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ABSTRABSTRABSTRABSTRAAAACTCTCTCT

Protein complexes play important roles in biological systems, thus recognizing protein

complexes is important for understanding principles of organization and function in cells.

Typical approaches analyze protein-protein interaction (PPI) data produced by high

throughput experimental techniques, and predict regions of high density (i.e. clusters) as

complexes. However, data from high-throughput experiments are often associated with

high false positive and false negative rates, which is difficult to predict complexes

accurately. For this project, the goal is to explore the prediction of small protein

complexes from PPI networks, where a small complex is defined as being composed of

fewer than four distinct proteins. Discovering such small complexes from PPI networks

via traditional clustering approaches is challenging, because a huge number of small

cliques exist in the network, of which very few are actually complexes. For example,

there are many triangles (size-three cliques) exist in the network, while only a few of

them correspond to complexes of size three. Another challenge is the noise inherent in

PPI networks (such as extraneous edges and missing edges). To solve these challenges, I

will explore in two steps: first, investigating the differences in topology between small

and large complexes; second, using supervised learning and data integration to predict

protein edges belonging to small and large complexes.
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INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

Proteins are biological molecules consisting of one or more chains of amino acids, which

perform a vast array of functions within living organisms. While many proteins perform

functions independently, the vast majority of proteins interact with each other for proper

biological activity. We define a group of two or more associated polypeptide chains as

protein complexes.

Protein complexes play important roles in biological systems. Studying and

recognizing protein complexes help us better understand the principles of organization

and function in cells. Recognizing and predicting unknown protein complexes also

contributes to understanding diseases and drug discovery.
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BACKGROUNDBACKGROUNDBACKGROUNDBACKGROUNDANDANDANDAND LITERATURELITERATURELITERATURELITERATURE REVIEWREVIEWREVIEWREVIEW

In this phase of the study, I have been reading related papers from other researchers, to

understand their procedures of clustering PPI networks to predict protein complexes, in

either unsupervised or supervised learning ways.

Generally, the papers I have read can be classified into three categories: first, traditional,

unsupervised clustering-based approaches; second, approaches that incorporate

supervised learning; third, approaches that incorporate prior knowledge of biological

complexes as heuristics, for example to pre-process the network or post-process the

results.

TraditionalTraditionalTraditionalTraditional ClusteringClusteringClusteringClustering ApproachesApproachesApproachesApproaches

In the first category, Gavin, Bosche and Krause (2002)[6] dealt with large-size protein

complexes. They used tandem-affinity purification (TAP) and mass spectrometry in a

large-scale approach to obtain PPI data in yeast. They clustered this data using the MCL

algorithm based on stochastic flow, and characterized multi-protein complexes in yeast.

King, Przulj and Jurisica (2004)[8] proposed the RNSC algorithm, which minimizes a cost

function based on inter- and intra-cluster edges, then filters the results based on cluster

size, density and functional homogeneity. The algorithm appears to be an accurate and

scalable method of detecting and predicting protein complexes within a PPI network.

Adamcsek, Palla, and Farkas (2006)[1] created an algorithm called CFinder, which

became quite popular. They performed clustering using the Clique Percolation Method,

and additionally performed visualization. Li, Chen, Wang (2008)[10] created an algorithm

IPCA by modifying the DCPlus algorithm. First of all, they generated a seed vertex and

extended it by adding new vertices. They looked at the data of the diameter of known

complexes and the portion of vertex degree in all edges in graph and decide whether to

include the vertex in the complex. Experimental results showed that their algorithm IPCA

recalled more known complexes than previously proposed clustering algorithms. Liu,

Wong, Chua (2009)[11] used an iterative scoring method, Iterative AdjustCD, to score

edges based on topological features, and a clustering method CMC (clustering-based on

maximal cliques) to discover complexes from the weighted PPI network. They obtained
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more complexes that matched known complexes, and also explored robustness in random

addition and deletion of edges.

SupervisedSupervisedSupervisedSupervised ApproachesApproachesApproachesApproaches

The second category of papers uses supervised learning methods, by training on known

complexes, to predict new complexes. Supervised learning approaches use known protein

complexes or other useful datasets as the input training data and infer reasonable

functions called classifiers to predict possible protein complexes. In Qi (2006)[13], various

classifiers are compared: Support Vector Machines, Naive Bayes, Logistic Regression,

Decision Tree-J48 and Random Forest. And for each classifier, they used two styles of

feature encoding: "Detailed" and "Summary." They explored learning protein co-complex

relationships (MIPS), direct protein - protein interaction (DIP), and protein co-pathway

relationship (KEGG) inside the PPI network. The co-complex relationship is shown to be

the easiest to predict and RF appears to be the most robust method. In Qi, Balem,

Faloutsos and Judith's paper in 2008[12], they argue that in real life complexes are not all

formed with the structure of clique in the PPI network. So they proposed a supervised

graph local clustering method. The main idea is to learn graph topological patterns from

known complexes, using a Bayesian network, search for new complexes that match these

learned patterns. In Qiu, Noble's paper in 2008[14], researchers described and applied a

framework for combining experimental data to identify pairs of yeast proteins as co-

complexed protein pairs (CCPPs). They used kernel methods based on random walks to

integrate diverse data such as PPI, gene expression, and annotations to predict CCPPs.

They also three different types of networks—yeast two-hybrid, APMS and genetic

interaction. In 2009 Wang, Kakaradov, Collins[17], integrated co-expression, co-regulation,

interologs, co-localization, and gene ontology annotations, and used boosting, a state-of-

the-art machine learning method, to train an affinity function that is aimed at predicting

whether two proteins are co-complexed. They used the MIPS complexes as training data,

and also proposed a clustering method HACO. They showed that HACO, which

progressively merges sets of proteins with strongest affinity, produces the best results for

complex reconstruction.
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Yong, Liu, Chua, and Wong’s[3] integrated PPI, functional associations, and literature co-

occurrence with a maximum-likelihood Naïve-Bayes model to weight edges with their

probability of being co-complex, and used multiple clustering algorithms to discover

protein complexes. Their approach, Supervised Weighting of Composite Network (SWC)

achieved high precision and recall for large (size >= 4) yeast and human complexes, but

disappointing results for smaller complexes.

IncorporatingIncorporatingIncorporatingIncorporating BiologicalBiologicalBiologicalBiological KnowledgeKnowledgeKnowledgeKnowledge

A third group of researchers incorporated prior biological knowledge in complex

prediction, one of which is the core-attachment model of complexes. Gavin et al. (2006)[5]

provided a detailed study on the organization of protein complexes and suggested that a

complex consists of two parts: a core and an attachment. Many researchers adopted this

concept and modified existing algorithms to recognize complexes by finding cores and

attachments. In Leung, Xiang and Yiu’s paper (2008)[9], they proposed a novel approach

to identify complexes from PPI network. Their algorithm identified core proteins by

taking two proteins into consideration each time, and calculating the number of

interactions between these two proteins and the number of their common neighbors, with

threshold p. The attachments were identified as those proteins that are common neighbors

of over half of the core proteins. Then they filtered out the noisy cores and ranked the

predicted complexes to get final result, The core detection result appears to be much

better than Andreopoulos et al. (2007)[2]. In 2010, Srihari, Ning and Leong[15] carried out

a different idea that they could couple with the classic MCL clustering method, and

created a core-attachment based refinement method to reconstruct yeast complexes from

scored (weighted) PPI networks in order to detect meaningful novel complexes. The

researchers first partitioned the PPI network into multiple dense clusters using MCL

approach, and then they post-processed clusters with the following steps: clustering the

PPI network with MCL hierarchically; categorizing cores within clusters; filtering noisy

clusters; recruiting proteins as attachments into clusters; extracting out complexes from

clusters and finally ranking the predicted complexes. This algorithm, MCL-Caw,

improved the predictions of MCL on PPI networks. Wu, Li, Kwoh and Ng (2009)[18]

proposed Core-attachment based method (COACH), which first detected protein-
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complex cores as the heart and include attachments into these cores to form meaningful

complex structures. They defined a core by comparing the degree of the vertices with

average degree of the PPI network, then applied a core-removal algorithm and a

redundancy-filtering algorithm to get the final complexes. These papers are similar in that

they all agree with the concept of the core-attachment model, and searched for cores first,

then attachments. Their differences lie in how they identify the core or the attachments.

Another type of biological knowledge is the concept of date hubs, or proteins that inter-

connect different biological modules that participate in different biological functions. Liu,

Yong, Chua, and Wong[4] proposed that date hubs are a source of noise in PPI networks

for complex prediction, as they may connect clusters that correspond to different

complexes, leading to the prediction of erroneous clusters of multiple complexes fused

together. Thus they removed hubs and decomposed the PPI network into subnetworks of

different biological processes before clustering, and obtained improved performance.

Yet another prior knowledge was pointed out by Tatsuke and Maruyama[16], who

observed that the frequency of sizes of reference complexes follow a power law

distribution. Thus they introduced their Protein Partition Sampler (PPSampler) method,

which uses Monte-Carlo Markov Chain to partition the PPI network into complexes

whose size frequencies follow this power-law distribution. They obtain good results

compare to other methods, and are notable for incorporating the size of complexes into

their method.

In summary, many of these papers contain useful ideas for addressing the challenges of

finding small complexes in PPI networks. Integrating diverse data, including PPI,

sequence similarity, gene co-expression, functional associations, and literature using

supervised approaches is a promising direction to pursue. Incorporating biological

knowledge such as core-attachment models, date hubs, and complex sizes might be worth

exploring as well. Overall, I can see that every approach has its own strengths and

weaknesses, especially with regard to the sensitivity and specificity: they perform well in

predicting different types of unknown protein complexes.

http://en.wikipedia.org/wiki/Sensitivity_and_specificity
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OBJECTIVESOBJECTIVESOBJECTIVESOBJECTIVES

This project explores prediction of protein complexes, especially small-size protein

complexes, defined as protein complexes with size 2 and size 3, accurately. We adopt the

SWC approach which integrates diverse data sources (PPI, STRING functional

associations, and co-occurrence in PUBMED literature) with a Naïve-Bayes supervised

learning approach, as this is effective in removing noisy and transient PPI edges, and

filling in missing interactions.

We investigate why SWC performs poorly on small complexes, and hypothesize that this

is because small complexes have very different characteristics, especially topological

characteristics, from large complexes. Furthermore, the edges from large complexes

overwhelm the edges from small complexes during training, leading to SWC learning to

accurately score large complex edges, but poorly on smaller complexes. We investigate

this hypothesis in the following section.

Next, we modify SWC to learn separate sub-models for scoring co-complex edges from

small complexes and large complexes independently (which we call a sub-model

approach). We show that this performs better than simply learning one combined model

for all co-complex edges (which we call a non-sub-model approach).
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ANALYSISANALYSISANALYSISANALYSIS OFOFOFOF TOPOLOGYTOPOLOGYTOPOLOGYTOPOLOGYOFOFOFOF SMALLSMALLSMALLSMALL ANDANDANDAND LARGELARGELARGELARGE COMPLEXESCOMPLEXESCOMPLEXESCOMPLEXES

DataDataDataData SourceSourceSourceSource

This project involves and integrates 3 different data sources: PPI, STRING and

PUBMED.

PPIPPIPPIPPI score is obtained from BioGird, IntAct and MIMT database. It indicates the

direct interaction score between these two proteins. PPI is scored by the reliabilities. A

reliability is estimated for each experimental detection technique (eg. Y2H, TAP-MS,

etc), using the proportion of pairs that share GO terms. PPI score is obtained by

probabilistically combining the reliabilities of all the experiments that detected it. This

dataset contains 55,945 interactions.

STRINGSTRINGSTRINGSTRING (Search Tool for the Retrieval of Interacting Genes/Proteins) data is

obtained from STRING database, where the interactions include direct (physical) and

indirect (functional) associations. Scores are derived from four different sources:

Genomic Context, High-throughput Experiments, Co-expression(Conserved Domain) and

Previous knowledge[19]. This dataset contains 175,712 protein pairs. As STRING scores are

between 0 and 1000, so we normalize the data to 0 to 1. Also, protein pair with STRING score

below 500 are usually not reliable, so we removed data that is smaller than 500 for this project.

PPPPUBMEDUBMEDUBMEDUBMED is a free database accessing primarily the MEDLINE[21] database of

references and abstracts on life sciences and biomedical topics, which is maintained by

The United States National Library of Medicine (NLM) at the National Institutes of

Health[20]. PUBMED indicates the co-occurrences of proteins or genes in papers. For

each pair of proteins, the score is the Jaccard Index of the sets of papers that the proteins

appear in. This dataset contains 161,213 protein pairs.

TopologicalTopologicalTopologicalTopological FeaturesFeaturesFeaturesFeatures

For each data source, besides the direct score between two proteins, we calculate 3

topological metrics: DEG, CD, NBC.
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DEGDEGDEGDEG [Degree] is identified as the total number of totals neighbors of two proteins.

For protein X and Y, define the neighbors of X exclude Y as set Nx, and neighbors of Y

exclude X as set Ny. Degree is obtained by calculating the cardinality of the union of all

the neighbors of protein X and Y. However, as our edges are weighted, we use the weight

values to calculate DEG. If a neighbour is connected to both X and Y, we use the higher

weight. Our DEG is defined as

DEG =∑ ∪∈ }{
)},(),,(max{

yx NNa
aYwaXw

Where w(a, b) is the weight between the two protein a and b.

The larger DEG is, the more neighbors this protein pair has. It is possible that the two

protein with high DEG is in a big protein complex.

In Figure 3 below, protein X has neighbors n1, n2 and n4, protein Y has neighbors n2, n3

and n5. Assuming all edge weights are 1, then the DEG score for protein pair [X,Y] is 5.

CDCDCDCD [Czekanowski-Dice] score measures the proportion of shared neighbors of

two proteins. It is defined as twice the total number of the common neighbors divided by

the sum of the neighbors between these two proteins.
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Where λ is a dampening factor, and ),(1 YXwk− is the previous calculated weight for the

edge between X and Y. And dampening factor is defined as
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The larger CD score is, the more shared common neighbors exit, and the two proteins are

more likely to exists in the same densely connected protein group.

In Figure 3 below, protein X has neighbors n1, n2 and n4, protein Y has neighbors n2, n3

and n5. The common neighbor is n2. For simplicity, the basic CD score for protein pair

[X,Y] is

3
1

|}5,3,2{||}4,2,1{|
|}5,3,2{}4,2,1{|*2
=

+
∩

=
nnnnnn
nnnnnnCD .

NBCNBCNBCNBC [Neighborhood Connectivity] measures the connectivity between the

neighbors of a pair of proteins. NBC is defined as the number of edges between the

neighbors of these two proteins divided by the count of all the possible interactions

between all the neighbors of the two proteins. Since our edges are weighted, we use the

weights of the edges to calculate NBC. Our NBC score is defined as:

λ+−
∈∧∈∑

=
)1|*(|||

))()(|)(( ,

NyNxNyNx
NNnNNnnnwNBC yxbyxaba

∪∪
∪∪

Where if two protein a and b are neighbour, function w(a, b) represents the weight

between a and b, and λ is a dampening factor.

NBC score indicates how densely connected are the neighbors of the protein pair. The

larger NBC score is, the more interactions exist between the neighbors, and the two

proteins are more likely to exist in a big densely connected protein group.
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In Figure 1.1 below, protein X has neighbors n1, n2 and n4, protein Y has neighbors n2,

n3 and n5. Common neighbour is n2. Then the NBC score for protein pair [X,Y],

assuming λ = 0, is

20
2

4*5
)2,3()3,2(
=

+
=

nnwnnwNBC

which is very very small. And we know that the two proteins are not in a very dense

protein group.

Figure 1.1

Combining the 3 data source and topological features described above, we are able to get

12 feature scores for a protein pair, mainly the PPI score, PPI_CD score, PPI_DEG score,

PPI_NBC score, STRING score, STRING_CD score, STRING_DEG score,

STRING_NBC score, PUBMED score, PUBMED_CD score, PUBMED_DEG score, and

PUBMED_NBC score. These 12 scores will be treated as input training features for

supervised learning approach.

In addition to the three data source for protein pairs, we obtain a reference CYC2008 file

which contains 408 already known protein complexes with all the proteins inside the

complexes. The protein pairs from 3 data sources may not exist in any of the known

complexes, or alternatively, they may be inside small protein complexes with size 2 or 3,

or large size protein complexes with size 4 and above. When we analysis the protein pair,

if an edge is inside multiple protein complexes, they will be classified as in the protein

largest complex.
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So finally, our dataset consists of 12 features for each protein pair: PPI, PPI_CD,

PPI_DEG, PPI_NBC, STRING, STRING_CD, STRING_DEG, STRING_NBC,

PUBMED, PUBMED_CD, PUBMED_DEG, PUBMED_NBC. Our class label is called

COCOMP_SIZE_CLASS, which has value 0, 2, 3, 4, which corresponds to a pair being

not in a complex, in a complex of size 2, or size 3, or size 4 and above, respectively.

Later comparison will be made to verify that classification into the separate sub-models

of classes 2,3,4 (complexes of different sizes) has better performance than single model

(complexes of all sizes).

Now we want to verify the first hypothesis that small and large protein complexes have

different topological characteristics in terms of CD, DEG and NBC scores. Below are 2

examples for illustration. Figure 1.2 represents two protein X and Y in a small protein

complex of size 2. X has neighbors n1 and n2, and Y has neighbors n1, n3, and n4. They

share one common neighbour n1. To make calculation simple and straight forward, each

edge is assigned with score 1.

DEG = 4, in total there are 4 neighbors of this protein pair.

CD =
32
1*2

+
= 0.4, only one neighbour acts as the common neighbour.

NBC = 0
3*4

0
= , as none of the neighbour connect to each other.

Figure 1.2

In Figure 1.3 below, protein X and Y exists in large complex of size 6, X has neighbors

n1 and n2, and Y has neighbors n1, n3, and n4. They share one common neighbour n1.

To make the calculation simple and straight forward, each edge is still assigned with

score 1.
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DEG = 4, in total there are 4 neighbors of this protein pair.

CD = 1
44
4*2
=

+
, all of the 4 neighbors act as common neighbour.

NBC = 6667.0
3*3
44
=

+ , there are 4 interactions (n1-n3, n1-n4, n2-n3, n2-

n4) between all the neighbors out of total 6 possible interactions.

Figure 1.3

Comparing the two protein pairs described above, the DEG scores are the same, however,

protein pair in small complex have small CD score and NBC score, protein pair in large

complexes will have large CD score and NBC scores because in large protein complexes,

proteins normally densely connect to each other. While, there are very few protein pair

edges in small complexes, thus the protein pair will have less shared neighbors and not so

densely connected neighbour.

RealRealRealReal ExamplesExamplesExamplesExamples

Lets study real protein pair examples in CYC file.

Arg2p/Arg5,6p complex[22] is a small protein complex of size 2 composed of protein

YER069W and YJL071W. These two proteins are obtained by Affinity Capture-Western

method and they share the same PUBMED ID 11553611. All the 12 feature scores we get

for the protein pair are shown in Table 1 below:

http://www.ncbi.nlm.nih.gov/pubmed/?term=11553611
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PPI PPI_CD PPI_DEG PPI_NBC

0 0 7.284109039 0.0157894736842105

STRING STRING_CD STRING_DEG STRING_NBC

0 0 0.8398454514995 0.00155175756015138

PUBMED PUBMED_CD PUBMED_DEG PUBMED_NBC

0.945110528 0.3031 35.0801826734779 0.226732876947333

Table 1

As this proteins pair is obtained with PUBMED database, PPI and STRING features

shows very low scores. They don’t have direct interaction in PPI database or STRING

database. For PUBMED, the edge has PUBMED score 0.945 which is almost near 1, and

PUBMED_CD score and PUBMED_NBC score are only 0.3031 and 0.2267 respectively.

With DEG score of 35.0802, result shows that this protein pair has many neighbors but

these total number of common neighbour is very small and their neighbors are not

connected to each other with high probability.

H+-transporting ATPase, Golgi[23] is a large protein complex of size 13 composed of

protein YBR127C, YDL185W, YEL027W, YEL051W, YGR020C, YHR026W,

YHR039C-A, YKL080W, YLR447C, YMR054W, YOR332W, YPL234C, and

YPR036W. These 13 proteins are obtained by Co-localization and Biochemical Activity

method and they share the same PUBMED ID 11592965. Let us study the edge scores

between protein YBR127C-YDL185W and YBR127C-YLR447C. All the 12 feature

scores we get for these two protein pairs are:

For YBR127C-YDL185W pair:

http://www.ncbi.nlm.nih.gov/pubmed/?term=11553611
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PPI PPI_CD PPI_DEG PPI_NBC

1 0.5371 117.330493221 0.0583901544931359

STRING STRING_CD STRING_DEG STRING_NBC

0.0985915492957746 0.3105 3.06977514368513 0.0279189584720096

PUBMED PUBMED_CD PUBMED_DEG PUBMED_NBC

0.99999990879764 0.3952 114.180010358352 0.0471119268830958

Table 2

Compared to YER069W-YJL071W protein pair inside the small protein complex

Arg2p/Arg5,6p, YBR127C-YDL185W has much higher PPI, PPI_CD, PPI_NBC score,

and STRING, STRING_CD, STRING_NBC score, where high CD and NBC can

explained the topological characteristic difference among complexes of different sizes.

They have similar high PUBMED score. PUBMED_CD score equals 0.3952 which is

higher than 0.3031 that in YER069W-YJL071W.

Only PUBMED_NBC for YBR127C-YDL185W equals 0.047 and is smaller than 0.2267

in YER069W-YJL071W. In this case, we can still examine the protein to be surrounded

in a densely connected protein area. The total number of neighbors of this protein pair

YBR127C-YDL185W is 114.1800 which is much bigger than 35.0801 in YER069W-

YJL071W. To reach PUBMED_NBC = 0.2267 with PUBMED_DEG = 35.0801{1} and

PUBMED_NBC = 0.04711 with PUBMED_DEG = 114.1800{2}:

2267.0
)135(*35

*2 1
=

−
x {1}, 1787.1271 =x

0471.0
)1114(*114

*2 2
=

−
x {2}, 303.43552 =x

X1 shows that there are 127.1787 interactions between neighbors of protein pair

YER069W-YJL071W and X2 shows that there are 303.4355 interactions between

neighbors of protein pair YBR127C-YDL185W, which is much larger.
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So as for CD score, 0.3952 out of 114.1800 is much bigger than 0.3031 out of 35.0802.

Same applies to protein pair YBR127C-YLR447C inside complex H+-transporting

ATPase, Golgi:

PPI PPI_CD PPI_DEG PPI_NBC

0.999630052 0.4494 158.473566616 0.0258535667713636

STRING STRING_CD STRING_DEG STRING_NBC

0.25 0.7123 5.03592845371551 0.0212086250458227

PUBMED PUBMED_CD PUBMED_DEG PUBMED_NBC

0.939524018194306 0.3752 66.4761311461364 0.0699691181934244

Table 3

PPI score and STRING score are higher and higher PPI, STRING, PPI_CD, PPI_NBC,

STRING_CD, STRING_NBC, and PUBMED_CD scores are expected and observed.

Data shows a more densely connected neighborhood environment for protein pair

YBR127C-YLR447C compared to protein pair YER069W and YJL071W that is in a

small protein complex.

We hypothesize that protein in large complexes tend to be densely connected to each

other. Thus a co-complex edge inside large size complex has high CD and NBC score,

while co-complex edge inside small size complex has low CD and NBC score given

similar/same DEG score.

When the protein pair is not inside a complex, DEG, CD, NBC are comparatively small.

For the wo proteins YER069W and YOR348C, YER069W is from Arg2p/Arg5,6p

complex with size 2 and YOR348C is from not present in CYC file. They are not in the

same protein complexes. And the feature scores are all very low as expected:
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PPI PPI_CD PPI_DEG PPI_NBC

0 0 13.7756655 0.0898390588368421

STRING STRING_CD STRING_DEG STRING_NBC

0.05 0.01959 2.14489398875756 0.0142303470173485

PUBMED PUBMED_CD PUBMED_DEG PUBMED_NBC

0 0.06674 62.3413267581405 0.135903097307198

Table 4

To illustrate all the different characteristics of the features, chart for edge score

frequencies are plotted with regard to different protein complex sizes. Below are the

histograms plotted from the arff file we have. For different topological features,

frequency of the data ranging from 0 to 1 are displayed according to the sub models: not

in the protein complex [class 0], inside small protein complex [class 2-3], and inside large

protein complex [class 4]. Frequency in a range is obtained as the total number of scores

in this range divided by the total number of the records.

For PPI score shown in Figure 2.1.1, protein pair not inside a protein complex has the

most score between 0 and 0.1 and a very small amount of score laying between 0.8 to 1.

Protein pairs in small complexes have scores most observed in between 0.9 and 1, and for

protein pairs inside large complexes, we observe scores both between 0 - 0.1 and 0.8 - 1.

This is reasonable as protein pair in small complexes need to have strong direct

interactions to form a small group, while protein pair in large protein complexes may be

connected to other proteins inside the complex without connecting to each other.

For PPI_CD score shown in Figure 2.1.2, protein pairs not inside a protein complex has

the most score between 0 and 0.1. Protein pair edges in small complexes have most

scores between 0 and 0.1 and lesser and lesser when the score gets bigger. And for

protein pairs in large complexes, most score are also observed between 0 and 0.1, some

of the scores are observed between 0.7 and 0.9. This graph shows the difference

between PPI_CD score and PPI score and prove the hypothesis in the topological feature
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section, in small protein complexes, PPI score for protein pairs are high and PPI_CD

score tend to be small as there should not be too many common neighbors between the

two proteins.

Figure 2.1.1 Figure 2.1.2

For PPI_DEG score shown in Feature 2.1.3, DEG scores for PPI scores are more evenly

distributed. it shows no significant differences among different classes.

Figure 2.1.3 Figure 2.1.4

And for PPI_NBC score shown in Figure 2.1.4, for both protein pairs not inside a protein

complex and inside small protein complexes, the scores are mostly in between 0 and 0.1,

and become lesser and lesser when the score becomes bigger. For protein pairs in large

complexes, most score are also observed between 0.2 and 0.4. The graph also prove the

hypothesis that PPI_NBC score tend to be small in small protein complexes and big in

large size protein complexes.
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When we plot the graphics for STRING, and PUBMED scores, we expect histograms to

have similar distribution with PPI histograms, where direct interaction score for small

complexes is high and CD NBC scores for large complexes are high.

STRING histograms for different features are more similar to PPI histograms except that

the DEG scores that are larger than 90 in STRING have a larger percentage than that in

PPI scores.

Figure 2.2.1 Figure 2.2.2

Figure 2.2.3 Figure 2.2.4

However, there are also differences in PUBMED graphs compared to PPI histograms.

PUBMED histogram does not have high percentage of scores falling between 0.9 and 1

for any of the sub model as shown in Figure 2.3.1. Remember PUBMED represents co-

occurrences of proteins or genes in papers and it has different aspect from PPI, which

supplements data source from PPI database. Another interesting observation is that

PUBMED_NBC scores are all between 0 and 0.1, meaning that neighborhood

connectivity of all the PUBMED data are all very low as shown in Figure 2.3.4.
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Figure 2.3.1 Figure 2.3.2

Figure 2.3.3 Figure 2.3.4

For each of the features, average and standard deviation are also calculated shown in the

table below.

Average and Standard Deviation Table for all the features:

Features

Models Not in complex In small Complex In large Complex

PPI 0.1445± 0.3377 0.9534± 0.2000 0.4997±0.4747

PPI_CD 0.0405±0.1078 0.2319±0.2241 0.3965±0.3226

PPI_DEG 70.3357±140.6605 48.3165±48.0492 72.3133±57.1353

PPI_NBC 0.1407±0.1238 0.0941±0.0702 0.2593±0.1423
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STRING 0.3841±0.3884 0.9912±0.0594 0.8491±0.3117

STRING_CD 0.2004±0.2922 0.2677±0.2405 0.6350±0.2815

STRING_DEG 176.9643±182.1094 98.22711±82.2820 152.3744±95.3350

STRING_NBC 0.2203±0.1637 0.1243±0.0958 0.2875±0.1491

PUBMED 0.0355±0.0422 0.1308±0.1038 0.0861±0.0760

PUBMED_CD 0.2001±0.2641 0.1767±0.2464 0.4274±0.2945

PUBMED_DEG 14.5670±13.0862 3.9091±4.3617 20.2841±16.4095

PUBMED_NBC 0.0243±0.0117 0.0188±0.0151 0.0285±0.0135

Table 5

Significant features and scores to observe are PPI score for small complex, which has a

very high average 0.9534 and standard deviation 0.2, PUBMED score in small complex,

which has a even higher average of 0.9912 and standard deviation 0.0594, DEG score for

STRING has a comparatively smaller average and standard deviation compared to PPI

and PUBMED. Meanwhile, DEG for STRING has very small score for protein pair in

small protein complexes compared to not in complexes and in large size protein

complexes. Comparing NBC scores among different models, values for small protein

complexes are much smaller than the values in large protein complexes and non protein

complexes.

To check if the differences in feature values’ means between the three classes are

significant, we perform a two-tailed permutation test. The table below shows the P-values,

and shows that all the differences are significant, except for large vs non-complex for

PPI_DEG, and small vs non-complex for PUBMED_CD.
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Features

Model

Small VS None

complex

Large VS None

complex

Large VS Small

complex

PPI < 0.0002 < 0.0002 < 0.0002

PPI_CD < 0.0002 < 0.0002 < 0.0002

PPI_DEG < 0.0002 0.1556 < 0.0002

PPI_NBC < 0.0002 < 0.0002 < 0.0002

STRING < 0.0002 < 0.0002 < 0.0002

STRING_CD < 0.0002 < 0.0002 < 0.0002

STRING_DEG < 0.0002 < 0.0002 < 0.0002

STRING_NBC < 0.0002 < 0.0002 < 0.0002

PUBMED < 0.0002 < 0.0002 < 0.0002

PUBMED_CD 0.794 < 0.0002 < 0.0002

PUBMED_DEG < 0.0002 < 0.0002 < 0.0002

PUBMED_NBC < 0.0002 < 0.0002 < 0.0002

Table 6

The above discussion shows that there are significant differences between protein edges

corresponding to small vs. large complexes. Furthermore, a vast majority of co-complex

edges come from large complexes rather than small complexes. Figure 3.1 the number of

protein complexes of different sizes. There are 172 protein complexes are of size 2, 87 of
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size 3, 44 protein complexes of size 4 and remaining are the few large size protein

complexes. However, Figure 3.2 shows that the total number of protein pair existing in

protein complex of size 2 and 3 are much less than the protein pair in large complexes, as

one big protein complex will contribute many protein pairs, which overwhelm total

number of protein pairs in small protein complexes. So, during the training period of the

supervised learning, the classifier learns characteristics of large complexes and result in

the poor performance of the prediction of small protein complexes.

Figure 3.1

Figure 3.2

number of Protein Pairs

number of Complexes
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SUPERVISEDSUPERVISEDSUPERVISEDSUPERVISED LEARNINGLEARNINGLEARNINGLEARNING FORFORFORFOR CO-COMPLEXCO-COMPLEXCO-COMPLEXCO-COMPLEX EDGEEDGEEDGEEDGE CLASSIFICATIONCLASSIFICATIONCLASSIFICATIONCLASSIFICATION

NaNaNaNaïïïïve-Bayesve-Bayesve-Bayesve-Bayes supervisedsupervisedsupervisedsupervised approachapproachapproachapproach

We perform supervised learning to learn Naïve-Bayes models of co-complex edges

belonging to complex of size 2, 3, or 4 and above (which we call the sub-model

approach), and compare this against learning a single Naïve-Bayes model of co-complex

edges of all complex sizes (which we call the non-sub-model, or single-model approach).

Each data instance is a protein pair, with 12 features: PPI, PPI_CD, PPI_DEG, PPI_NBC,

STRING, STRING_CD, STRING_DEG, STRING_NBC, PUBMED, PUBMED_CD,

PUBMED_DEG, PUBMED_NBC. For the sub-model approach, the class is called

COCOMP_SIZE_CLASS, which has value 0, 2, 3, 4, which corresponds to a pair being

not in a complex, in a complex of size 2, or size 3, or size 4 and above, respectively. For

the single-model approach, the class is called COCOMP, which has values 0 or 1,

corresponding to a pair being not in a complex, or being in a complex, respectively.

The Naïve-Bayes model is a simple probabilistic classifier based on applying Bayes'

theorem with the strong independence assumptions[24]. Naive Bayes assumes that give

class label, the presence or absence of a feature is unrelated to the presence or absence of

any other feature. For all the features F1, F2, ..., Fn, the prediction score of a class label C

is defined as:

),...,,|( 21 nFFFCp

With the assumption of the independency of all the features, we obtain the probability

through Bayes’s theorem:

),...,(
)|,...,,()(),...,|(
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n
n
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Applying chaining rule, and assume that all the features are independent of each other,

we derive the probability as following:
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In our case, there are 12 features, so n = 12, and the probability of

),...,( 21 nFFFΡ =P(F1)P(F2)...P(F12)

based on independency assumption. And then P(C) is the probability of the existence of

the class C in all the sample data.

We perform supervised discretization on each feature using Minimum Description

Length (MDL) discretization, and model each likelihood function P(Fi= f|C) as:

C

CfFi
i

n
nCfF ,)|( =

==Ρ

Where nFi=f,C is the number of edges whose feature Fi has discretized value f, and is from

class C, and nC is the number of edges from class C.

Although Naïve-Bayes makes strong independence assumptions, an analysis of the

Bayesian classification problem in 2004 showed that there are sound theoretical reasons

for the apparently implausible efficacy of naive Bayes classifiers[25]. Naïve-Bayes

classifiers have also been found to perform well even when the independency

assumptions are violated[7].

Now we investigate our second hypothesis: learning separate sub model for small

complexes will improve performance, compared to single model for all complexes.
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ExperimentExperimentExperimentExperiment descriptiondescriptiondescriptiondescription

Machine learning software used in this project is WEKA (Waikato Environment for

knowledge Analysis). The input training data is the arff file generated from PPI, STRING

and PUBMED database combined with CYC file. The data structure is:

Protein_Pair_Name, PPI, PPI_CD, PPI_DEG, PPI_NBC, STRING, STRING_CD,

STRING_DEG, STRING_NBC, PUBMED, PUBMED_CD, PUBMED_DEG,

PUBMED_NBC, COCOMP, COCOMP_SIZE_CLASS. The first attribute is the protein

pair that we want to predict. The last 2 attributes are class labels. Remaining are scores

for 12 features related to this protein pair.

CrossCrossCrossCross validationvalidationvalidationvalidation

To reduce variability and guard against Type I and Typy II errors, 10 rounds of cross

validation are performed during training phase. The input data set is partitioned into 10

subsets and one round of cross-validation performs the analysis on 9 subsets, and

validates the analysis on the remaining subset. Performing cross validation help increase

the performance of suggested hypotheses.

Evaluation:Evaluation:Evaluation:Evaluation: precision-recallprecision-recallprecision-recallprecision-recall graphgraphgraphgraph

To evaluate the Naïve-Bayes approach on the input data, we plot precision recall graph.

PPPPrecisionrecisionrecisionrecision is the fraction of retrieved instances that are relevant

RRRRecallecallecallecall is the fraction of relevant instances that are retrieved. Definition of the two terms

are as following:

positivefalsepositivetrue
positivetrueecision

__
_Pr
+

=

negativefalsepositivetrue
positivetruecall

__
_Re
+

=

Good performance of a prediction is that no matter what the recall value is, precision

remain high (1 if possible). We select different features each time to perform the training
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and validation with 10-cross-validation on Naïve-Bayes at each round. Then the output

precision-recall graphs give different performance at each round. By comparing the

precision-recall graphs, we are able to evaluate the performance of the selection of

features.

CCCComparisonomparisonomparisonomparison forforforfor singlesinglesinglesingle modelmodelmodelmodel vsvsvsvs subsubsubsub modelmodelmodelmodel

As predicted, training data on sub models have better performance than training data on

single model because protein pair in small and large protein complexes have different

topological characteristics. Too many protein pairs in large protein complexes will

overwhelm the protein pairs in small complexes during training. So we perform two sets

of training and learning. One is the non-sub-model-approach using class label COCOMP

only with value 1 and 0 indicating whether the protein pair is in the complex or not. And

the other one is sub-model-approach using label COCOMP_SIZE_CLASS with value 0,

2, 3, 4 to classify the protein pair as not in protein complex, in protein complex size 2, in

protein complex of size 3, or in large protein complex with size 4 and above.

Sub-model approach is simple, after selecting the targeted features, we use the Naïve-

Bayes classifier with 10 cross validation to train and validate the input data. Then draw

precision-recall graph with regard to 4 sub models {0, 2, 3, 4}.

For non-sub-model approach, we firstly use the Naïve-Bayes classifier with 10 cross

validation to get the output data with prediction of class {0, 1}. Then combining the CYC

file, we classify the protein pairs classified as in class 1 to individual sub classes: size 2,

size 3, or size 4 and above. According to the output data, drawing of the precision recall

graph can be performed and thus we can compare the precision recall graph between sub-

model-approach and non-sub-model-approach to get convincing conclusion.

ResultsResultsResultsResults

For the first round of training, we choose all the 12 features as the input features and use

COCOMP (0 or 1) as the class label. With Naïve-Bayes approach and 10-cross validation,

we are able to get the output prediction score for both classes and the #actual #predicted

label. Analyzing the output file, we take out the protein pairs that are defined as in class,
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look into the CYC file to find out whether they are in class 2, class 3 or class 4 and above

complexes and classify them accordingly. Then we can plot the precision recall graph for

each sub classes. In the second round of training, we still use all the 12 features as the

input, but with COCOMP_SIZE_CLASS as the class label to proceed with Naïve-Bayes

training. And the output file can be proceed to plot precision recall graphs directly.

Below are the precision-recall graphs for class 1 (protein pair is inside protein complex),

class 2 (protein pair inside protein complex of size 2), class 3 (protein pair inside protein

complex of size 3), class 4 (protein pair inside protein complex of size 4 and above), with

respect to non-sub-model and sub-model approaches with all the features. Significant

better performance with sub-model approach for class 2 and class 3 are shown in Figure

4.2 and 4.3.

Figure 4.1.1

Figure 4.1.2
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Figure 4.1.3

Figure 4.1.4

Training with sub-model have better performance in prediction of protein pairs in small

protein complexes.

To verify the different characteristics for the features that we choose, different sets of

features are then chosen each time. In total we have 11 sets of features, just now the two

runs of learning involves all the 12 features, and the other 10 sets of features are:

ALL_PPI scores (PPI, PPI_CD, PPI_DEG, and PPI_NBC),

ALL_STRING scores (STRING, STRING_CD, STRING_DEG, STRING_NBC),

ALL_PUBMED scores (PUBMED, PUBMED_CD, PUBMED_DEG, PUBMED_NBC),

PPI_STRING_PUBMED,
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ALL_CD scores (PPI_CD, STRING_CD, PUBMED_CD),

ALL_DEG scores (PPI_DEG, STRING_DEG, PUBMED_DEG),

ALL_NBC (PPI_NBC, STRING_NBC, PUBMED_NBC),

PPI,

STRING,

PUBMED.
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Below are the Precision-Recall graphs for all the predicted sub classes with both non-sub-

model and sub-model approaches in terms of different feature sets.

ForForForFor ClassClassClassClass 1111

Figure 4.2.1

Figure 4.2.2
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ForForForFor ClassClassClassClass 2222

Figure 4.2.3

Figure 4.2.4
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ForForForFor ClassClassClassClass 3333

Figure 4.2.5

Figure 4.2.6

non-sub model sub-model
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ForForForFor ClassClassClassClass 4444

Figure 4.2.7

Figure 4.2.8

Comparing figures of non-sub-model and sub-model, class 2 and class 3 model shows

much higher precision scores in sub-model approach. Class 1 and class 4 model shows

similar performance between two approaches. This validate our second hypothesis that

learning separate sub model for small complexes will improve performance, compared to

single model for all complexes.
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Comparing different class models, in sub-model approach, the performances for

ALL_Features are all very significant in different class models, and

PPI_STRING_PUBMED score has a great performance in class 2 and class 3 prediction

as with the same recall value, precision scores are much higher than other feature sets.

Same as ALL_PPI scores, it has a better performance in predicting class 2 and class 3

model than in class 4 model. On the other hand, however, all precision scores for

ALL_CD in class 2 and class 3 are very low, so as ALL_DEG scores. But, ALL_CD

have a much better performance in class 4 model prediction. We conclude CD as a

meaningful characteristic for large protein complex prediction. This also verify the

hypothesis that larger complexes have different topological characteristics compared to

smaller complexes. All graphs show comparatively good performance with all the

features as the input training data.
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IMPLEMENTATIONIMPLEMENTATIONIMPLEMENTATIONIMPLEMENTATIONDETAILSDETAILSDETAILSDETAILS

Firstly, we write a Perl script, combining the input three data source and CYC file, to

calculate and obtain different topological feature scores. PPI, STRING and PUBMED

scores are got directly from the database. DEG and NBC scores are calculated using

functions discussed above. CD scores are calculated using the Iterative Adjust CD

program[11].After generating the output arff file, first we look into the CYC file again and

calculate the total number of protein complexes and the protein pairs inside different

complexes, and obtain the Figure AAAAA and BBBB above. Then we use WEKA to

perform Naïve-Bayes supervised learning on the output file and obtain the data for all the

protein pairs with their classified class, prediction scores, and #actual, #predicted score.

For non-sub-model output data, reference to CYC file and find out whether they are in

class 2, class 3 or class 4 and above complexes and classify them accordingly. Then we

can use Perl to calculate the precision and recall score with #actual #predicted score and

plot the precision recall graph for each sub classes. For sub-model approach, as

COCOMP_SIZE_CLASS is the class label, we use Perl to calculate precision recall for

each class without referring to CYC file. And then we can plot precision recall graph for

sub-model approach.
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CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

In this paper, we studied the prediction of protein complexes, especially small protein

complexes (of size 2 and 3).

First, we investigated why SWC, a supervised approach with data integration, performs

well on large complexes but poorly on smaller complexes. We integrated three data

sources, PPI, functional associations (from STRING), and literature co-occurrence, and

extracted three additional topological features from each data source: DEG (degree), CD

(shared neighbors), and NBC (neighborhood connectivity). We found that there are

significant differences in topological characteristics between edges belonging to small

complexes, and edges belonging to large complexes. Furthermore, a vast majority of co-

complex edges during training come from the large complexes. Thus, SWC learns the

characteristics of large complexes and scores such edges accurately, while it performs

poorly on edges from smaller complexes.

Then, we performed Naïve-Bayes supervised learning of separate sub-models for

complexes of size 2, 3, and 4 and above, and showed that this outperformed learning a

single model of all complex sizes (the SWC approach). The separate sub-models

approach learned to score edges from small complexes much more accurately.

In future work, we can investigate using such a sub-models approach to give separate

scores to each edge, corresponding to probability of being in a small complex, and

probability of being in a large complex, and using clustering algorithms on these different

scores to find clusters. Hopefully this will improve the performance of the detection of

small complexes.
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