs significantly from
the marginalized graph kernel. This kernel function first computes the similarity between
all vertices in one graph and all vertices in another. The similarity between the two graphs
is then computed by finding the maximal weighted bipartite graph between the two sets of
vertices, called the optimal assignment. The authors investigate an extension of this method
whereby certain structure patterns defined a priori by expert knowledge, are collapsed into
single vertices, and this reduced graph is used as input to the optimal assignment kernel.

2.2. Frequent Subgraph Mining

Frequent subgraph mining is a technique used to enumerate graph substructures that oc-
cur in a graph database with at least some specified frequency. This minimum frequency
threshold is termed the support threshold by the data mining community. After limiting re-
turned subgraphs by frequency, we can further constrain the types we find by setting upper
and lower limits on the number of vertices they can contain. In this paper, we use the FFSM
algorithm11, for fast computation of frequent subgraphs. Figure 2.2, adopted from11, shows
an example of this frequent subgraph enumeration. Some work has been done by Desh-
pande et al.5 toward the use of these frequent substructures in the classification of chemical
compounds with promising results.

Figure 1. Set of graphs in the top row, and some frequent subgraphs with support threshold 2/3 in the bottom
row.

3. Background

Before we proceed to discuss specific methods and other details, let us first provide some
general background information regarding both chemical structures and graph mining.
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3.1. Chemical Structure

Chemical compounds are well-defined structures that are easily encapsulated by a graph
representation. Compounds are composed of a number of atoms which are represented
as vertices in a graph, and a number of bonds between atoms represented as edges in the
graph. Vertices are labeled with the atom element type, and edges are labeled with the bond
type. The edges in the graph are undirected, since there is no directionality associated with
chemical bonds. Figure 2 shows an example chemical structure.

Figure 2. An example chemical structure from the PTC data set. Unlabeled vertices are assumed to be carbon
C.

4. Algorithm Design

The following sections outline the algorithm that drives our experimental method. In short,
we measure the similarity of graph structures whose vertices and edges have been labeled
with various descriptors. These descriptors represent physical and chemical information
such as atom and bond types. They are also used to represent the membership of atoms in
specific structure patterns that have been mined from the data. To compute the similarity
of two graphs, the vertices of one graph are aligned with the vertices of the second graph,
such that the total overall similarity is maximized with respect to all possible alignments.
Vertex similarity is measured by comparing vertex descriptors, and is computed recursively
so that when comparing two vertices, we also compare the neighbors of those vertices, and
their neighbors, etc.

4.1. Structure Pattern Mining

The frequent subgraph mining problem can be phrased as such: given a set of labeled
graphs, the support of an arbitrary subgraph is the fraction of all graphs in the set that con-
tain that subgraph. A subgraph is frequent if its support meets a certain minimum threshold.
The goal is to enumerate all the frequent, connected subgraphs in a graph database. The ex-
traction of important subgraph patterns can be controlled by selecting the proper frequency
threshold, as well as other parameters such as size and density of subgraph patterns.

4.2. Optimal Assignment Kernel

The optimal assignment kernel function computes the similarity between two graph struc-
tures. This similarity computation is accomplished by first representing the two sets graph
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vertices as a bipartite graph, and then finding the set of weighted edges assigning every
vertex in one graph to a vertex in the other. The edge weights are calculated via a re-
cursive vertex similarity function. We present the equations describing this algorithm in
detail, as discussed by Frölich et al4. The top-level equation describing the similarity of
two molecular graphs is:

kA(M1, M2) := maxπ

mX
h=1

knei(vπ(h), vh) (1)

Where π denotes a permutation of a subset of graph vertices, and m is the number
of vertices in the smaller graph. This is needed since we want to assign all vertices of
the smaller graph to vertices in the large graph. The knei function, which calculates the
similarity between two vertices using their local neighbors, is given as follows:

knei(v1, v2) := kv(v1, v2) + R0(v1, v2) + Snei(v1, v2) (2)

Snei(v1, v2) :=

LX
l=1

γ(l)Rl(v1, v2) (3)

The functions kv and ke compute the similarity between vertices (atoms) and edges
(bonds), respectively. These functions could take a variety of forms, but in the OA kernel
they are RBF functions between vectors of vertex/edge labels.

The γ(l) term is a decay parameter that weights the similarity of neighbors according
to their distance from the original vertex. The l parameter controls the topological dis-
tance within which to consider neighbors of vertices. The Rl equation, which recursively
computes the similarity between two specific vertices is given by the following equation:

Rl(v1, v2) =
1

|v1||v2|
X
i,j

Rl−1(ni(v1), nj(v2)) (4)

Where |v| is the number of neighbors of vertex v, and nk(v) is the set of neighbors of
v. The base case for this equation is R0, defined by:

R0(v1, v2) :=
1
|v1|

maxπ

|v2|∑
i=1

(kv(a, b)|ke(x, y)) (5)

a = nπ(i)(v1), b = ni(v2) (6)

x = v1 → nπ(i)(v1), y = v2 → ni(v2) (7)

The notation v → ni(v) refers to the edge connecting vertex v with the ith neighbor-
ing vertex. The functions kv and ke are used to compare vertex and edge descriptors, by
counting the total number of descriptor matches.

4.3. Reduced Graph Representation

One way in which to utilize the structure patterns that are mined from the graph data is to
collapse the specific subgraphs into single vertices in the original graph. This technique
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is explored by Frölich et al.4 with moderate results, although they use predefined structure
patterns, so called pharmacophores, identified a priori with the help of expert knowledge.
Our method ushers these predefined patterns in favor of the structure patterns generated via
frequent subgraph mining.

The use of a reduced graph representation does have some advantages. First, by col-
lapsing substructures, we can compare an entire set of vertices at once, reducing the graph
complexity and marginally decreasing computation time. Second, by changing the sub-
structure size we can adjust the resolution at which graph structures are compared. The
disadvantage of a reduced graph representation is that substructures can only be compared
directly to other substructures, and cannot align partial structure matches. As utilized in
Frölich et al.4, this is not as much of a burden since they have defined the best patterns a
priori using expert knowledge. In our case, however, this is a significant downside, as we
have no a priori knowledge to guide our pattern generation and we wish to retain as much
structural information as possible.

4.4. Pattern-based Descriptors

The loss of partial substructure alignment following the use of a reduced graph representa-
tion motivated us to find another way of integrating this pattern-based information. Instead
of collapsing graph substructures, we simple annotate vertices with additional descriptor
labels indicating the vertex’s membership in the structure patterns that were previously
mined. These pattern-based descriptors are calculated for each vertex and are used by the
optimal assignment kernel in the same way that other vertex descriptors are handled. In this
way we are able to capture substructure information in the graph vertices without needing
to alter the original graph structure.

5. Experimental Study

We conducted classification experiments on five different biological activity data sets, and
measured support vector machine (SVM) classifier prediction accuracy for several different
feature generation methods. The data sets and classification methods are described in more
detail in the following subsections, along with the associated results. Figure 3 gives a
graphical overview of the process.

We performed all of our experiments on a desktop computer with a 3Ghz Pertium 4
processor and 1 GB of RAM. Generating a set of frequent subgraphs is very quick, gener-
ally a few seconds. Optimal assignment requires significantly more computation time, but
not intractable, at less than half an hour for the largest data set.

5.1. Data Sets

We have selected five data sets used in various problem areas to evaluate our classifier
performance. The Predictive Toxicology Challenge data set, discussed by Helma et al6,
contains a set of chemical compounds classified according to their toxicity in male rats
(PTC-MR), female rats (PTC-FR), male mice (PTC-MM), and female mice (PTC-FM).
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Figure 3. Experimental workflow for a single cross-validation trial.

The Human Intestinal Absorption (HIA) data set (Wessel et al.7) contains chemical com-
pounds classified by intestinal absorption activity. We also included two different virtual
screening data sets (VS-1,VS-2) used to predict various binding inhibitors from Fontaine
et al.8 and Jorissen et al9. The final data set (MD) is from Patterson et al10, and was used
to validate certain molecule descriptors. Various statistics for these data sets can be found
in Table 1.

Table 1. Data set statistics.

5.2. Methods

We evaluated the performance of the SVM classifier when trained using several different
feature sets. The first set of features (FSM) consists only of frequent subgraphs. Those
subgraphs are mined using the FFSM software 11 with minimum subgraph frequency of
50%. Each chemical compound is represented by a binary vector with length equal to the
number of mined subgraphs. Each subgraph is mapped to a specific vector index, and if a
chemical compound contains a subgraph then the bit at the corresponding index is set to
one, otherwise it is set to zero.
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The second feature set (OA) consists of the similarity values computed by the optimal
assignment kernel, as proposed by Frölich et al4. Each compound is represented as a real-
valued vector containing the computed similarity between it and all other molecules in the
data set.

The third feature set (OARG) is computed using the optimal assignment kernel as well,
except that we embed the frequent subgraph patterns as a reduced graph representation
before computing the optimal assignment. The reduced graph representation is described
by Frölich et al.4 as well, but they use a priori patterns instead of frequently mined ones.

Finally, the fourth feature set (OAPD) also consists of the subgraph patterns combined
with the optimal assignment kernel, however in this case we do not derive a reduced graph,
and instead annotate vertices in a graph with additional descriptors indicating its member-
ship in specific subgraph patterns.

In our experiments, we used the support vector machine (SVM) classifier in order to
generate activity predictions. The use of SVM has recently become quite popular for a
variety of biological machine learning applications because of its efficiency and ability to
operate on high-dimensional data sets. We used the SMO SVM classifier implemented
by Platt13 and included in the Weka data-mining software package by Witten et al14. The
SVM parameters were fixed, and we used a linear kernel with C = 1. Classifier performance
was averaged over a ten-fold cross-validation set.

We perform some feature selection in order to identify the most discriminating frequent
patterns. Using a simple statistical formula, known as the Pearson correlation coefficient
(PCC), we measure the correlation between a set of feature samples (in our case, the oc-
currences of a particular subgraph in each of the data samples) and the corresponding class
labels. Frequent patterns are ranking according to correlation strength, and the top patterns
are selected.

5.3. Results

Table 2 contains results reporting the average and standard deviation of the prediction accu-
racy over the 10 cross-validation trials. With the table, we have the following observations.

Table 2. Average and standard deviation of 10-fold cross-validation accuracy
for each data set.

First, we notice that OAPD (and OARG) outperforms FSM methods in all of the tried
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data sets except one (FSM is better than OARG on the PTC-MR data set). This results
indicate that if we use frequent subgraph alone without using the optimal alignment kernel,
we do not have a good classifier. Although the conclusion is generally true, interestingly,
we found that for the PTC-MR data set, the FSM method outperforms both the OA and
OARG methods, while the OAPD method outperforms FSM. This seems to suggest that
important information is encoded in the frequent subgraphs, and is being lost in the OARG,
but is still preserved in the OAPD method.

Second, we notice that OAPD (or OARG) method outperforms the original OA method
in 5 of the tried 8 data sets: HIA, MD, PTC-FR, PTC-MM, PTC-MR. OAPD has a very
close performance to that of OA in the rest of the three data sets. The results indicate
that our OAPD method provides good performance for diverse data sets which involve
tasks such as predicting chemical’s toxicology, predicting human intestinal absorption of
chemicals, and virtual screening of drugs.

Table 3. Top five highest ranked frequent subgraph patterns for each data
set, expressed as SMARTS strings that encode a specific subgraph.

In addition to outperforming the previous methods, our new method also reports the
specific subgraph patterns that were mined from the training data and used to augment
the optimal assignment kernel function. By identifying highly discriminating patterns, our
method can offer additional insight into the structural features that contribute to a com-
pound’s chemical function. Table 3 contains the five highest ranked (using Pearson corre-
lation coefficient) subgraph patterns for each data set, expressed as SMARTS strings that
encode the specific pattern. Many of the patterns in all sets denote various carbon chains
(C(CC)C, C=CC, etc.), however there seem to be some unique patterns as well. The MD
data set contains carbon chain patterns with some sulfur atoms mixed in, while the VS-1
data set has carbon chains with nitrogen mixed in. The [NH2+] and [NH3+] patterns appear
to be important in the VS-2 data set, as well as some of the PTC data sets.

6. Conclusions

Graph structures are a powerful and expressive representation for chemical compounds.
In this paper we present a new method, termed OAPD, for computing the similarity of
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chemical compounds, based on the use of an optimal assignment graph kernel function
augmented with pattern-based descriptors that have been mined from a set of molecular
graphs. Our experimental study demonstrate that our OAPD method integrates the struc-
tural alignment capabilities of the existing optimal alignment kernel method with the sub-
structure discovery capabilities of the frequent subgraph mining method and delivers better
performance in most of the tried benchmarks. In the future, we plan to involve domain ex-
perts to evaluate the performance of our algorithm, including the prediction accuracy and
the capability of identifying structure important features, in diverse chemical structure data
sets.
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