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Summary

Lateral gene transfer (LGT), the transfer of genetic materials between two reproductively

isolated organisms, is an important process in evolution. LGT is also related to the spread

of antibiotic resistance and pathogenicity. To further understand the impact of LGT, it is

necessary to characterize the prevalence of LGT quantitatively. In this thesis, we mainly

study three related problems: how to detect large genomic regions originated from LGT;

how to model LGT with phylogenetic networks; and how to detect LGT events. The aim

of our research is to develop computational methods to help solving these problems.

A large continuous genomic region acquired by LGT is called a genomic island

(GI). The accurate inference of GIs is important for both evolutionary study and medical

research. But the available GI detection methods still do not have desirable perfor-

mances and they may not be easily applied on newly sequenced microbial genomes. So

we developed two machine learning methods for better GI detection: GI-SVM which

utilizes one-class SVM based on k-mer frequencies and GI-Cluster which utilizes con-

sensus clustering based on multiple GI-related evidence. These two methods provide

researchers with better alternative tools to detect GIs. GI-SVM serves as a more sen-

sitive method for a first-pass detection of GIs. GI-Cluster brings a widely applicable

framework for GI analysis, which can generate more accurate results.

LGT is one kind of reticulate evolutionary events that is suitable to be modeled with

phylogenetic networks. But it is still challenging to reconstruct rooted phylogenetic

networks, including LGT networks. Since the relationships among phylogenetic net-

works, phylogenetic trees and clusters serve as a basis for reconstructing phylogenetic

networks, we focus on two fundamental problems arising in network reconstruction:

the tree containment problem (TCP) and the cluster containment problem (CCP). Both

the TCP and CCP are NP-complete. We implemented fast exponential-time programs

for solving the two problems on arbitrary phylogenetic networks. The resulting CCP

program is further extended into a program for fast computation of the Soft Robinson–

Foulds distance between phylogenetic networks. The evaluation results show that these

programs are fast enough for use in practice. So they are likely to be valuable for the

application of phylogenetic networks in LGT modelling and evolutionary genomics.

To detect LGTs, numerous computational methods of different categories have been

developed. However, known estimates obtained from different methods are often dis-

iv



crepant, and most methods are believed to be complementary. Since there are very

few studies that systematically investigated the complementary performances of diverse

methods in practice, we conducted a case study on cyanobacterial genomes, which have

been well studied in terms of LGT. Our results indicate very low overlap among predic-

tions from different methods, especially from methods of different categories, which is

consistent with previous discoveries. Therefore, to get more reliable LGT detections, it

is really necessary to prudently apply multiple methods of different kinds and carefully

examine their predictions whenever possible.
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Chapter 1

Introduction

1.1 Lateral gene transfer and related computational problems

In vertical inheritance or reproduction, genetic materials are transferred from ancestry

to descendants. However, genetic materials can also be transferred from one organism

to another in a lateral manner. This is often referred to as lateral or horizontal gene

transfer (LGT or HGT). LGT was reported to be pervasive and have important biological

consequences, particularly in prokaryotes (Zhaxybayeva and Doolittle, 2011). In this

thesis, we will focus on computational methods for the quantitative analysis of LGTs.

1.1.1 What is LGT

Broadly speaking, LGT is an evolutionary process in which genes are transferred between

two reproductively isolated organisms. LGT can occur either between different species

(interspecies LGT) or in the same species (intraspecies LGT), such as LGTs between

different strains of bacteria. LGT often refers to complete LGT in which the laterally

transferred gene replaces an orthologous gene in the recipient genome (orthologous

replacement) or added to the recipient genome (novel acquisition). There is also partial

or within gene LGT in which a fragment of the gene is replaced by transferred sequences.

As a result of LGTs, recipient genomes often show mosaic composition, in which

different regions may have originated from different donors. Figure 1.1 briefly shows

LGTs from two donor organisms to one recipient organism. Usually LGT means the

exchanges which have already fixed in recipient lineages, rather than other physical

mechanisms transferring DNA into prokaryotic cells (Doolittle et al., 2003). So genetic

1



engineering, which can be seen as artificial LGT, is not in our research scope.

G2 

G1 

G3 

Figure 1.1: The schematic representation of LGT among three organisms. Each

rectangular bar represents a gene. Gene a and g were transferred from donor organism

G1 to recipient organism G2. Gene c and e were transferred from donor organism G3 to

recipient organism G2. Different colors represent different origins of genes.

The study of LGT begins as early as 1928, when Frederick Griffith’s experiment

of Streptococcus pneumonia suggests genetic materials can be laterally transferred be-

tween bacteria (Griffith, 1928). It has been documented for a long time that microbes

can integrate alien DNAs into their genomes from sources other than parents (Avery

et al., 1944). The detection of LGT can be traced back to 1990s when the availability of

many prokaryotic genome sequences exposed unexpected sequence similarities among

quite different species (Zhaxybayeva and Doolittle, 2011). The well-supported incon-

sistencies between gene tree and species tree which were recalcitrant to improvement

of phylogenetic methods also prompt the discovery of LGT (Gogarten et al., 2002).

Due to the complexity of LGT, there are still lots of open issues, including its process,

mechanism, impact, and quantification (Ragan and Beiko, 2009).

The mechanisms of LGT in eukaryotes are still poorly known despite that several

possible gene transfer pathways are recently uncovered (Soucy et al., 2015). But there are

several well-known mechanisms in prokaryotes (Ochman et al., 2000; Popa and Dagan,

2011; Soucy et al., 2015). Three major mechanisms are transformation, conjugation,

and transduction. Transformation is the uptake of raw DNA directly from the environ-

ment, which can exchange DNAs between evolutionarily distantly related organisms.

Conjugation is featured by the physical contact between donor and recipient cells which

can then causes integration of donor plasmid into recipient chromosomes. Transduction

is mediated by phages which incorporates DNA fragments in previous hosts and then

integrates their DNAs into recipient chromosomes. Two other mechanisms include gene

transfer agents and cell fusion (Popa and Dagan, 2011; Soucy et al., 2015). Gene transfer

2



agents are phage-like elements which lack the typical features of phages but can carry

random DNAs from host to recipient. Cell fusion is similar to conjugation, but differs

in that the exchange of DNA is bi-directional after cell contact.

1.1.2 The prevalence and impact of LGT

There have been plenty of evidences showing the prevalence of LGT in and between all

the three domains of life: bacteria, archaea, and eukaryotes (Gogarten and Townsend,

2005; Keeling and Palmer, 2008; Soucy et al., 2015). In prokaryotes (bacteria and

archaea), LGT may even blur the boundaries of species (Gogarten and Townsend,

2005). In particular, LGT is most common in bacteria, where the spread of antibiotics

is attracting increasing interest (Ochman et al., 2000; Skippington and Ragan, 2011).

The cases of LGT between prokaryotes and eukaryotes and even among eukaryotes are

increasing, particularly in unicellular eukaryotes and plants (Keeling and Palmer, 2008;

Soucy et al., 2015). LGT in virus is also common (Metzler, 2014).

Generally speaking, genetic materials resulted from LGTs may be important in pro-

moting genome innovation, and hence they may bring selective advantages to the host

organisms and facilitate their adaptation to new niches. For instance, Zhaxybayeva

and Doolittle (2011) summarized four novel adaptations of organisms which cannot be

explained without LGT acting as an important factor: an archaea-to-archaea transfer

to allow Salinibacter ruber to survive in environments with high salt concentrations, a

bacterium-to-bacterium transfer to help the gut bacterium Bacteroides plebeius digest

carbohydrates from plants, a bacteria-to-animal transfer to assist the nematode Meloidog-

yne incognita in parasitizing plants, and a fungus-to-animal transfer contributing to the

colourations in the pea aphids.

However, LGT has fuelled strong debates about its impact and frequency in evolution

(Dagan and Martin, 2007; Vernikos, 2008; Ragan and Beiko, 2009; Sjöstrand et al.,

2014). The views span from one extreme that LGT hardly exists and has insignificant

impact to the other extreme that LGT is so rampant that the traditional tree of life may not

be a meaningful representation of organismal evolution (Dagan and Martin, 2007; Tofigh

et al., 2011). Despite these debates, LGT has been widely accepted as an important

process in molecular evolution. Thus, the quantitative characterization of LGT events

can help us to better understand the extant genomes in their historical context.

3



On the other hand, LGT has the potential to quickly spread antibiotic resistance and

pathogenic elements. The spread of antibiotic resistance brings obvious implications

for public health (Skippington and Ragan, 2011). There are a few examples. Epidemic

strains of Staphylococcus aureus acquired resistance to methicillin via frequent lateral

transfers of methicillin resistance genes and brought problems to hospitals worldwide

(Enright et al., 2002; Awadalla, 2003). Several Escherichia coli outbreaks were reported

to be related to LGT. An outbreak in Japan in 1996 was caused by Escherichia coli

O157:H7 Sakai strain which arose from Escherichia coli O55:H7 strain by acquiring

Shiga toxin-encoding prophage via LGT (Kyle et al., 2012; Trappe et al., 2016). Another

outbreak in Germany in 2011 (Frank et al., 2011) was caused by Escherichia coli

O104:H4 strain whose ability to cause hemorrhagic colitis and antibiotic resistance was

probably acquired by several LGT events (Brzuszkiewicz et al., 2011). So the reliable

and rapid detection of LGT is of potential medical importance, which may help to

identify drug-resistance genes and develop vaccine targets.

1.1.3 The computational problems related to LGT

For the quantitative study of LGT, many important computational problems have arisen,

such as how to identify LGT events and how to estimate LGT rate. In this work, we

mainly focus on three related problems, which are discussed below.

(1) Which large genomic regions originated from LGT?

Some DNA sequences acquired via LGT appear as clusters in the genome. These

clusters of sequences were initially referred to as pathogenicity islands (PAIs) (Hacker

et al., 1990), which are large virulence-related inserts present in pathogenic bacterial

strains but absent from other non-pathogenic strains. Later, the discoveries of regions

similar to PAIs but encoding different functions in non-pathogenic organisms lead to the

designation of genomic islands (GIs) (Hacker and Kaper, 2000). GIs are then found to

be common in both pathogenic and environmental microbes (Dobrindt et al., 2004).

Specifically, a GI is a large continuous genomic region arisen by LGT, which can

contain tens to hundreds of genes. The size of known GIs varies from less than 4.5 kb to

600 kb (Vernikos, 2008). Laterally acquired genomic regions shorter than a threshold

are also called genomic islets (Juhas et al., 2009; Bellanger et al., 2014). GIs often
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have phylogenetically sporadic distribution. Namely, they are present in some particular

organisms but absent in several closely related organisms. As shown in Figure 1.2,

GIs have several other well-known features to distinguish them from the other genomic

regions (Hacker et al., 1997; Schmidt and Hensel, 2004; Juhas et al., 2009), such as

different sequence composition from the core genome, the presence of mobility-related

genes, flanking direct repeats (DRs), and specific integration sites. For example, tDNA

(tRNA or tmRNA gene) is well known as a hotspot for GI insertion (Williams, 2002;

Bellanger et al., 2014). However, not all these features are present in a GI, and some

GIs lack many of these features. As a consequence, GIs were also considered as a

superfamily of mobile elements with core and variable structural features (Vernikos and

Parkhill, 2008).

G
C

 content 

Genome position 

Genome 2 tDNA 

Genome 3 Transposase IS DR Integrase DR 

tDNA 
 Genomic island Core genome Core genome 

Genome 1 tDNA 

Figure 1.2: The schematic representation of several features associated with a genomic

island (GI). A GI is often absent in closely related genomes. It may also have atypical

compositional characteristics compared with the core genome, such as lower GC content.

The presence of several sequence elements are indicators of a GI: flanking conserved

regions (dark grey rounded rectangles connected by light grey regions), direct repeats

(DRs), insertion sequence (IS) elements and mobility-related genes encoding integrase

and transposase.

In addition to the restricted GI definition in (Boyd et al., 2009), GIs are often seen

as a broad category of mobile genetic elements (MGEs) (Langille et al., 2010). They

can be further grouped into subcategories by mobility: some GIs are mobile and hence

can further transfer to a new host, such as integrative and conjugative elements (ICEs),

conjugative transposons and prophages; but other GIs are not mobile any more (Juhas

5



et al., 2009). GIs can also be classified by the function of genes within as follows: PAIs

with genes encoding virulence factors; resistance islands (REIs) with genes responsible

for antibiotic resistance; metabolic islands with genes related to metabolism; and so on

(Dobrindt et al., 2004). However, the latter classification may not be definite since the

functions of genes within GIs may not be clear-cut in practice.

GIs play crucial roles in microbial genome evolution and adaptation of microbes

to environments. As part of a flexible gene pool (Hacker and Carniel, 2001), the

acquisition of GIs can facilitate evolution in quantum leaps, allowing bacteria to gain

large numbers of genes related to complex adaptive functions in a single step and thereby

confer evolutionary advantages (Dobrindt et al., 2004; Juhas et al., 2009). Remarkably,

the genes inside GIs can influence a wide range of important traits: virulence, antibiotic

resistance, symbiosis, fitness, metabolism, and so on (Dobrindt et al., 2004; Juhas et al.,

2009). In particular, PAIs can carry many genes contributing to pathogen virulence

(Hacker et al., 1997; Schmidt and Hensel, 2004; Ho Sui et al., 2009), and potential

vaccine candidates were suggested to locate within PAIs (Moriel et al., 2010). Thus, the

accurate identification of GIs is important not only for evolutionary study but also for

medical research.

The in silico prediction of GIs can be summarized as follows: given the genome

sequence of a query organism, identify the positions of GIs along the query genome via

computer programs alone. Additional input information may also be incorporated in

prediction, such as the genomes of other related organisms and genome annotations.

(2) How to model LGT with phylogenetic networks?

The accumulating evidence of LGT between lineages, particularly in prokaryotes (Gog-

arten and Townsend, 2005; Soucy et al., 2015; Doolittle and Brunet, 2016), keeps chal-

lenging the simplified phylogenetic trees which have been adopted to model evolutionary

history of life since Darwin’s The Origin of Species. Additionally, other reticulate evo-

lutionary events also cause complications in constructing tree-like evolutionary models,

such as hybridization and introgression between species (Mallet, 2007; Fontaine et al.,

2015), and recombination of various forms (Martin et al., 2011). When the real organis-

mal phylogeny is a complex web woven with reticulation events, it seems more suitable

to build a species network rather than a species tree (Gogarten and Townsend, 2005).
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Consequently, researchers started adopting phylogenetic networks to model reticulation

events (Doolittle and Bapteste, 2007; Bapteste et al., 2013).

Phylogenetic networks can be used to either visualize conflicting phylogenetic in-

formation or model reticulation events explicitly. The former are typically unrooted,

whereas the latter are rooted. LGTs are often modeled as additional edges added to a

base phylogenetic tree in a rooted phylogenetic network. Therefore, we focus on rooted

phylogenetic networks for the modeling of LGT.

According to Morrison (2014), the first published LGT network is a network showing

the transfer of an endogenous primate virus from the Old World monkeys to an ancestor

of the domestic cat (Benveniste and Todaro, 1974) (Figure 1.3). Kunin et al. (2005)

reconstructed the first large LGT network to represent the history of 165 microbial

genomes, termed as "the net of life", in which vertical inheritance constitutes a tree

and multiple tiny vines of LGT events interconnect the tree. They used established tree

reconstruction methods to model vertical inheritance and added instances of LGT after

identifying LGT events based on phylogenetic distribution of gene families.

Felidae 

Domestic  
cat 

Jungle  
cat 

Bobcat Lion 

Primates 

Patas Baboon Chimp 

Old World monkeys 

Gibbon Man Rhesus 

Figure 1.3: The first LGT network, redrawn from Figure 3 in (Benveniste and Todaro,

1974). An endogenous primate virus was transferred to an ancestor of the domestic cat

after the divergence of the Old World monkeys and the apes. The LGT is denoted by the

dashed arrow.

Owing to the laboriousness of tree reconstruction and LGT identification, it is

desirable to reconstruct a LGT network directly from the data, such as a set of trees or

sequences. But it is still challenging to build phylogenetic networks (Huber et al., 2015),
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especially LGT networks. Almost all existing methods for reconstructing phylogenetic

networks are not commonly used in practice (Huson et al., 2010). Therefore, some

fundamental problems have to be resolved to facilitate the development of practical

methods for network reconstruction.

The trees and (soft) clusters displayed in a network are of great significance in

the studies of phylogenetic networks. As a result, two related problems have arisen

from reconstructions of phylogenetic networks (Kanj et al., 2008): the tree containment

problem (TCP) and the cluster containment problem (CCP). The TCP asks whether a

phylogenetic tree is displayed in a phylogenetic network. The CCP asks whether a cluster

is a soft cluster displayed in (of some tree node in) a phylogenetic network. Efficient

solutions to the TCP and CCP can provide foundations for reconstructing, comparing,

and validating phylogenetic networks. Consequently, they may contribute to network-

based LGT modeling and detection. In the following paragraphs, we explain the TCP

and CCP in more detail.

A cluster is any subset of a set of taxa. In a phylogenetic tree, the taxa below a

node form a unique subset of the taxa, called its cluster. A phylogenetic tree is uniquely

determined by the set of “nested" clusters in the tree (Huson et al., 2010). A phylogenetic

network is a generalization of a phylogenetic tree in which there are additional reticulate

nodes, which are the nodes with an indegree of at least two. Formally, a phylogenetic

network is a rooted acyclic digraph with uniquely labeled leaves. Since most gene

families have tree-like evolutionary histories, a network model of the evolution of a set

of genomes is often built and validated by checking its consistency with the available

related gene trees and/or clusters (Huson et al., 2010).

A phylogenetic tree is said to be displayed in a phylogenetic network if it can be

obtained by deleting all but one incoming edges from each reticulate node and then

contracting all the nodes of degree two. In a phylogenetic network, a non-reticulate

node is called a tree node. Each tree node represents a cluster and a set of soft clusters.

Similar to the case of phylogenetic tree, a node’s cluster consists of all taxa below it,

whereas its soft clusters are the clusters represented by this node in the phylogenetic trees

that are displayed in the network. The cluster and soft cluster are also called hardwired

cluster and softwired cluster, respectively (Huson et al., 2010).

Measuring the dissimilarity between phylogenetic networks is important for assess-
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ing a network reconstruction method. The solutions to the TCP and CCP also relate to

the computing of distances (based on the number of trees or soft clusters displayed in

a network) between two phylogenetic networks. In particular, the efficient solution to

the CCP can help to develop better methods for computing the distance based on soft

clusters. The distance based on soft clusters is a distance related to the Robinson–Foulds

(RF) distance which is a generalization of the same metric for phylogenetic trees. Simply

put, the RF distance is the half of the cardinality of the symmetric difference of the two

sets of clusters respectively contained in the two networks (Cardona et al., 2009a). By

replacing clusters with soft clusters, we obtain the Soft Robinson–Foulds (SRF) distance

(Huson et al., 2010). The RF and SRF distances are two possible extensions of the RF

distance for trees. If a reconstructed phylogenetic (LGT) network has a small SRF

distance to the “true" phylogenetic (LGT) network, this reconstructed network is likely

to be a good model.

(3) What were potential LGT events?

The straightforward way to quantify LGTs is to detect instances of LGT events, namely

inferring individual LGT events related to a gene or a gene family. This problem of

detecting LGTs is a general problem that covers the first two problems whose solutions

can be easily adapted to find potential LGT events.

Over the years, various methods have been developed to detect LGTs. However,

their predictions differ a lot in different studies. The estimates of the proportion of genes

affected by LGT ranged from about 2% to 90% (Dagan and Martin, 2007; Kloesges et al.,

2011). The conclusions on the transferability of genes were also different. According

to the complexity hypothesis (Jain et al., 1999; Wellner et al., 2007; Cohen et al., 2011),

informational genes seem to be more resistant to LGT than operational genes. Despite

that several studies supported the complexity hypothesis to some extent (Beiko et al.,

2005; Shi and Falkowski, 2008; Abby et al., 2012; Sjöstrand et al., 2014), a few studies

generated different results (Zhaxybayeva et al., 2006; Matzke et al., 2014).

In short, there is little agreement on how to quantify LGTs and thereby their ram-

ifications (Doolittle and Brunet, 2016). Some possible reasons for the discrepancies

include biased sampling and uncertainties in the methods (Dagan and Martin, 2007). It

was suggested that the most reasonable way is to find which genes were strictly vertically
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inherited from the last universal common ancestor (Doolittle and Brunet, 2016). But

this is also a difficult problem. Therefore, it remains an open challenging problem to

obtain more accurate detection of LGTs.

1.2 Computational methods for analyzing LGT

To solve the above three problems related to the analysis of LGT (Section 1.1.3), different

kinds of computational methods have been proposed. We briefly discuss them in this

section, respectively, to indicate potential gaps for each problem. In the following

chapters, we will give more detailed literature reviews.

1.2.1 Computational methods for detecting genomic islands

Langille et al. (2010) gave a comprehensive review of GI-related features and different

computational approaches for detecting GIs. Later, Che et al. (2014a) presented a similar

review for detecting PAIs. We will provide a detailed up-to-date review in Section 2.2.

The methods for GI prediction usually use two most indicative features of the

horizontal origin of GIs: biased sequence composition and sporadic phylogenetic dis-

tribution. Based on the two features, these methods roughly fall into two categories:

composition-based methods and comparative genomics-based methods (Langille et al.,

2010). For ease of discussion, we categorize GI prediction methods into two large groups

based on the number of input genomes: methods based on one genome and methods

based on multiple genomes. Methods in the former group are often composition-based,

whereas methods in the latter group are usually based on comparative genomics. We

also discuss ensemble methods which combine different kinds of methods and methods

for incomplete genomes which predict GIs in draft genomes.

Most methods based on one genome utilize sequence composition to identify GIs.

Composition-based methods identify GIs by utilizing compositional differences between

alien regions and native regions within a single genome. According to the units for mea-

suring genome composition, composition-based methods can be divided into methods at

the gene level and methods at the DNA level. These methods are usually straightforward

and easily applicable. But they may report many false positives and false negatives.

Some methods based on one genome utilize GI structural characteristics, mainly

10



including direct integration methods and machine learning methods. These methods

can obtain very accurate predictions. But direct integration methods may discard GIs

not atypical in terms of certain features and machine learning methods have limited

applications due to the requirement of high-quality training data.

Methods based on several genomes compare multiple related genomes to find regions

present in a subset but not all of the genomes. Unlike methods based on one genome,

this kind of methods can obtain more accurate results by comparing a set of well-chosen

genomes. But their predictions are largely dependent on the selected genomes.

The predictions from different kinds of methods may be non-overlapping and com-

plementary to each other (Langille et al., 2010). To achieve the good of both worlds,

ensemble methods that integrate different methods have been developed. One common

way of integration is to combine the predictions from multiple programs. Another way

is to gradually pick up more reliable predictions from the results of one method by

other methods. Most of these methods have user-friendly interfaces, but the integration

procedures may discard some interesting predictions.

Since many newly sequenced genomes are in draft status, a few methods for incom-

plete genomes were developed. These methods first require genome assembly to obtain

a single genome. After that, they actually use similar methodologies as those for GI

detection in complete genomes. Generally speaking, they are still simplistic and have

limited applications.

1.2.2 Computational methods related to phylogenetic networks

In recent years, phylogenetic networks have been the subject of intensive theoretic

studies (Huson and Bryant, 2006; Huson et al., 2010; Morrison, 2011; Gusfield, 2014).

Given the big challenges in reconstructing a phylogenetic network (including a LGT

network) from biological data, we mainly focus on the two basic problems arising in

the reconstruction and validation of phylogenetic networks: the TCP and CCP. We also

consider the extension of the TCP and CCP in computing distances between phylogenetic

networks. In Section 3.2, we will provide a more detailed review.

LGT is naturally modeled in a tree-based network (Francis and Steel, 2015), a kind of

phylogenetic networks that can be obtained by adding edges to a phylogenetic tree. But

currently there are few network-based methods for LGT modeling due to the difficulties
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in network reconstruction and the asymmetricity of LGT (Cardona et al., 2015).

Both the TCP and CCP are NP-complete even for binary networks (Kanj et al., 2008;

Huson et al., 2010; van Iersel et al., 2010b). As a result, polynomial-time algorithms

are only known for several types of restricted networks. For the TCP, polynomial-

time algorithms were published for phylogenetic networks with the reticulation-visible

property (van Iersel et al., 2010b; Gambette et al., 2015b,a; Gunawan et al., 2016a,

2017). For the CCP on reticulation-visible networks, a polynomial-time algorithm was

given in (Huson et al., 2010), and a linear-time algorithm was recently presented in

(Gunawan et al., 2017).

Previous methods for computing distances based on the number of trees (soft clusters)

displayed in a network firstly enumerate all the trees (soft clusters) displayed in a network,

and then check whether the trees (soft clusters) displayed in one network are displayed

in another network or not. These methods are not efficient when dealing with networks

with many reticulate nodes. Due to the NP-completeness of the TCP and CCP, there

are unlikely polynomial-time algorithms for computing the distance based on displayed

trees and the distance based on soft clusters (the SRF distance).

1.2.3 Computational methods for detecting LGT events

Numerous methods using various criteria have been proposed to detect LGTs. Some

of them were comprehensively reviewed in (Zhaxybayeva, 2009; Azad and Lawrence,

2011; Ravenhall et al., 2015). We will provide a latest review in Section 4.2.

The methods for LGT detection are mainly classified into two categories based on

the criteria used. One kind is phylogenetic method, which is based on evolutionary

history or phylogenetic relationship among multiple different organisms. The other kind

is compositional method, which is based on properties of sequence composition in a

single genome. According to whether a phylogenetic tree is required or not, phylogenetic

methods can be classified as implicit methods (without phylogeny reconstruction), tree-

based methods, and network-based methods. The methods for GI prediction belong

to compositional methods, whereas modeling LGT with phylogenetic networks are

network-based methods.

Most LGT detection methods are complementary to each other, as they may detect

LGTs of different properties (Podell and Gaasterland, 2007; Zhaxybayeva, 2009). Com-
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positional methods are generally good at detecting recent LGTs. Phylogenetic tree-based

methods can infer ancient LGTs and they are considered as the most reliable methods.

Although tree-based methods were frequently used for LGT detection, network-based

methods are equally effective for detecting LGTs in theory (Morrison, 2011). However,

network-based methods for LGT detection are still in early development.

It is suggested that the combination of different kinds of methods can predict LGTs

better than a single kind of methods (Lawrence and Ochman, 2002; Zhaxybayeva and

Doolittle, 2011; Azad and Lawrence, 2011). In practice, the results of compositional

methods are often validated by implicit methods (blasting against sequence databases).

To ascertain that a LGT event really occurred, tree-based methods are often required

to check the incongruence between gene and genome evolutionary histories if a set of

orthologs can be identified from the selected organisms.

1.3 The focus and significance of the thesis

In this thesis, we aim to develop better computational methods to solve the three problems

described in Section 1.1.3. In this section, we describe the research gaps revealed by

the brief review in Section 1.2 and our work towards filling the gaps for each problem,

respectively.

• Despite that a large number of GI detection methods of various categories are

available, there is still a pressing need for better methods that can work on a single

newly sequenced genome. Newly sequenced genomes may have no or incomplete

annotations owing to limited time in detailed analysis. Moreover, they may not

have enough closely related organisms to compare with. Thus, new methods

are required to quickly detect and prioritize reliable GI candidates for further

investigations. Given this need, we developed two machine learning methods

to detect GIs: GI-SVM (Lu and Leong, 2016b) and GI-Cluster (Lu and Leong,

2017). As a by-product of our work on GI detection, we also published a review

on previous GI detection methods (Lu and Leong, 2016a).

GI-SVM utilizes one-class SVM along with spectrum kernels to identify GIs based

on k-mer frequencies. It was shown to have higher recall than programs taking the

same input on real biological datasets. GI-Cluster takes advantage of consensus
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clustering to detect GIs by integrating multiple GI-related features. It is widely

applicable, either to complete and incomplete genomes or to initial GI predic-

tions from other programs (e.g. GI-SVM). GI-Cluster does not require training

datasets or existing genome annotations, but it can still achieve comparable or

better performance than supervised machine learning methods in comprehensive

evaluations. In summary, GI-SVM and GI-Cluster provide researchers with better

alternative tools to detect GIs on newly sequenced genomes.

In Chapter 2, we will describe our work regarding GI-SVM and GI-Cluster.

• The current algorithms for the TCP and CCP are only for restricted classes of

phylogenetic networks. Given that a large fraction of phylogenetic networks is not

reticulation-visible (Zhang, 2016), it is necessary to develop exact algorithms for

the TCP and CCP on arbitrary phylogenetic networks. Therefore, we developed

two programs for solving TCP (Gunawan et al., 2016b) and CCP (Lu et al.,

2017) on arbitrary phylogenetic networks, respectively. We also extended the

CCP program to a program for fast computing of the SRF distance between two

phylogenetic networks (Lu et al., 2017).

Although phylogenetic networks are promising tools for modeling LGT, lots of

theoretical challenges still exist. The solutions to the TCP and CCP for arbitrary

phylogenetic networks may make it more practical to apply network-based methods

in LGT analysis. In addition, the methods for comparing phylogenetic networks

based on displayed soft clusters can facilitate the validation of reconstructed

networks with more reticulations.

In Chapter 3, we will describe our methods to solve the TCP and CCP and to

compare the phylogenetic networks.

• Although it seems more reliable to use multiple methods for LGT detection in

practice, very few systematic studies were conducted to investigate the comple-

mentary performances of various methods on real biological datasets. Since

cynobacteria have been extensively studied in terms of LGT, we performed a

case study on a set of cynobacterial genomes by applying multiple LGT detection

methods from different categories.

We investigated the consistencies among predictions from both compositional
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and phylogenetic methods on selected cynobacterial genomes. Consistent with

previous studies, our comparison results exhibited very low overlap among pre-

dictions from various methods, especially methods of different kinds, in spite of

certain agreements. This further indicates the necessity of carefully examining

predictions from multiple methods before reaching solid conclusions regarding

LGTs.

In Chapter 4, we will describe this case study in more detail.
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Chapter 2

Identifying genomic islands by

machine learning

2.1 Introduction

In this chapter, we first provide a brief description of challenges in GI prediction,

followed by a detailed review of GI prediction methods. Then we describe GI-SVM

which predicts GIs based solely on k-mer frequencies and GI-Cluster which further

improves GI prediction by integrating multiple information.

It is a non-trivial task to find laterally transferred regions of relatively small size

in a long genome sequence. Although there are several well-characterized features

to distinguish GIs from other genomic regions (Langille et al., 2010), two prominent

challenges still exist: the extreme variation of GIs and the lack of benchmark GI datasets.

The mosaic nature and extreme variety of GIs increase the complexity of GI pre-

diction (Vernikos, 2008). The elements within a GI may have been acquired by several

LGT events (probably from different origins) and are likely to have undergone subse-

quent evolutions, such as gene loss and genomic rearrangement (Dobrindt et al., 2004).

Consequently, the composition, function and structure of GIs can show various pat-

terns. This can be illustrated by GIs in the same species (Marcus et al., 2000), GIs in

Gram-negative bacteria (Hacker et al., 1997), and GIs in both Gram-positive and Gram-

negative bacteria (Hacker et al., 1997; Vernikos and Parkhill, 2008). The diversity of

GIs prevents an effective way of integrating multiple features for prediction. Choosing

only a few features as predictors may discard lots of GIs without those features. Even if
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Table 2.1: The available datasets related to genomic islands.

Name Feature Availability

Database
PAIDB (Yoon et al.,

2007, 2015)

The only database including most

reported PAIs and REIs

http://www.paidb.re.kr/about_
paidb.php

Islander (Mantri and

Williams, 2004; Hudson

et al., 2015)

Intended to be gold standard dataset

for accurately mapped GIs

http://bioinformatics.sandia.
gov/islander

ICEberg (Bi et al., 2012) Providing comprehensive informa-

tion about ICEs

http://db-mml.sjtu.edu.cn/
ICEberg/

Constructed dataset
RVM datasets (Vernikos

and Parkhill, 2008)

331 GIs and 337 non-GIs from 37

bacteria of 3 genera

Not available

IslandPick datasets

(Langille et al., 2008)

771 GIs and 3770 non-GIs from 118

bacteria of 12 orders

http://www.pathogenomics.sfu.
ca/islandpick_GI_datasets/

the fundamental property of GIs, the lateral origin, can be used for prediction, it is still

challenging since LGT itself is difficult to ascertain (Ravenhall et al., 2015).

There are still no reliable benchmark GI datasets for validating prediction methods

or supervised prediction. With more GIs being predicted and verified, several GI-

related databases have been deployed and regularly updated, such as Islander (Mantri

and Williams, 2004), PAIDB (Yoon et al., 2007), and ICEberg (Bi et al., 2012) (Table

2.1). However, these databases are mainly for specific kinds of GIs, such as tDNA-

borne GIs (GIs inserted at tRNA or tmRNA gene sites), PAIs, and ICEs. There are

also two constructed GI datasets based on whole-genome comparison (Vernikos and

Parkhill, 2008; Langille et al., 2008) (Table 2.1), which were used as training datasets

for machine learning methods. But the scale of these datasets is still not large enough,

and their reliability has not been verified by convincing biological evidence.

In spite of the above challenges, previous methods have made considerable progress

in GI prediction. Figure 2.1 shows an overview of these methods.

2.2 Literature review

In this section, we describe GI detection methods by category in more detail. For

reference, we list available programs discussed under each category in Table 2.2.
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GI prediction methods 

Methods based 
on one genome 

Methods based on  
gene composition 

Karlin's method 
(Karlin, 2001); 

PAI-IDA (Tu and 
Ding,  2003); 
IslandPath-

DINUC  (Hsiao et 
al., 2005); 
SIGI-HMM 

(Waack et al., 
2006) 

Methods based on  
DNA composition 

Window-
based 

methods 

AlienHunter 
(Vernikos and 
Parkhill, 2006); 

Centroid (Rajan 
et al., 2007); 

Design-Island 
(Chatterjee et 

al., 2008); 
INDeGenIUS 

(Shrivastava et 
al., 2010); 

GI-SVM (Lu and 
Leong, 2015) 

Windowless 
methods 

 
GC Profile 
(Zhang and 

Zhang, 2004); 
MJSD (Arvey 
et al., 2009) 

Zisland 
Explorer 

(Wei et al., 
2016) 

 

Methods based on  
GI structure 

Direct 
integration 
methods 

IslandPath 
(Hsiao et al., 

2003); 
Islander  

(Mantri and  
Williams, 2004) 

IslandPath-
DIMOB (Hsiao 
et al., 2005); 

Machine 
learning 
methods 

RVM (Vernikos 
and Parkhill, 

2008); 
GIDetector 
(Che et al. 

2010); 
GIHunter (Che 

et al., 2014) 

Methods based on 
multiple genomes  

tRNAcc 
(Ou et al., 

2006); 
IslandPick 
(Langille et 
al., 2008) 

Ensemble 
methods 

PAIDB (Yoon et 
al., 2005); 

PredictBias 
(Pundhir et al., 

2008); 
IslandViewer 
(Langille and 

Brinkman, 
2009); 

EGID (Che et 
al., 2011) ; 

GIST (Hasan et 
al., 2012); 

PIPS (Soares et 
al., 2012) 

Methods for 
incomplete 

genome 

GI-POP (Lee 
et al., 2013); 
IslandViewer 
(Dhillon et al., 

2015) 

Figure 2.1: The hierarchical overview of computational methods for predicting genomic

islands which are discussed in Section 2.2.

2.2.1 GI detection methods based on one genome

In this subsection, we first present the basic idea of composition-based methods and

then discuss methods at the gene and DNA level separately.

The major assumption of composition-based methods is that mutational pressures

and selection forces acting on the microbial genomes may result in species-specific

nucleotide composition (Lawrence and Ochman, 1997). Thus, a laterally transferred

region may show atypical composition which is distinguishable from the average of the

recipient genome. Under this assumption, most compositional methods try to choose

certain sequence characteristics as discrimination criteria to measure the compositional

differences. Several features have been shown to be good criteria, including GC content,

codon usage, amino acid usage, and oligonucleotide (k-mer) frequencies (Tsirigos and

Rigoutsos, 2005b). Based on these criteria, single-threshold methods are often adopted.

The atypicality of each gene or genomic region is measured by a score derived from the

comparison with the average of the whole genome via similarity measures. The genes

or genomic regions with scores below or above a certain threshold (either predefined or

dynamically computed) are supposed to be atypical. The consecutive atypical genes or

genomic regions are finally merged to get candidate GIs.
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Table 2.2: The summary of selected programs for predicting genomic islands.

Program Form Availability

Methods based on gene composition of one genome
PAI-IDA (Tu and Ding, 2003) Command line Upon request

SIGI-HMM (Waack et al., 2006) Graphical interface https://www.uni-goettingen.de/en/research/
185810.html

Methods based on DNA composition of one genome
Window-based methods

AlienHunter (Vernikos and Parkhill,

2006)

Command line http://www.sanger.ac.uk/resources/software/
alien_hunter

Centroid (Rajan et al., 2007) Command line Upon request

Design-Island (Chatterjee et al., 2008) Command line http://www.isical.ac.in/~rchatterjee/
Design-Island.html

INDeGenIUS (Shrivastava et al., 2010) Command line Upon request

Windowless methods
GC Profile (Zhang and Zhang, 2004; Gao

and Zhang, 2006; Zhang et al., 2014)

Web-based http://tubic.tju.edu.cn/GC-Profile

Zisland Explorer (Wei et al., 2017) Web-based http://tubic.tju.edu.cn/Zisland_Explorer/

MJSD (Arvey et al., 2009) Command line http://cbio.mskcc.org/~aarvey/mjsd

Methods based on GI structure of one genome
Direct integration methods

IslandPath (Hsiao et al., 2003) Web-based http://www.pathogenomics.sfu.ca/islandpath/

Machine learning methods
GIDetector (Che et al., 2010) Command line http://www5.esu.edu/cpsc/bioinfo/software/

GIDetector

GIHunter (Che et al., 2014b) Command line http://www5.esu.edu/cpsc/bioinfo/software/
GIHunter

Methods base on multiple genomes
tRNAcc (Ou et al., 2006) Web-based http://db-mml.sjtu.edu.cn/MobilomeFINDER/

IslandPick (Langille et al., 2008) Command line http://www.pathogenomics.sfu.ca/
islandviewer/download/

Ensemble methods
IslandViewer (Langille and Brinkman,

2009; Dhillon et al., 2013, 2015; Bertelli

et al., 2017)

Web-based http://www.pathogenomics.sfu.ca/
islandviewer

EGID (Che et al., 2011) Command line http://www5.esu.edu/cpsc/bioinfo/software/
EGID

GIST (Hasan et al., 2012) Graphical interface http://www5.esu.edu/cpsc/bioinfo/software/
GIST

PredictBias (Pundhir et al., 2008) Web-based http://www.bioinformatics.org/sachbinfo/
predictbias.html

PIPS (Soares et al., 2012) Command line http://www.genoma.ufpa.br/lgcm/pips

Methods for incomplete genome
GI-POP (Lee et al., 2013) Web-based http://gipop.life.nthu.edu.tw

GI detection methods based on gene sequence composition

Methods based on gene sequence composition are often designed to detect laterally

transferred genes (Azad and Lawrence, 2011), and only a few methods are specifically

developed to detect GIs. The methods for LGT detection can be utilized to identify

GIs by combing clusters of laterally transferred genes, but they are supposed to be less

sensitive, since some genes inside a GI may not show atypicality to allow the whole GI

being captured. Here we mainly discuss specific methods for GI detection.

Some methods combine multiple discrimination criteria, such as Karlin’s method
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(Karlin, 2001) and PAI-IDA (Tu and Ding, 2003). Karlin’s method and PAI-IDA predict

GIs and PAIs by evaluating multiple compositional features (GC content, dinucleotide

frequencies, codon usage, and amino acid usage). Karlin’s method is a single-threshold

method, whereas PAI-IDA uses iterative discriminant analysis. Both methods use a

sliding window to scan the genome, and sequences or genes inside each window are

used for computation.

Other methods use only a single discrimination criterion, such as IslandPath-DINUC

(Hsiao et al., 2003, 2005) and SIGI-HMM (Waack et al., 2006). IslandPath-DINUC

uses a single-threshold method to predict GIs as multiple consecutive genes with only

dinucleotide bias. SIGI-HMM predicts GIs and putative donors of laterally transferred

genes based solely on the codon usage bias of individual genes. As an extension of SIGI

(Merkl, 2004), an earlier method based on scores derived from codon frequencies, SIGI-

HMM substitutes the previous heuristic method with Hidden Markov Model (HMM) to

model the laterally transferred genes and native genes as different states.

Pros and Cons Methods based on gene sequence composition are generally easy to

implement and apply. But what they indeed find are compositionally atypical genomic

regions in terms of certain criteria. So there are many false positives and false nega-

tives. Native regions may easily be detected as false positives owing to their atypical

composition for reasons other than LGT, such as highly expressed genes (Garcia-Vallve

et al., 2003). At the same time, ameliorated GIs (Lawrence and Ochman, 1997) or GIs

originated from genomes with similar composition may not be detected. But the false

positives can be reduced by eliminating well-known non-GIs. For example, by filtering

out putative highly expressed genes based on codon usage, SIGI-HMM was reported to

have the highest precision in previous evaluations (Langille et al., 2008).

For methods performing comparisons with the genomic average, laterally transferred

regions may contaminate the genome and reduce the accuracy of predictions (Elhai

et al., 2012). Furthermore, the predicted boundaries of GIs are not precise, since the

boundaries between laterally transferred genes and native genes can be compositionally

ambiguous (Azad and Lawrence, 2011). Additionally, these methods at the gene level

require reliable gene annotations. Thus, they may not be applied to newly sequenced

genomes, which have no or incomplete annotations.
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GI detection methods based on DNA sequence composition

The increase of newly sequenced genomes without complete annotations necessitates GI

prediction based on DNA sequences alone. Without the aid of gene boundaries, the large

genome has to be segmented by other measures. According to genome segmentation

approaches, methods based on DNA sequence composition can be classified into two

major kinds: window-based methods and windowless methods.

Window-based methods Window-based single-threshold methods are commonly used

for GI detection. These methods use a sliding window to segment the whole genome

sequence into a set of smaller regions. There are several representative programs,

including AlienHunter (Vernikos and Parkhill, 2006), Centroid (Rajan et al., 2007),

INDeGenIUS (Shrivastava et al., 2010), Design-Island (Chatterjee et al., 2008). The

major differences among them are in: the size of the sliding window, the choice of the

discrimination criterion and similarity measure, and the determination of the threshold.

AlienHunter uses a fixed-size overlapping window of fixed step size. AlienHunter

is the first program for GI detection on raw genomic sequences. It measures segment

atypicality via relative entropy based on interpolated variable order motifs (IVOM). The

threshold can be obtained by either k-means clustering or standard deviation (when there

are fewer samples).

Centroid partitions the genome by a non-overlapping window of fixed size. The

average of k-mer frequency vectors for all the windows is seen as the centroid. Based

on the Manhattan distances from each frequency vector to the centroid, outlier windows

are selected by a threshold derived from standard deviation. INDeGenIUS is a method

similar to Centroid. But it uses overlapping windows of fixed size and computes the

centroid via hierarchical clustering.

Design-Island is a two-phase method utilizing k-mer frequencies. It incorporates

statistical tests based on different distance measures to determine the atypicality of a

segment via pre-specified thresholds. In the first phase a variable-size window is used

to obtain initial GIs, whereas in the refinement phase a smaller window of fixed size is

used to scan over these putative GIs for getting final GI predictions.

Some of these methods are designed to alleviate the problem of genome contam-

ination. Design-Island excludes the initially obtained putative GIs when computing
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parameters for the entire genome in the second phase.

To deal with the imprecise GI boundaries that result from a large step size, Alien-

Hunter uses HMM to further localize the boundaries between predicted GIs and non-GIs.

But most other programs do not consider this issue.

Windowless methods The few windowless methods mainly include GC Profile (Zhang

and Zhang, 2004; Zhang et al., 2014) as well as its extensions and MJSD (Arvey et al.,

2009).

GC Profile is an intuitive method to calculate global GC content distribution of a

genome with high resolution. The abrupt drop in the profile indicates the sharp decrease

of GC content and thus the potential presence of a GI. This method was later developed

into a web-based tool which is used for analyzing GC content in genome sequences (Gao

and Zhang, 2006). However, other features have to be used together with GC Profile

for GI prediction due to the poor discrimination power of GC content. More recently,

Wei et al. (2017) developed a webserver called Zisland Explorer, which combines GC

Profile with codon usage bias and amino acid bias.

MJSD is a recursive segmentation method based on Markov Jensen-Shannon diver-

gence (MJSD) measure. The genome is recursively cut into two segments by finding

a position where the sequences to its left and to its right have statistically significant

compositional differences. Subsequently, each segment is compared against the whole

genome to check its atypicality via a predefined threshold. MJSD can also be used

together with clustering to predict GIs in a bacterial genome (Jani et al., 2016).

Pros and Cons Methods based on DNA sequence composition have the similar ad-

vantages and disadvantages as methods based on gene sequence composition.

Specifically, window-based methods can be highly sensitive with appropriate im-

plementations. For example, AlienHunter was reported to have the highest recall in

previous evaluations (Langille et al., 2008). But their precisions are quite low due to the

limited input information. They are also inherently incapable of identifying the precise

boundaries between regions with compositional differences(Arvey et al., 2009).

In contrast, windowless methods can delineate the boundaries between GIs and non-

GIs more accurately (Arvey et al., 2009). GC Profile and Zisland Explorer are capable
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of discovering a few reliable GIs (Zhang et al., 2014; Wei et al., 2017). But it seems

subjective to access the abruptness of jump in the GC profile, and only GIs with low

GC content can be detected. MJSD is better at predicting GIs of size larger than 10

kb (Arvey et al., 2009), but the procedure to determine segment atypicality still suffers

from the contamination of the whole genome.

GI detection methods based on GI structure

The presence of compositional bias is usually not sufficient to assure the foreign origin

of putative GIs. Thus, it is necessary to develop methods based on multiple GI-

related structural features. According to the approaches of integrating different features,

methods based on GI structure can be divided into direct integration methods and

machine learning methods.

Direct integration methods The direct integration methods adopt a series of filters to

get more reliable GIs. But some integrated features are only used for validation, since

it is difficult to systematically use them for prediction given the extreme GI structural

variation. There are mainly two representative programs: IslandPath (Hsiao et al., 2003)

and Islander (Mantri and Williams, 2004).

IslandPath is the first program integrating multiple features (GC bias, dinucleotide

bias, the presence of tDNAs and mobility-related genes) to aid GI detection. But

IslandPath only annotates and displays these features in the whole genome, leaving it to

the user to decide whether a region is a GI or not. Based on these computed features, a

GI can be identified as multiple consecutive genes with both dinucleotide bias and the

presence of mobility-related genes (IslandPath-DIMOB) (Hsiao et al., 2005).

Islander incorporates a method to accurately detect tDNA-borne GIs. Islander

seeks specific tDNA signature to find candidate GIs. Several filters are used to exclude

potential false positives, such as regions without integrase genes. Recently, the filtering

algorithms are refined via incorporating more precise annotations available now (Hudson

et al., 2015).

Machine learning methods Several machine learning approaches based on con-

structed GI datasets have been proposed, including Relevance Vector Machine (RVM)
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(Vernikos and Parkhill, 2008), GIDetector (Che et al., 2010), and GIHunter (Che et al.,

2014b). The major differences among them are in the choices of training datasets,

GI-related features, and learning algorithms.

RVM is the first machine learning method to study structural models of GIs. It is

based on the datasets constructed from comparative genomics methods. Eight features

of each genomic region were used to train GI models: IVOM score, insertion point, GI

size, gene density, repeats, phage-related protein domains, integrase protein domains

and non-coding RNAs.

GIDetector utilizes the same features and training datasets as RVM, but it implements

decision tree based ensemble learning algorithm. GIHunter uses the similar algorithm

as GIDetector, but adopts slightly different features and datasets. GI size and repeats

are replaced by highly expressed genes and average intergenic distance. The training

datasets are replaced by IslandPick datasets. The predictions of GIHunter for thousands

of microbial genomes are available online at http://www5.esu.edu/cpsc/bioinfo/

dgi/index.php.

Pros and Cons Methods utilizing GI structure can generate more robust predictions.

For example, the high reliability of GIs inserted at tDNA sites leads to very few false

positives in the predictions from Islander (Hudson et al., 2015). But these methods

depend on accurate identification of multiple related features, such as tRNA genes,

mobility-related genes, and virulence factors.

Direct integration methods are straightforward, but many GIs may be filtered out

due to the lack of certain features. For example, IslandPath-DIMOB was shown to have

very low recall in spite of high accuracy and precision (Langille et al., 2008).

Conversely, machine learning approaches can systematically integrate multiple GI

features to improve GI prediction. This can be partly reflected by the high recall and

precision of GIHunter (Che et al., 2014b). However, the performance of supervised

methods is closely related to the quality of training datasets.

2.2.2 GI detection methods based on several genomes

Methods based on several genomes detect GIs from their sporadic phylogenetic dis-

tribution. The comparison procedure often involves analyzing results from sequence
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alignment tools (Langille et al., 2010), such as local alignment tool BLAST (Altschul

et al., 1997), and whole-genome alignment tool MAUVE (Darling et al., 2004).

BLAST and MAUVE can be used to find unique strain-specific regions (GI can-

didates), whereas MAUVE can also be used to find conserved regions. For example,

Vernikos and Parkhill performed genome-wide comparisons via all-against-all BLAST,

and then applied manual inspection to find reliable GIs for training GI structural mod-

els (Vernikos and Parkhill, 2008). They also differentiated gene gain from gene loss

via a maximum parsimony model obtained from MAUVE alignments. Despite the te-

diousness of manual analysis, there are only two automatic methods based on several

genomes: tRNAcc (Ou et al., 2006) and IslandPick (Langille et al., 2008).

The tRNAcc method utilizes alignments from MAUVE to find GIs between a con-

served tRNA gene and a conserved downstream flanking region across the selected

genomes. It was later integrated into MobilomeFINDER (Ou et al., 2007), an integra-

tive web-based application to predict GIs with both computational and experimental

methods. Complementary analysis is also incorporated in tRNAcc to provide additional

support, including GC Profile, strain-specific coding sequences derived from BLAST

analysis, and dinucleotide differences. But appropriate genomes to compare have to be

selected manually.

To facilitate genome selection, IslandPick builds an all-against-all genome distance

matrix and utilizes several cut-offs to select suitable genomes to compare with the query

genome, making it the first completely automatic comparative genomics method. The

pairwise whole-genome alignments are done by MAUVE to get large unique regions in

the query genome. After being filtered by BLAST to eliminate genome duplications,

these regions are considered as putative GIs.

Pros and Cons Due to the inaccuracies of composition-based methods, methods

based on several genomes are preferred if there are appropriate genomes for comparison

(Langille et al., 2008). But uncertainties still exist in their predictions. Firstly the

results are dependent on the genomes compared with the query genome (Langille et al.,

2008). Secondly, it is hard to distinguish between gene gain via LGT and gene loss

(Ravenhall et al., 2015). Thirdly, genomic rearrangements can cause difficulties in

accurate sequence alignments (Darling et al., 2004). In addition, the applications of
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methods based on several genomes are limited, since the genome sequences of related

organisms may not be available for some query genomes.

2.2.3 Ensemble methods for GI detection

Different kinds of methods often predict non-overlapping GIs (Langille et al., 2010) and

complement each other (Arvey et al., 2009). To make the best of available methods,

ensemble methods have been proposed to combine different methods.

One way of combination is to merge the predictions from multiple programs. This

approach is implemented in IslandViewer (Langille and Brinkman, 2009) and EGID

(Che et al., 2011). IslandViewer is a web-based application combining three programs:

SIGI-HMM, IslandPath-DIMOB, and IslandPick. It provides the first user-friendly

integrated interface for visualizing and downloading predicted GIs. Newer versions

of IslandViewer include further improvements (Dhillon et al., 2013, 2015), such as

improving efficiency and flexibility, incorporating additional gene annotations, and

adding interactive visualizations. But the underlying integration method is mainly a

union of predictions from individual programs. Unlike IslandViewer, EGID uses a

voting approach to combine predictions from five programs: Alienhunter, IslandPath,

SIGI-HMM, INDeGenIUS, and PAI-IDA. A user-friendly interface for EGID is provided

in the program GIST (Hasan et al., 2012).

Another way of combination is to filter the predictions from one method by other

methods. This approach is common for PAI prediction, since it is critical to utilize

multiple features to discern PAIs from other GIs. Several PAI detection programs adopt

this approach, including PAIDB (Yoon et al., 2005), PredictBias (Pundhir et al., 2008)

and PIPS (Soares et al., 2012). These programs often combine composition-based

methods, comparative genomics methods, and homology-based methods.

Both PAIDB and PredictBias firstly identify putative GIs based on compositional

bias. For PAIDB, the putative GIs homologous to published PAIs (overlapping with

PAI-like regions obtained from homology searches) are seen as candidate PAIs. SIGI-

HMM and IslandPath-DIMOB are later integrated into PAIDB for GI predictions (Yoon

et al., 2015). To overcome the dependency on known PAIs, PredictBias constructed a

profile database of virulence factors (VFPD). If the putative GIs (or eight contiguous

genes) have a pre-specified number of significant hits to VFPD, they are seen as potential
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PAIs. PredictBias also integrates comparative analysis to validate the potential PAIs.

PIPS integrates multiple available tools for computing PAI-associated features. It

filters out the initial predictions from comparative genomics analysis via empirical logic

rules on selected features (GC content, codon usage, virulence factors and hypothetical

proteins).

Pros and Cons Combining the predictions of several programs is supposed to perform

better than individual programs. Actually, IslandViewer was shown to increase the recall

and accuracy without much sacrifice of precision (Langille et al., 2010), and EGID was

reported to yield balanced recall and precision (Che et al., 2011).

The available ensemble methods are mostly characterized by user-friendly interfaces,

but the combination procedures do not seem to be sophisticated enough. Some valuable

predictions made by one method may be discarded in the ensemble method. For example,

PredictBias was shown to have lower sensitivity and accuracy than PIPS on two bacterial

strains (Soares et al., 2012), which reflects the effects of different integration strategies

on the performances to some extent.

2.2.4 GI detection methods for incomplete genomes

Thanks to low-cost high-throughput sequencing, an increasing number of microbial

genomes are being sequenced. However, many of these genomes are in draft status. So

there is a need to predict GIs in incomplete genomes. Currently, there are only two

programs for this purpose: GI-GPS (Lee et al., 2013) and IslandViewer 3 (Dhillon et al.,

2015). Both programs firstly assemble the sequence contigs into a draft genome, and

then use methods similar to those for predicting GIs in complete genomes.

GI-GPS is a component of GI-POP, a web-based application integrating annotations

and GI predictions for ongoing microbial genome projects. GI-GPS uses an assembler

within GI-POP for genome assembly. Then an SVM classifier with radial basis function

kernel is applied to segments obtained from a sliding window of fixed size along the

genome. The classifier is trained on IslandPick datasets and selected GIs from PAIDB.

GI-GPS utilizes compositional features in model training to tolerate potential errors in

the assembled genome. The predictions from the classifier are filtered by homologous

searches to keep only sequences with MGE evidence. Then the boundaries of filtered
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sequences are refined by repeats and tRNA genes.

IslandViewer 3 maps the annotated contigs to a completed reference genome to

generate a concatenated genome. Then it uses this single genome as input to the normal

IslandViewer pipeline.

Pros and Cons GI-GPS and IslandViewer 3 make it feasible to predict GIs for draft

genomes. But they are still simplistic and limited. For example, IslandViewer 3 is

restricted to the genome which has very few contigs and reference genomes of closely

related strains of the same species (Dhillon et al., 2015). Furthermore, it seems inap-

propriate to apply methods similar to those developed for complete genomes, since draft

genome sequences do not have as high quality as whole genome sequences.

2.2.5 Summary

Since the discovery in microbial genomes, the importance of GIs has been gradually

appreciated. Extensive research has demonstrated multiple GI-associated signatures,

but these features show great variation in different genomes. Nevertheless, several

of these features have been revealed to be effective in GI detection and applied in

many computational methods, including compositional bias, structural markers and

phylogenetically restricted distribution. Based on the input data, we classify these

methods into four large groups, which are further divided into subgroups based on the

features utilized or the methodology adopted. It should be noted that some methods may

belong to multiple categories. For example, tRNAcc and GI-GPS can also be classified

as ensemble methods.

In short, distinct kinds of methods detect GIs based on diverse features and assump-

tions, and thus generate predictions of different reliabilities. Methods based on gene or

DNA composition of a single genome provide only rough estimates, since they usually

take advantage of very limited information. Methods based on GI structure utilize mul-

tiple lines of evidence, and hence are supposed to be more reliable. But compositional

or structural features in a single genome can only provide static information for GI

prediction. Instead, methods based on several genomes can reveal genetic flux among

closely related genomes and provide dynamic information (Vernikos, 2008). Therefore,

they can be more accurate.
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It is worth noting that most of the GI prediction methods rely on either annotations

or comparisons with other closely related genomes. Hence, these methods cannot be

easily applied to new genomes with only DNA sequences. With the rapid development

of next-generation sequencing, more and more bacterial genomes are sequenced and

less time is allocated for detailed analysis. As a result, many genomes may have no

or incomplete annotations. Some genomes may still not have enough closely related

organisms to compare with. Therefore, it is necessary to develop better methods for a

single newly sequenced genome without relying on available annotations. This is helpful

in quickly prioritizing GI candidates for further investigations.

To address this need, we developed two new machine learning methods, GI-SVM

and GI-Cluster, which will be presented in Section 2.3 and Section 2.4, respectively.

2.3 Detecting GIs based on k-mer frequency

In this section, we present GI-SVM, which detects GIs using only unannotated sequence

from a single genome. GI-SVM is based on one-class support vector machine (SVM),

utilizing composition bias in terms of k-mer content. There are composition-based

methods like Wn-SVM (Tsirigos and Rigoutsos, 2005a) and svm-agp (Metzler and

Kalinina, 2014) that use a one-class SVM to detect atypical genes in annotated genomes.

Our GI-SVM is different from these methods by detecting GIs in unannotated genomes.

From our evaluations on three real genomes, GI-SVM can achieve higher recall compared

with current methods, without much loss of precision. Besides, GI-SVM allows flexible

parameter tuning to get optimal results for each genome. In short, GI-SVM provides a

more sensitive method for researchers interested in a first-pass detection of GI in newly

sequenced genomes.

2.3.1 Methods

In this subsection, we first describe the basic idea of GI-SVM method. Then we give an

overview of this method, followed by detailed description of major steps for predicting

GIs. Finally, we show how to tune parameters in practice.
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Basic idea behind GI-SVM

GI-SVM is designed to only utilizes a single unannotated genome sequence. This makes

it difficult to achieve high precision due to limited input information. Hence, GI-SVM

seeks to improve the recall and F-measure of GI prediction (namely, without too much

loss of precision). To achieve this goal, we propose to use one-class SVM based on

k-mer content of genomic sequence. We believe this is effective because of two reasons:

Firstly, one-class SVM classifier is generally used to detect novelty or outlier (Schölkopf

et al., 2000) in unlabelled dataset. In our context, one-class SVM is well suited for

detecting laterally transferred regions, since these regions can be considered as outliers

in the unannotated genome in terms of its sequence composition. Secondly, several

effective string kernels have been used for biological sequence analysis (Ben-Hur et al.,

2008). Hence, we believe that the GI-SVM method using a one-class SVM combined

with string kernel describing k-mer spectrum will be effective for GI prediction.

Overview of GI-SVM

Given the unannotated whole genome sequence of a bacterium (FASTA file), GI-SVM

will generate a list of genomic intervals as GI candidates. The overall procedure in

GI-SVM is illustrated in Figure 2.2. Firstly a sliding window of fixed size is used to

scan the genome sequence, moving forward with fixed step size. Then the extracted

overlapping windows are passed to one-class SVM and get ranked by the score induced

from the decision function. Finally a threshold is used to select windows with lower

scores, which are further merged to get GI candidates.

genomic sequence

Sliding window One-class SVM Threshold setting

GI candidates
a set of overlapping windows

a ranked list of windows

Figure 2.2: The overall procedure in GI-SVM program.

Steps of GI-Cluster for predicting GIs

Since sliding window method is straight-forward, we mainly discuss one-class SVM and

threshold setting steps in this subsection.
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One-class SVM Given a set of data points, one-class SVM learns decision function f

to capture regions containing most of the data points(Schölkopf et al., 2000). The data

points outside the boundary are assigned negative values by f , while points within have

positive values. The smaller the value, the more atypical the data point is. The original

data points are often mapped to a feature space by a kernel function, which defines

similarity of the feature vectors of two data points. Two string kernels are commonly

used for biological sequence analysis: spectrum kernel and mixed spectrum kernel.

The spectrum kernel is defined as the inner product of the number of k-mer occur-

rences in two sequences x, y (Leslie et al., 2002):

Kspectrum
k

(x, y) =< φk(x), φk(y) > (2.1)

where φk(x) = (φa(x))a∈Bk , B = {A,T,G,C} and φa(x) = number of times k-mer a

occurs in sequence x. The mixed spectrum kernel combines the spectrum kernel for

k-mers of different lengths with specific weights (Ben-Hur et al., 2008):

Kmixedspectrum
l

(x, y) =
l∑

k=1

βkKspectrum
k

(x, y) (2.2)

where βk is a weight factor for spectrum kernel of k-mers.

In GI detection, the decision function can be seen as a generalized genomic signature

(Tsirigos and Rigoutsos, 2005a). Given a set of windows (data points), one-class SVM

computes a typicality score for each window based on the kernel used. Hence, we have

two variants: GI-SVMS that uses spectrum kernel, and GI-SVMM that uses mixed-

spectrum kernel. The lower the score, the more likely that the window is alien. The

score is scaled into [0, 1], which can be interpreted as the probability of a window being

part of a GI. All the windows are then ranked by the score in ascending order.

Threshold setting Given the ranked list of windows from the one-class SVM, a

manual or automatic threshold is adopted to select most atypical ones as candidate

windows belonging to GIs. Then we iteratively merge overlapping candidate windows

to generate the list of GI candidates. We also allow very close but not overlapping GI

candidates to be merged provided that the typicality score in the non-overlapping region

is close to the selected threshold.
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The setting of automatic threshold is based on the ideal distribution of ranked scores,

which is illustrated on S. typhi CT18 genome (Figure 2.3a). The ranked scores can be

roughly divided into three clusters: small scores with high variance (cluster1, steep part

of the curve); scores with immediate variance (cluster2, transition part of the curve);

high scores with small variance (cluster3, smooth part of the curve). It is assumed

that the majority of sequences in a genome are typical, so cluster3 should correspond

to native sequences while cluster1 should correspond to alien sequences. When we

use only windows that overlap with the reference GIs (Figure 2.3b), this assumption is

further strengthened. Hence, we use a one-dimensional k-means clustering to group the

data into three clusters as defined above. The automatic threshold is then set between

cluster2 and cluster3 to get higher recall.
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Figure 2.3: The distribution of ranked scores for sliding windows over the S. typhi CT18

genome obtained by GI-SVM. (a) The ideal distribution of scores for all the windows.

(b) The distribution of scores for windows overlapping with reference GIs.

Parameter selection

In this subsection, we discuss the choices of several important parameters in GI-SVM:

one-class SVM parameter ν, k-mer length, window size, and step size. In general,

good choices of these parameters rely on the tradeoff between prediction accuracy and

computational cost.

Selection of ν The parameter ν represents an upper bound on the fraction of outliers

and a lower bound on the fraction of support vectors (Schölkopf et al., 2000). Thus, ν

controls the fraction of windows contributing to the generalized genomic signature. The

range of ν is (0,1) by definition, which means only a subset of windows will contribute

to genomic signature. This is different from the normal genomic signature derived by
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counting k-mers in the whole genome, which may be weakened by very atypical regions.

The value of ν was explored at ten equidistant values in (0, 1).

Selection of k For GI-SVMS, the value of k for the spectrum kernel determines the

mapping of data points into feature space. The typical value of k for LGT detection is 2

to 9, thus k was explored in (2, 9) with a step of one (Langille et al., 2010).

For GI-SVMM, we used k from 1 to 8 with uniform weights in performance evalu-

ation. We note that AlienHunter also integrates k-mer of size 1 to 8. Hence, this can

make a nice direct comparison between GI-SVMM and AlienHunter.

Selection of window size and step size The sliding window method is well known to

be sensitive to window size and step size. Large window size decreases resolution while

small size is less predictive (Arvey et al., 2009). In evaluations the GI-SVM window

size was fixed as 5000 to detect GIs of size closer to 5000 bp. In general, a small

step size will generate more overlapping sequences, and thus increase both noise and

computational cost. Step size larger than half the window size may cause inaccurate GI

localization. Therefore, step size was explored in (1000, 2500) with a step of 500.

2.3.2 Results

In this subsection, we first describe the datasets and metrics used for performance

evaluation, followed by the choice of methods to compare with GI-SVM. Then we

report the choice of parameters for GI-SVM. Finally, we show the evaluation results.

Evaluation approach

Reference datasets One widely-acknowledged difficulty in GI validation is the lack

of gold standard datasets. Fortunately, GIs has been well studied in only a small number

of representative organisms, including S. typhi CT18 which is a gram-negative pathogen

that can cause gastroenteritis and typhoid fever (Marcus et al., 2000), C. diphtheria

NCTC13129 which is a gram-positive pathogen that causes diphtheria (Cerdeño-Tárraga

et al., 2003), and P. aeruginosa LESB58 which is a gram-negative pathogen that can

cause opportunistic infections in human (Winstanley et al., 2009). The DNA sequence

and annotations of each genome were downloaded from NCBI FTP server around
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Table 2.3: The general information of the three genomes.

Genome Accession No. Genome Size(bp) GC content(%) GI size(bp)
CT18 NC_003198.1 4,809,037 52.09 600,077

NCTC13129 NC_002935.1 2,488,635 53.48 473,944

LESB58 NC_011770.1 6,601,757 66.30 451,583

January 2015. Their overall information is summarized in Table 2.3.

For these genomes, the GIs predicted via diverse sources were checked to derive

relatively reliable reference GI datasets. For S. typhi CT18, 19 GIs were obtained based

on those used in a more recent study (Arvey et al., 2009), excluding two GIs of size

smaller than 5000 bp. In addition, the GI boundaries for SPI7 were refined based on

the annotations in GFF file. For C. diphtheria NCTC13129, the GI list was obtained by

combining 13 GIs and 10 GIs reported in two studies (Cerdeño-Tárraga et al., 2003; Trost

et al., 2012). For P. aeruginosa LESB58, 11 GIs reported in the initial comprehensive

study (Winstanley et al., 2009) were adopted.

Evaluation metrics The commonly used precision, recall and F-measure (F1 score)

were chosen to evaluate GI prediction programs (Langille et al., 2008, 2010; Che et al.,

2014b). Their definitions are as follows:

Precision =
TP

TP + FP
; Recall =

T P
T P + FN

; F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

The evaluation is based on the number of protein-coding genes overlapping with

GI. A gene is said to be predicted if a given fraction of its sequence overlaps with a

GI. Here, 50% is used, which can ensure relatively fair comparison. FP refers to the

number of predicted genes not overlapping with reference GIs. TP refers to the number

of predicted genes overlapping with the reference GIs. FN refers to the number of

genes which overlap with the reference GIs but not the predicted GIs. The accuracy of

predicted GI boundary can be evaluated by absolute error δx = |x − x0 |, where x is the

reference boundary and x0 is the predicted boundary (Vernikos and Parkhill, 2006).

Methods to compare with GI-SVM The results of GI-SVM with optimal parameters

were compared with those of four other GI detection programs: AlienHunter, MJSD,

Wn-SVM and GIHunter. AlienHunter and MJSD use the same data as our methods and
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provide the most direct comparison, whereas Wn-SVM and GIHunter use additional

information that our methods do not. These methods are described below.

AlienHunter: AlienHunter is the most popular GI detection program based solely on

sequence of a single genome, and was reported to have highest recall in a previous eval-

uation (Langille et al., 2008). AlienHunter requires no parameters, except one option to

optimize predicted boundaries and another option for visualization. Here, AlienHunter

without boundary optimization is used for comparison so that both AlienHunter and

GI-SVM uses the original sliding window boundary as GI boundary. Besides, the slight

refinement of boundary from AlienHunter does not affect much the evaluation.

MJSD: MJSD is another program utilizing only the single genome sequence, which

excels at predicting large GIs (Arvey et al., 2009). To compare with MJSD, we ran GI-

SVM on the 20 genuine genomes used in their paper (Arvey et al., 2009), and compared

them with the GI predictions they reported. As references for these 20 genomes, we

used the GIs predicted by both IslandViewer 2 and IslandViewer 3 (September 2015).

Wn-SVM: Wn-SVM (Tsirigos and Rigoutsos, 2005a) is a method that uses a single

genome and its gene annotations as input. It uses one-class SVM to predict clusters

of transferred genes (GI). To find its good parameter settings, multiple combination of

values (window size: 5 to 6, step size: 2 to 3, ν: 0.8 to 0.9, k: 5 to 8) were tested

and the best results were adopted. The output of Wn-SVM is in terms of gene, thus we

transformed its output into GI predictions by combining adjacent atypical genes in each

predicted cluster.

GIHunter: GIHunter (Che et al., 2014b) uses a single genome and gene functional

annotation information to perform GI predictions. Hence, it is expected to perform

better than GI-SVM. Therefore, it is interesting to do a comparison. The results of

GIHunter for the three genomes used were downloaded online.

Finally, to make the comparisons fair we only consider individual GI predictors that

use only one genome. Hence, we have excluded the popular IslandViewer method for GI

prediction, since it is an aggregate method that uses a combination of two composition-

based methods and one comparative genomic method (Dhillon et al., 2015).

35



Choice of parameters

In general, the optimal range of parameters for GI-SVM are: step size 1500-2500bp; k

5-7 for spectrum kernel; ν >= 0.5. However, the best values for k and ν in the three

genomes are different, implying that the optimal parameters of GI-SVM should not be

fixed for different genomes. But in most cases the parameters within the suggested

optimal range can generate quite good results.

The choice of important parameter ν, k and threshold are discussed below based on

the S. typhi CT18 dataset. For convenience, step size is fixed to be 2500 bp. Automatic

threshold is approximately represented by corresponding fraction of the ranked score

list, e.g. threshold 15 means top 15% of the list.

Choice of ν To get reliable GI predictions, the ranking of windows in the ranked

list should not vary too much. The rank stability can be measured by Spearman’s rank

correlation coefficient (Metzler and Kalinina, 2014). If the coefficient is high, the change

of ranking relative to adjacent parameters is slight. The results are shown in Figure 2.4a.

When ν is very low, the predictions are relatively more unstable. When ν ≥ 0.5, the

coefficients for k-mers of all sizes become very close to 1. In theory, when ν is larger,

the decision boundary is determined by more windows and thus more representative of

genomic signature. Therefore ν ≥ 0.5 is preferable.
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Figure 2.4: The effect of different parameters in GI-SVM on prediction results based

on the S. typhi CT18 dataset. (a) The rank stability for spectrum kernel with k-mers of

different size. (b) PRC for k-mers of different size when ν = 0.9.
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Choice of k While ν affects the order of window typicality scores, k affects the

variances within these scores. Since the ideal score distribution for automatic threshold

setting has tail extending to the right, the skewness of score distribution should be less

than zero and neither too large nor too small. The experiment results suggest that the

intermediate k-mer size 5-7 can ensure desirable skewness value.

To further illustrate the effect of k on GI prediction, the Precision-Recall Curve

(PRC) for k-mers of different sizes via selecting different thresholds when ν = 0.9 is

shown in Figure 2.4b. For spectrum kernel with k = 4, 8, 9, precision reduces a lot

when recall becomes higher than 0.8. This is reasonable as lower order k-mers may not

provide sufficient discriminative power, while the count of higher order k-mers is not

enough to accurately capture genomic signature. To get recall higher than 0.8 with as

large precision as possible, it is appropriate to use k-mer size 5-7. The areas under curve

(AUC) of combing multiple k-mers is larger than that of most single k-mers. But k-

mers of size 5-6 for spectrum kernel have comparable performance as mixed spectrum at

multiple thresholds. Thus mixed spectrum kernels (GI-SVMM) is not necessarily better

than spectrum kernel (GI-SVMS).

Choice of threshold As suggested by Figure 2.4b, a smaller threshold can lead to

higher precision, and precision declines as the threshold increases. At the same time,

recall increases to one at higher threshold since more predictions are included. As a re-

sult, F-measure firstly keeps increasing and then begins to decrease at certain threshold,

which is around top 15% to 20% of the ranked score list. The thresholds chosen auto-

matically for different parameter combinations are very close to the optimal threshold

when ν > 0.4, suggesting the automatic threshold setting method can provide reasonably

good performance.

Performance evaluation and comparison

In this section, we firstly discuss the overall performance of different GI prediction

programs. Then we compare GI-SVM with AlienHunter in detail. Finally we present

the comparisons of GI-SVM with Wn-SVM, GIHunter and MJSD.

In general, GI-SVM is effective in identifying previously detected GIs with higher

sensitivity (Table 2.4 and 2.5). The optimal results of GI-SVMS and GI-SVMM are
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both shown. GI-SVMS and GI-SVMM achieved highest recall and second highest F-

measure for S. typhi CT18 and P. aeruginosa LESB58, respectively. For C. diphtheria

NCTC13129, GI-SVM even achieved best F-measure and precision.

The differences of sensitivity among GI-SVMS, AlienHunter, Wn-SVM, and GI-

Hunter are also illustrated by SPI1 on S. typhi CT18 genome (Figure 2.5), a well-

characterized GI of size 39,773 bp, encoding tens of genes for penetrating the intestinal

epithelium (Marcus et al., 2000). As can be seen, GI-SVMS predicted two large inter-

vals, covering most of SPI1 (about 86%), while the two predictions from AlienHunter

only cover about 67%. Wn-SVM predicted multiple short intervals due to reliance on

gene boundaries, covering about 51% of SPI1. GIHunter only predicted about 24% of

SPI1, probably due to lack of classical GI features in SPI1.

2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905
Genome position (Mbp)

GI-SVMS

AlienHunter

Wn-SVM

GIHunter

SPI1

Figure 2.5: The prediction results for SPI1 on S. typhi CT18 genome from multiple GI

prediction programs.

Comparison with AlienHunter We now compare GI-SVM with AlienHunter com-

prehensively, as they both use only unannotated genome sequence as input.

In terms of recall and F-measure, GI-SVM achieved much higher recall and slightly

higher F-measure than AlienHunter on all the three genomes (Table 2.4). For example,

the F-measure of GI-SVM when using spectrum kernel was 7.6% higher than that of

AlienHunter on S. typhi CT18 dataset, and the recall of GI-SVMS was 27.5% higher.

Using mixed spectrum kernel with the same ν, GI-SVM had both higher recall and

precision than AlienHunter. In addition, the boundary errors of predictions from GI-

SVM on P. aeruginosa LESB58 genome were much lower than those of AlienHunter,

suggesting the effectiveness of GI-SVM to some extent.

In consistence with higher recall, the predictions from GI-SVM were less fragmented

for large GIs. Take results on S. typhi CT18 dataset for example. In total, there are

8 reference GIs with predicted gap (regions of reference GIs not covered by predicted
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Table 2.4: The comparison of GI-SVMS, GI-SVMM and AlienHunter on three genomes.

The improvement of GI-SVM over AlienHunter in terms of relative percentage is shown

in brackets. #Gene/#GI represents the predicted number of genes and GIs respectively.

ABE represents Average boundary error. The parameters for GI-SVMS on the three

dataset are: ν = 0.9, k = 6; ν = 0.8, k = 5; ν = 0.5, k = 6, respectively. The parameters

for GI-SVMM are: ν = 0.9; ν = 0.7; ν = 0.5, respectively.

Data Tools #Gene
/#GI Recall Precision F1

ABE
(bp)

CT18

GI-SVMS 997/96 0.895 (27.5%) 0.446 (-2.4%) 0.596 (7.6%) 3,657

GI-SVMM 869/91 0.783 (11.5%) 0.448 (-2.0%) 0.565 (2.9%) 3,210

AlienHunter 764/86 0.702 0.457 0.554 3,297

NCTC

13129

GI-SVMS 997/86 0.639 (8.3%) 0.277 (18.4%) 0.386 (15.2%) 7,583

GI-SVMM 822/73 0.539 (-8.6%) 0.282 (20.9%) 0.372 (11.0%) 6,842

AlienHunter 756/69 0.590 0.234 0.335 5,683

LESB

58

GI-SVMS 891/96 0.796 (22.3%) 0.394 (-6.2%) 0.527 (3.3%) 3,338

GI-SVMM 849/86 0.803 (23.3%) 0.416 (-0.7%) 0.549 (7.6%) 2,834

AlienHunter 684/71 0.651 0.420 0.510 5,931

Table 2.5: The comparison of GI-SVMS, Wn-SVM and GIHunter on three genomes. The

improvement of GI-SVMS over Wn-SVM and GIHunter in terms of relative percentage

is shown in brackets. The parameters for Wn-SVM on the three dataset are: ν = 0.9, k =
8,w = 6, s = 3; ν = 0.8, k = 7,w = 6, s = 3; ν = 0.8, k = 8,w = 6, s = 3, respectively.

Data Tools #Gene
/#GI Recall Precision F1

ABE
(bp)

CT18

GI-SVMS 997/96 0.895 0.446 0.596 3,657

Wn-SVM 695/361 0.515 (73.8%) 0.368 (21.2%) 0.430 (38.6%) 2,333

GIHunter 608/23 0.826 (8.2%) 0.676 (-34.0%) 0.743 (-19.9%) 10,396

NCTC

13129

GI-SVMS 997/86 0.639 0.277 0.386 7,583

Wn-SVM 427/246 0.266 (140.0%) 0.269 (3.0%) 0.268 (44.0%) 3,883

GIHunter 1248/14 0.900 (-29.0%) 0.216 (28.2%) 0.348 (10.6%) 106,561

LESB

58

GI-SVMS 891/96 0.796 0.394 0.527 3,338

Wn-SVM 922/432 0.721 (10.4%) 0.345 (14.2%) 0.467 (12.8%) 1,374

GIHunter 511/16 0.740 (7.4%) 0.640 (-38.4%) 0.687 (-23.3%) 22,117

Table 2.6: The size of predicted gap (regions of reference GIs not covered by predicted

GIs) from AlienHunter and GI-SVMS on S. typhi CT 18 genome.

GI GI Start/End Gap from
AlienHunter(bp)

Gap from
GI-SVMS(bp)

SPI6 302,172/361,067 12,499 12,500

Prophage10 1,008,747/1,051,266 29,999 2500; 5000

Bacteriophage 1,887,450/1,933,558 17,499 10,000

Bacteriophage27 2,759,733/2,782,364 9999 2500

SPI1 2,859,262/2,899,034 9999 2500

Bacteriophage 3,515,397/3,549,055 2499; 4999 2500

SPI7 4,409,511/4,543,148 2499; 9999; 2499 2500

SPI10 4,683,690/4,716,539 2499 0
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GIs) for AlienHunter and 7 for GI-SVMS (Table 2.6). The gaps from GI-SVMS were

much smaller than those from AlienHunter. For SPI7, GI-SVMS predicted two regions

covering about 98% of this GI, whereas AlienHunter predicted four regions covering

only 85%. Besides, the gap from GI-SVMS was only 2500 bp, which composes of

several genes of bacteriophage origin whose GC content (51.57%) is quite similar to

that of the genome (52.09%). The similarity in GC content confirms the typicality of

gap region. Thus it is hard to find these typical regions inside GI via a single threshold.

By merging adjacent windows with distance not larger than 2500 bp, the sensitivity of

GI-SVM can be further improved.

The sensitivity of AlienHunter and GI-SVMS versus the inferred relative time of

insertion of laterally transferred genes present in the reference GIs is also compared

(Figure 2.6a), as composition-based methods are known to be biased toward finding

recently transferred regions. The relative time of insertion of these genes was obtained

from a whole-genome comparative study of 15 closely related genomes with S. typhi

CT18 as the query genome (Vernikos et al., 2007). On the x-axis, the time of insertion

increases from left to right. Namely, ’node1’ represents the earliest time of insertion

while ’CT18’ represents the most recent time. Obviously, GI-SVMS detected more alien

genes at the same time of insertion, especially for more recent insertions. In addition,

GI-SVMS was more sensitive in detecting certain kinds of genes over-represented in GI,

such as phage-related, mobile elements (transposase, integrase), hypothetical proteins

(Langille et al., 2010) (Figure 2.6b). This again shows the higher sensitivity of GI-SVM

over AlienHunter.

The advantage of GI-SVM over AlienHunter is mostly owing to the use of one-class

SVM, which is superior than relative entropy used in AlienHunter. One-class SVM was

shown to be more sensitive in measuring sequence similarity between alien and native

sequences (Tsirigos and Rigoutsos, 2005a). One merit of one-class SVM is that not all

sliding windows contribute to the genomic signature. This is more reasonable, because

very atypical regions may weaken the signature of genomic background. Furthermore,

spectrum kernel is combined with one-class SVM to obtain more sensitive measure to

judge the typicality of sequences. Besides, GI-SVM allows users to tune parameters for

the genomes at hand, whereas AlienHunter utilizes fixed parameters which may not be

applicable for all genomes since different genomes have different features.
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Figure 2.6: The comparisons on the sensitivity of GI-SVMS and AlienHunter in

detecting genes of certain time of insertion and specific function. The numbers of genes

within reference GIs for each time point from left to right are 90, 42, 67, 10, 270, and

58, respectively. (a) The sensitivity of GI prediction versus the relative time of insertion

of alien genes. (b) The number of certain kinds of genes detected by GI-SVMS and

AlienHunter.

Comparison with Wn-SVM Then we compare GI-SVM with Wn-SVM which uses

gene anotation of one genome. The performances of Wn-SVM were no better than

GI-SVMS on all the three genomes (Table 2.5). Overall Wn-SVM predicted much more

shorter intervals and has lower F-measure. This is probably because that some genes

inside GI may not be atypical enough to be identified as laterally transferred. But the

boundary errors of Wn-SVM were much lower with the help of accurate atypical gene

predictions.

One most significant difference of GI-SVM from Wn-SVM is that GI-SVM is

designed specifically to work on DNA segments rather than genes. Since GI is a cluster

of genes, it seems better to detect them as a whole instead of detecting individual genes.

Besides, window-based methods are more sensitive in detecting LGTs than gene-based

methods according to previous benchmark study (Becq et al., 2010). Another major

difference between GI-SVM and Wn-SVM is that GI-SVM utilizes string kernel, which

is more efficent than liner kernel on extracted k-mer feature vectors.

Comparison with GIHunter Next, GI-SVM is compared with GIHunter that utilizes

multiple kinds of functional annotations in one genome. GIHunter had highest F-

measure on two genomes than GI-SVMS (Table 2.5). Thus the overall performance of

GI-SVM was still inferior to GIHunter, since GIHunter utilizes additional annotations

as input. But GI-SVMS had higher recall than GIHunter on two genomes and higher

F-measure on one genome. Besides, GIHunter performed poorly in terms of boundary

41



error, which is mostly caused by large predictions covering several adjacent reference

GIs and short predictions covering a small part of GI. Without relying on annotations,

the boundary errors of GI-SVMS were much lower than GIHunter, due in part to higher

recall. This indicates that gene-based method is not necessarily better than window-

based method in predicting GIs, as the boundary error will still be very high if gene-based

method makes wrong predictions.

Comparison with MJSD Lastly, the predictions of GI-SVMS (ν = 0.9, k = 6) is

compared with previous results of MJSD. MJSD predicted 477kb out of 605kb of

DNA contained in 21 GIs in S. typhi CT18 (Arvey et al., 2009). GI-SVMS predicted

about 530.5 kb out of 600 kb of DNA encoded by 19 GIs. Thus more of each GI

is identified by GI-SVMS. For the 20 genomes used in MJSD paper, evaluations of

GI-SVMS predictions on IslandViewer 2 and IslandViewer 3 dataset had similar results,

so we adopted evaluations based on IslandViewer 2 which are expected to be closer

to the dataset MJSD used. MJSD predicted 97% of the bases detected by all the

three components of IslandViewer, while GI-SVMS predicted 99%. For the regions

identified by two components, MJSD identified 74% of bases on average, while GI-

SVMS detected 97% on average. For regions detected by only one component, MJSD

predicted around 45% of bases, whereas GI-SVMS predicted about 74%. These results

clearly suggest the higher sensitivity of GI-SVM. For the genomic regions not predicted

by any component of IslandViewer, GI-SVMS only predicted about 1% of the bases.

Therefore, the precision of GI-SVM is still reasonable given the much higher recall.

2.4 Detecting GIs by integrating multiple evidence

In this section, we present GI-Cluster, which provides a novel way of integrating multiple

GI-related features via consensus clustering. This is different from previous methods

which use established thresholds to separate GIs from non-GIs based on specific features,

and hence reduces the opportunity of missing real GIs. The comprehensive evaluations

on several real genomes show that GI-Cluster can achieve a good balance of recall and

precision. Although GI-Cluster does not require training datasets as supervised learning

methods, it still has comparable or better performance. GI-Cluster applies to not only

a complete genome but also an incomplete genome without the requirement of contig
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assembly. GI-Cluster can also be used to improve GI predictions from programs with

high recall but low precision. In addition, GI-Cluster incorporates visualization to show

the predicted GIs along with related features or GIs obtained from different methods.

2.4.1 Methods

In this subsection, we first describe the basic idea of GI-Cluster method. Then we give an

overview of this method, followed by detailed description of major steps for predicting

GIs and visualization utility. Finally, we show revisions required to apply GI-Cluster to

incomplete genomes and initial GI predictions from other programs.

Basic idea behind GI-Cluster

The challenge in integrating multiple GI-related features is to effectively integrate the

predictive power of these features. GIs are genomic regions with several well-known

features, but few methods have succeeded to take full power of these features to locate

GIs accurately in a genome. To addresses this issue, GI-Cluster utilizes consensus

clustering to detect GIs from a genome sequence by combining separate clusterings of

genomic segments obtained on multiple GI-related features.

Clustering is commonly used to group similar objects. Since GIs and non-GIs have

different features, it is very likely that they form different groups in the feature space.

Thus, it seems natural to apply clustering to detect GIs. The unsupervised nature of

clustering also makes it widely applicable in the absence of reliable GI training datasets

for now. Clustering for GI detection has been applied on sequence compositional features

(Azad and Lawrence, 2011; Jani et al., 2016). However, no clustering methods have

been performed on multiple kinds of features.

Consensus clustering simply refers to obtaining a single clustering for a particular

dataset by integrating various clusterings on the same dataset. It is often used to combine

multiple runs of the same clustering algorithm or different clustering algorithms. Bu

combining multiple weak learning methods into a strong learning method, consensus

clustering can bring benefits that a single clustering algorithm cannot achieve (Vega-

Pons and Ruiz-Shulcloper, 2011). The consensus clustering methods based on objects

co-occurrence can be naturally applied to GI prediction. The reason that this kind of

methods work for GI prediction is as follows. In general, for a single feature, a higher
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or lower metric value of a region indicates this region is more atypical. Given a set

of segments in a genome sequence, different kinds of features delineating a segment

may lead to different partitions of these segments. If several subsets of features suggest

that a segment is closer to other segments that show evidence of GIs, this segment is

more likely to be a real GI. By identifying segments present in the same group in most

partitions, we can get more stable pairwise relationships between segments and hence

more robust clustering of these segments.

Overview of GI-Cluster

The overall procedure followed by GI-Cluster is shown in Figure 2.7. Briefly speaking,

there are four major steps in predicting GIs:

1. Splitting the genome sequence into a set of non-overlapping segments.

2. Extracting multiple GI-related features for each segment.

3. Performing consensus clustering to partition all segments into two groups, by

firstly performing separate clustering on each feature.

4. Postprocessing the clustering result to find potential GI candidates.

Feature extraction 

 

Sequence composition Gene function 

Boundary signature 

e ext

Consensus clustering 

Postprocessing roce

Gene distribution 
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Separate 
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Figure 2.7: The overall procedure adopted in GI-Cluster for identifying genomic islands

in a genome sequence.
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Steps of GI-Cluster for predicting GIs

In this subsection, we describe the four major steps utilized in GI-Cluster to predict GIs.

Due to space limit, the details for each step are described in Appendix A.

Genome segmentation step Firstly, we split the complete genome sequence into non-

overlapping short segments to facilitate feature extraction, since GI-related features are

often related to a short genomic region. The size of genome segments affects the

measurement of GI-related features and thereby downstream analysis. The boundaries

of GI candidates are also limited by the initial segmentation, since the subsequent

procedures are mainly used to select segments likely to be GIs and refine boundaries

locally.

There are two genome segmentation methods related to GI detection: GC profile

(Zhang and Zhang, 2004) and MJSD (Arvey et al., 2009). For these two methods,

different sets of parameters may lead to distinct segments. Moreover, some segments

may be very large and bury the real segmentation points between normal regions and

atypical regions. Therefore, for simplicity we use non-overlapping sliding windows of

fixed size to segment the genome. Nevertheless, GI-Cluster is still applicable to the

segments output by GC profile and MJSD. To find GIs of size larger than 5000 bp, the

default window size in GI-Cluster is set to be 5000.

Feature extraction step After obtaining a set of segments, we extract GI-related

features for each segment. Previous studies have figured out multiple features useful for

discriminating GIs from other regions (Tsirigos and Rigoutsos, 2005b; Langille et al.,

2010). Since it is hard to perform feature selection without benchmark datasets, we

choose features to compute mainly based on known results in literature.

There are four groups of features computed for a genomic segment: (1) sequence

composition; (2) gene function; (3) boundary signature; and (4) gene distribution. For

each group, there are several criteria measured by different metrics, which are computed

via custom scripts or homologous search against related databases (Table S1).

Since the computation of some features is in the unit of genes, we predict genes

from genome sequence via available gene prediction tool. Known gene predictions from

NCBI can also be used. However, the gene prediction step is optional. When there are
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no gene annotations, GC content and k-mer frequency can be used for predicting GIs.

We compute compositional bias and predict function for each gene and segment.

For each gene, we compute several metrics measuring its GC content, codon usage, and

k-mer frequency. We also find whether a gene encodes specific functions related to GIs,

including mobility, phage, virulence factor, antibiotic resistance, novel function (with

no detectable homologs in public databases) and non-coding RNA (ncRNA). For each

segment, we compute several metrics measuring its k-mer frequency and GC content.

When gene annotations are available, for each segment we also compute several metrics

measuring its codon usage and the percentage of each kind of genes within it.

We compute boundary signature and gene distribution only for each segment. We

identify the presence of flanking tRNA genes or short repeats around the boundaries of

each segment. We also compute gene density (the number of genes per kilo base in a

region) and intergenic distance (the average gene distance in a region) for each segment.

After feature extraction, we compute a data matrix with n items and q features to

serve as input for clustering. In the matrix, each item represents a genomic segment.

By default, we use only features related to sequence composition and gene function

for clustering. The remaining features are mainly used to postprocess the results of

consensus clustering.

Consensus clustering step After getting the n ∗ q feature matrix, we run consensus

clustering on it to obtain two clusters: GIs and non-GIs. There are two steps in

consensus clustering: (1) generation step, in which different clusterings are generated;

(2) consensus step, in which these diverse clusterings are combined into a unique

solution.

In the first step, we use clustering to partition the segments into different groups

based on each feature. We compute a n ∗ n connectivity matrix for the clustering result

on each feature, in which an entry has value 1 if the corresponding items belong to the

same cluster and has value 0 otherwise (Monti et al., 2003).

In the second step, we compute a consensus matrix CM to denote the agreement

among the different clusterings on different features (Monti et al., 2003; Wilkerson and

Hayes, 2010). Each entry in the consensus matrix represents the proportion of times

that two items are clustered together in different runs. The higher the number, the more
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likely two items are grouped together. The consensus matrix is obtained by averaging

over the connectivity matrices of different clusterings.

The matrix 1 − CM can be seen as a distance matrix, on which different clustering

methods can be applied to get two clusters. For the interpretation of clustering results,

we assign the cluster of smaller size as the GI group, since GIs are usually a small part

of the whole genome.

There are several parameters that affect the clustering results, including the choice of

GI-related features, the clustering algorithms applied on each feature, and the clustering

algorithm applied on the final distance matrix. The choices of these parameters are

discussed in Appendix A.

Postprocessing step Given the two groups of segments obtained from consensus

clustering step, we use empirical rules based on non-compositional features to pick

potential true positives from initial non-GIs and exclude false negatives from initial GIs.

For example, an initial non-GI segment with the presence of flanking tRNA gene(s)

and mobility-related genes is reclassified as a GI segment, and an initial GI segment

showing no evidence in terms of gene function is redesignated as a non-GI segment.

These empirical rules affect the accuracy of final output. Strict rules may reduce recall

and improve precision, whereas relaxed rules may improve recall and reduce precision.

For a segment belonging to the GI group, we refine its boundaries according to the

positions of flanking tRNA genes or short repeats and the closest genes. Then we obtain

final GI candidates by merging adjacent segments whose pairwise distance is less than

a threshold.

Visualization of predicted genomic islands

GI-Cluster provides two kinds of plots to visualize the predicted GIs. One is feature

plot, showing the distribution of predicted GIs and related features along a complete

genome on multiple tracks of a circular plot. The other is comparison plot, showing GIs

predicted in a complete genome by different methods on multiple tracks of a circular

plot. GI-Cluster generates bitmap and vector images for both plots.

These plots help to obtain a more comprehensive picture of potential GIs and

provide useful information for further analysis. The feature plot can be used to show
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predicted GIs not only from GI-Cluster but also from other methods. It clearly indicates

evidence supporting each GI, which may help to remove false positives and recover

false negatives. The comparison plot demonstrates the similarities and differences

of different predictions, which may help to explore the complementary properties of

different methods and find more reliable GI candidates.

Adaptations for incomplete genomes and initial GI predictions

GI-Cluster can be readily adapted to incomplete genomes, since it takes a set of genomic

segments as input and does not require the ordering of these segments. Given an

incomplete genome, we just use non-overlapping sliding windows of fixed size on

different contigs to get a set of segments. One major difference is that we also record

the contig from which a segment is obtained from. The subsequent steps are similar to

those for a complete genome sequence.

The input genomic segments for GI-Cluster can also be GI candidates detected by

methods with high recall but low precision. In this case, GI-Cluster can serve as a

filtering tool of the initial GI candidates. We assume most of these GI candidates are

real GIs, and hence assign the cluster of larger size as the GI group in the consensus

clustering step. The rules for postprocessing are also slightly different from those when

the input is the genome sequence.

2.4.2 Results

In this subsection, we first describe the datasets and metrics used for performance

evaluation, followed by the choice of methods to compare with GI-Cluster. Then we

report the evaluation results on complete genomes, incomplete genomes and initial GI

predictions, respectively. Finally, we show the visualizations of GI-Cluster for a selected

genome.

Evaluation approach

Reference datasets To get a rough estimation of the performance of GI-Cluster, we

used evaluation datasets adopted by Wei et al. (2017), which include GIs collected from

literature (L-data set) and GIs predicted by comparative genomics (C-data set) in 11

bacterial genomes. The GIs collected from literature are usually more reliable because
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their structure and functions may have been studied in more detail. But there may be

some real GIs not reported in previous literature.

Among the 11 genomes, we excluded two genomes with fewer than six GIs in

L-data set. For L-data set, we added additional GIs or refined island boundaries

according to GIs from Islander, or from literature, or from NCBI annotations. We

also included GIs reported in the genome of Pseudomonas aeruginosa LESB58 in

L-data set (Winstanley et al., 2009). As a result, 10 genomes from six orders were

used, including Burkholderiales (Burkholderia cenocepacia J2315, Bordetella petrii

DSM 12804), Corynebacteriales (Corynebacterium diphtheriae NCTC 13129), En-

terobacteriales (Cronobacter sakazakii ATCC BAA-894, Escherichia coli CFT073,

Proteus mirabilis HI4320, Salmonella typhi CT18), Rhizobiales (Bartonella triboco-

rum CIP 105476), Lactobacillales (Streptococcus equi 4047), and Pseudomonadales

(Pseudomonas aeruginosa LESB58).

ICEs are a specific group of GIs that encode their own self-conjugative transfer and

integration (Bellanger et al., 2014). The structure and function of many ICEs have been

well-studied. To further evaluate the performance of selected GI prediction methods,

we also checked how they recover seven known ICEs from the ICEberg database (Bi

et al., 2012).

There are very few known GIs from incomplete genomes in literature. We collected

17 known GIs (312,686 bp) from Vibrio cholerae RC9, which were predicted as five

or more consecutive ORFs sporadically distributed among related strains (Chun et al.,

2009). The incomplete genome of V. cholerae RC9 (Accession: ACHX00000000)

contains 11 contigs and 4,211,011 bp. V. cholerae RC9 has two chromosomes, with 11

GIs locating at the large chromosome and 6 GIs at the small chromosome. But it is

unknown which contigs are from which chromosomes. According to the reference GIs,

contig 7 and 9 are on the small chromosome, whereas contig 6, 10 and 11 are on the

large chromosome.

More details of the evaluation datasets are provided in Appendix A. The complete

lists of GIs used for evaluation are available on https://github.com/icelu/GI_

Cluster/tree/master/evaluation.
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Evaluation metrics Several commonly used metrics were chosen to get comprehen-

sive evaluations, including recall (TPR, sensitivity), precision, F-measure (F1 score),

true negative rate (TNR, specificity), overall accuracy (OACC), accuracy (ACC), Matthews

correlation coefficient (MCC) and the average of absolute error (ABE) in predicted

boundaries (Langille et al., 2008; Lu and Leong, 2016b; Wei et al., 2017). Recall mea-

sures the proportions of predicted GIs that are in the reference GIs. Precision measures

the proportions of reference GIs that are in the predicted GIs. F-measure is the harmonic

mean of recall and precision. TNR measures the proportions of predicted non-GIs that

are not in the reference GIs. OACC measures the proportions of correctly predicted

GIs and non-GIs. ACC is the arithmetic mean of recall and TNR. MCC is a correlation

coefficient between predictions and references. ABE measures the difference between

reference boundary and predicted boundary. Their definitions are provided in Appendix

A.

Methods to compare with GI-Cluster To make fair comparisons, we mainly com-

pared GI-Cluster with GIHunter, a supervised machine learning method based on similar

GI structural features. GIHunter utilizes eight features, including tRNA genes, integrase,

transposase, phage-related genes, highly expressed genes, gene density and average in-

tergenic distance. These features are computed from NCBI annotation files. GIHunter

can give very accurate predictions and outperformed several commonly used methods

in previous evaluations (Che et al., 2014b). The predictions of GIHunter for the selected

genomes were downloaded online.

As a reference, we also compared GI-Cluster with IslandViewer. The most recent

version of IslandViewer (Bertelli et al., 2017) also integrates the predictions from Is-

lander. The integration makes IslandViewer has better accuracy than each of the four

individual programs. Since we used GIs from Islander as references in L-data set,

we mainly show the comparisons with predictions by at least one of the other three

programs. Because the predictions from Islander are very few, excluding the predic-

tions from Islander does not affect the performance of IslandViewer too much. We

downloaded the integrated predictions for each selected genome from IslandViewer 4

(May 2017). Some intervals predicted by different programs may be overlapping, so we

merged them before evaluation.
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Performance evaluation on real biological datasets

Evaluations on L-data set and C-data set We first compare GI-Cluster (with default

parameters) to GIHunter and IslandViewer on L-data set and C-data set (Figure 2.8).

In general, IslandViewer had lower recall and higher precision, whereas the recall and

precision of GI-Cluster and GIHunter were comparable. Moreover, GI-Cluster had more

balanced recall and precision, as suggested by the less variation in the values of F1 and

MCC. In addition, GI-Cluster had better performance than GIHunter on some datasets

(Table S3).

IslandViewer had lowest average recall (65.7% on L-data set, 54% on C-data set) but

highest precision (80% on L-data set, 89.4% on C-data set). Because of varying recall

on different genomes, the F1, ACC and MCC of IslandViewer varied a lot despite that

the average values were very high. The TNR and OACC of IslandViewer were stable

and highest. The possible reason is that the programs integrated in IslandViewer are

very specific but less sensitive (Langille and Brinkman, 2009).

GIHunter had highest average recall (83.3% on L-data set and 71.2% on C-data

set). The average recall of GI-Cluster (77.5% on L-data set and 67.5% on C-data

set) was slightly lower than GIHunter. But the precisions of GIHunter on different

genomes varied more than GI-Cluster. Owing to many false positives in the predictions

of GIHunter, the TNR, OACC and MCC of GIHunter had wider ranges than those of

GI-Cluster.

Regarding the boundary errors, the average ABE of both right and left boundaries of

predicted GIs was very high for GIHunter (60,088 bp), followed by that of IslandViewer

(8,973 bp) and GI-Cluster (6,491 bp). This suggests that GI-Cluster can generate more

accurate GI boundaries.

Evaluations on known ICEs Then we show the performances of GI-Cluster (with

default parameters), GIHunter and IslandViewer on predicting seven known ICEs. As

shown in Table 2.7, GI-Cluster predicted most of these ICEs with high precision.

Although GIHunter recovered almost all of these ICEs, it often predicted very

large intervals and had low precision. For example, GIHunter often predicted a very

large region covering one GI or several adjacent GIs. Therefore, it is still challenging

to accurately locate each ICE from the predictions of GIHunter owing to the large
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Figure 2.8: Performance comparison of GI-Cluster with GIHunter and IslandViewer on

L-data set and C-data set. C.Recall, C.Precision, and C.F1 represent the recall, precision

and F1 computed on C-data set. The other metrics were computed on L-data set.

distances between them. In contrast, GI-Cluster and IslandViewer localized GIs and

their boundaries more accurately.

Overall, the performance of GI-Cluster is comparable with IslandViewer. In addi-

tion, the percentages of bases predicted by GI-Cluster for six ICEs were higher than those

predicted by IslandViewer, except for ICEPm1. ICEPm1, a well-studied GI carrying

many virulence factors, was firstly detected by a strain-specific comparative genomic

hybridization array (Flannery et al., 2009). Therefore, some regions within ICEPm1

may not have atypical composition. By relaxing rules in postprocessing (reclassifying

regions with a smaller proportion of phage-related genes or virulence factors or novel

genes as GIs), GI-Cluster predicted 98.3% of ICEPm1 with 86.85% precision.

Evaluations on an incomplete genome Next we show the comparisons of GI-Cluster

and IslandViewer on the incomplete genome of V. cholerae RC9. Generally speak-

ing, GI-Cluster was more sensitive than IslandViewer. Given the 11 contigs from V.

cholerae RC9, GI-Cluster (hierarchical clustering with ward linkage for consensus clus-

tering) predicted 34 intervals (584,586 bp), covering 11 reference GIs (182,001 bp),

whereas IslandViewer predicted 17 large intervals (493,608 bp), covering 8 reference

GIs (175,045 bp).
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Table 2.7: The percentage of bases of known ICEs predicted (recall, REC for short)

and the percentage of predicted bases overlapping with known ICEs (precision, PEC for

short) by GI-Cluster, GIHunter and IslandViewer.

ICE Size (bp) REC (PEC)
GI-Cluster GIHunter IslandViewer

ICEPmiUSA1 80,631 99.84 (100) 100 (33.47) 96.76 (98.02)

ICEPm1 92,462 68.35 (82.12) 100 (38.38) 85.92 (82.84)

ICESe2 63,054 100 (96.72) 100 (44.09) 100 (97.86)

ICE-GI1 255,513 82.84 (98.15) 100 (34.94) 70.95 (95.76)

ICE-GI2(3) 245,522 85.92 (97.92) 100 (33.58) 82.36 (99.65)

ICE-GI6 159,096 81.16 (85.91) 100 (32.49) 79.47 (100)

SPI-7 133,499 100 (89.00) 87.93 (97.91) 96.14 (96.61)

Average 147,111 88.30 (92.83) 98.28 (44.98) 87.37 (95.82)

GI-Cluster does not require the assembly of incomplete genomes and can be directly

applied to microbes with more than one chromosomes. Additionally, GI-Cluster output

GIs in terms of contig positions, which are easy to interpret and analyze. In contrast,

for IslandViewer, one and only one reference genome has to be chosen so that the

contigs are assembled into a complete genome, and the output are the positions of

GIs on the assembled genome. These characteristics of IslandViewer cause issues for

incomplete genomes with more than one chromosomes. When applying IslandViewer to

V. cholerae RC9, we used the large chromosome (chromosome 1) of V. cholerae N16961

as reference. After mapping the output of IslandViewer to contig positions, we found

these predictions were located at contig 2, 4, 5, 6, 7, 9, 10, and 11, with one interval

containing regions from contig 4, 5, and 9. Because contig 7 and 9 are on the small

chromosome, the predictions of IslandViewer seem a bit confusing.

We mainly compare the predictions of GI-Cluster and IslandViewer in contig 11

of the incomplete genome, because contig 11 is located in the large chromosome and

has more known GIs (Figure 2.9). Clearly, GI-Cluster predicted more known GIs. One

region located around position 1,000,000 was not reported in literature, but predicted by

both GI-Cluster and IslandViewer. GI-Cluster also yielded three intervals which were

not reported by IslandViewer or in literature. We denote them by NG1 (from 160,001

to 165,258), NG2 (from 424,863 to 430,000), and NG3 (from 565,001 to 570,000).

According to gene predictions and homology search, these four regions enriched with

phage-related genes, virulence factors or novel genes. Therefore, these new predictions
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are probably novel GIs and worthy of further investigation.

Figure 2.9: Performance comparison of GI-Cluster and IslandViewer in contig 11 of the

incomplete genome of V. cholerae RC9.

Improvement on initial predictions of genomic islands Finally, we show the appli-

cation of GI-Cluster on initial predictions from GI detection programs with high recall

and low precision. A sensitive GI detection program may output many potential GI

candidates, but there may be a large portion of false positives. So it is helpful to auto-

matically filter out potential false positives from these initial predictions. Taking initial

GI predictions as input, GI-Cluster can remove intervals with weak evidence of lateral

origin, and thereby narrow down the search space for true positives.

We take the predictions of GI-SVM in the genome of S. typhi CT18 as an example.

GI-SVM (parameters: ν = 0.9, k = 6) predicted 96 GI candidates (997 genes) in this

genome (Lu and Leong, 2016b). By running GI-Cluster on these initial predictions,

we reduced the number of GI candidates to 51 (798 genes). The precision and F1 on

C-data set were improved by around 28% and 16%, respectively. The precision and F1

on L-data set were improved by around 32% and 22%, respectively. As shown in Figure

2.10, the other measures were also slightly improved.

Visualization of predicted GIs in S. typhi CT18 genome

In this subsection, we show the feature plot and comparison plot of GI-Cluster for

predicted GIs in the genome of S. typhi CT18.

Figure 2.11 shows a feature plot. Some regions with less GI-related evidence may

be false positives. For example, the region between position 95 and 100 is likely to be

a false positive because of the following reasons: it contains no mobility-related genes,

antibiotic resistance genes or novel genes; the percentages of phage-related genes and

virulence factors are not very high; some part of this region has normal codon usage.

Figure 2.12 shows a comparison plot. From the visualization, it is easy to get an

overall picture about the performances of different methods. For example, GI-Cluster

effectively removed many false positives predicted by GI-SVM. Moreover, it is helpful
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Figure 2.10: Improvement of GI-Cluster over the initial predictions of genomic islands

generated by GI-SVM in the genome of S. typhi CT18. C.Recall, C.Precision, and C.F1

represent the recall, precision and F1 computed on C-data set. The other metrics were

computed on L-data set.

to find more reliable predictions and novel GIs. For instance, several regions between

position 210 and 235 were predicted by more than four methods but not reported in

literature previously, suggesting that they are probably real GIs.

2.5 Summary

In chapter 2, we focus on the detection of genomic islands in microbial genomes. To

better detect GIs for newly sequenced genomes which may have no complete annotations

and enough closely related organisms, we proposed two machine learning methods, GI-

SVM and GI-Cluster. GI-SVM utilizes one-class SVM to identify GIs based on k-mer

frequencies in a single genome sequence. GI-Cluster takes advantage of consensus clus-

tering to detect GIs by integrating multiple GI-related features. Due to the unsupervised

nature of one-class SVM and clustering, the two programs do not rely on reliable training

datasets which may not be available. As stand-alone tools, they can be conveniently

rerun when the genome sequences are updated.

GI-SVM is implemented in Python, integrating the implementation of SVM and

spectrum kernels provided by the SHOGUN Machine Learning Toolbox 4.0.0 (Sonnen-

burg et al., 2010). The source code is available on https://github.com/icelu/GI_
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Figure 2.11: Genomic islands (GIs) and related features generated by GI-Cluster in

the genome of S. typhi CT18. The unit of chromosome position is 10,000, namely 5

representing 50,000. The colour tracks from outermost to innermost are: predicted GIs,

GC content, codon adaptation index, covariance for 4-mers, the percentage of mobility-

related genes, the percentage of phage-related genes, the percentage of virulence factors,

the percentage of antibiotic resistance genes, and the percentage of novel genes.

Prediction/tree/master/GI_SVM. GI-Cluster is implemented in Python, R, and

Bash. The source code is available on https://github.com/icelu/GI_Cluster.

Both programs can take the genome sequence file (FASTA format) as the sole input and

are easy to use.

GI-SVM is able to identify GIs with higher recall than programs utilizing the same

input. GI-SVM also performs better than programs detecting LGTs based on genes, and

predicts more accurate boundaries than programs incorporating functional annotations.

In brief, GI-SVM provides an alternative choice for researchers interested in a first-pass

detection of GIs in newly sequenced genomes. The high sensitivity of GI-SVM can help

to locate more GI candidates of certain reliability for further study.

GI-Cluster can separate GIs from non-GIs with a good balance between sensitivity

and precision, sometimes outperforming a supervised machine learning method that

utilizes similar features. The input for GI-Cluster can be from multiple sources, including

incomplete genomes and initial output from other GI prediction tools. For incomplete
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Figure 2.12: Predicted genomic islands (GIs) in the genome of S. typhi CT18 by multiple

methods. The unit of chromosome position is 10,000, namely 5 representing 50,000.

The colour tracks from outermost to innermost are: reference GIs in L-data set, GIs

predicted by GI-Cluster, GIs predicted by GIHunter, GIs predicted by IslandViewer,

GIs predicted by GI-Cluster from initial prediction of GI-SVM, and GIs predicted by

GI-SVM.

genomes, GI-Cluster can generate accurate predictions without the assembly of contigs.

For initial candidates from a GI prediction method with very high recall, GI-Cluster

can reduce the number of false positives and improve the precision by more than 25%.

GI-Cluster also provides feature plot and comparison plot, which may help to reveal

insights from an overall picture of predicted GIs along the genome.

Moreover, GI-Cluster provides a flexible framework for analyzing GIs given a set

of genomic segments. GI-Cluster computes multiple GI-related features from these

segments, which can be then used for consensus clustering. These computed features

can also facilitate manual analysis, which is still necessary to ascertain the foreign origin

of GI candidates and localize them more accurately. The computation of each feature

can be easily replaced by better methods. The functional annotations of genes can be

improved by adopting latest database releases and integrating more related databases.

New features indicative of a region’s lateral origin can also be incorporated into this

framework, whereas features turning out to be not discriminative enough can be removed.
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Chapter 3

Towards modeling LGT with

phylogenetic networks

3.1 Introduction

In this chapter, we first provide a brief description of phylogenetic networks. Next

we give a review of the studies on network-based methods for LGT modeling, TCP,

CCP, and network comparison. Then, we introduce basic concepts and notation as well

as an important decomposition technique. Finally, we describe fast exponential time

algorithms to solve the TCP and CCP on arbitrary phylogenetic networks, respectively,

followed by a program for fast computation of the SRF distance.

Let X be a set of taxa. A phylogenetic network (network for short) over X is an

acyclic digraph in which the leaves (i.e., nodes of outdegree zero) are bijectively mapped

to X . A taxon typically represents some extant organism or species. A network has a

unique root (of indegree zero). A non-leaf node is also called an internal node. There

can be two types of internal nodes in a network: tree nodes, which include the root and

nodes with outdegree of at least one, and reticulate nodes, which have indegree of at

least two. The tree nodes represent speciation events, and the reticulate nodes represent

reticulation events. Normally, all edges entering a tree node are called tree edges, and

all edges entering a reticulate node are called reticulate edges.

A binary network is a network in which tree nodes have an outdegree of two and

reticulate nodes have an indegree of two. If each reticulate node in a network has exactly

two parents, the network is bicombining. A bicombining network is binary if each tree
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node is of outdegree two. A phylogenetic tree is a binary network without reticulate

nodes. If the unique child of each reticulate node in a network is a tree node or a leaf,

this network is called reduced.

Many basic computational problems become hard when phylogenetic networks are

used to model evolutionary events. To simplify the problems, different biologically-

motivated topological constraints have been imposed and thus phylogenetic networks

are further divided into different classes. These classes are briefly defined below.

A cluster network is a network for which each tree edge represents one cluster. It is

easy to compute.

A biconnected component B properly contains a reticulate node r if all the edges

entering r are contained in B. A tree cycle in a network is an undirected cycle that

comprises two disjoint path meeting at a reticulate node. If a tree cycle shares no nodes

with any other tree cycle, it is called a gall. A gall can also be seen as a biconnected

component that properly contains exactly one reticulate node.

A galled tree is a network for which every biconnected component properly contains

exactly one reticulate node. In other words, the individual loops in a galled tree are not

interwoven or the reticulate nodes are isolated. Galled tree is the simplest classes of

phylogenetic networks. It provides a good trade-off between computational tractability

and generality.

A level-k network is a bicombining network for which every biconnected component

properly contains at most k reticulate nodes. Here, the maximum number of reticulate

nodes in any biconnected component of a network is called the level of this network.

Galled tree is also level-1 network.

A galled network is a bicombining network for which every tree cycle is a gall.

Galled networks are generalization of galled trees. Galled networks were introduced

because a set of clusters may not be represented by a galled tree or a level-k network. For

any set of clusters, there always is a galled network representing them. Galled network

is suitable for dataset than can be represented by a backbone tree with some attached

reticulations.

A tree-child network is a network for which every internal node has at least one

child with indegree one. In a tree-child network, every reticulate node can reach a leaf

by a path comprising only tree nodes. Biologically, this ensures that every nonextant
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species has some descendant by speciation events. Galled trees are tree-child networks,

but galled networks are not.

A tree-sibling network is a network for which every internal node has at least one

sibling with indegree one. Biologically, this ensures that at least one of the nonextant

species involved in reticulation events has some descendants resulted from speciation

events. Tree-child networks are a subset of tree-sibling networks.

A time-consistent network is a network for with each node was assigned a time and

the time increases from parent node to child node. The time constraint ensures that the

organisms involved in the reticulation events must be coexist.

A network is normal if it is a tree-child network with no nodes of outdegree one,

and if there is a directed path of size larger than one from node u to v then there is no

edge (u, v). A regular network is a network for which all the descendants of a node are

distinct. Normal networks are also regular.

In a network, a node u is a stable ancestor of another node v if every path from the

root to v passes through u. A node u is stable if u is a stable ancestor of some leaf.

A network is nearly stable if every node either is stable or has stable parents. In a

nearly stable network, if a node is not stable, all its children are stable. Nearly stable

networks include normal and tree-child networks.

A network is genetically stable if every reticulate node has a stable parent. Intuitively,

this means that each reticulate node obtains stability from one parent. Genetically stable

networks are a subset of stable tree-sibling networks. The simulation results suggest

that genetically stable networks take up a significantly larger proportion than tree-child

networks (Gambette et al., 2015b).

A network is reticulation-visible (stable) if each reticulate node is a stable ancestor

of some leaf. Namely, every reticulate node separates the network root from at least

some leaves. The visibility property was originally introduced to capture the separation

property of galled networks. Every reticulate node r in the galled network separates the

network into two set of node: nodes reachable from the root bypassing r , and nodes that

can only be reachable by a path passing through r (Huson et al., 2010). Galled trees,

galled networks, and tree-child networks all belong to reticulation-visible networks.

A tree-based network is a special kind of phylogenetic network used to quantify

the notion that a network is a tree with additional edges (Francis and Steel, 2015). A
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tree-based network can be obtained from a tree by adding edges from a point on one tree

edge to a point on another tree edge without incurring directed cycles. Moreover, any

non-tree-based rooted binary phylogenetic network can be expanded to be tree-based

by adding extra edges and leaves which can be seen as ‘unseen’ taxa in the past. The

class of tree-based networks includes tree-child networks, tree-sibling networks, and

reticulation-visible networks (Francis and Steel, 2015).

The relationships among several different types of networks are shown in Figure 3.1.
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Figure 3.1: The relationships among several types of phylogenetic networks.

There are two different ways to interpret a phylogenetic network: hardwired network

in which each tree edge represents one cluster, and softwired network in which each

tree edge may represent more than one cluster (Huson et al., 2010). The reticulate edge

helps to represent incompatible clusters that cannot be represented by a tree. So the

reticulations in these networks do not represent evolutionary events. Given a set of

clusters, softwired networks usually use fewer edges to represent them. Cluster network

is a kind of hardwired network, which is easy to compute. Galled network and level-k

network are softwired networks, on which many basic computational problems are hard

to solve. Compared with galled network, level-k network is often simper (van Iersel

et al., 2010a). These networks help to show which clades are supported by most trees.
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3.2 Literature review

In this section, we first review network-based methods for LGT modeling. Then we

discuss the previous work on solving the TCP and CCP. Finally, we briefly introduce

some known distance metrics used for network comparison.

3.2.1 Network-based methods for modeling LGT

Network-based methods to reconstruct reticulate evolutionary history were suggested to

bring potentially new ways to detect and assess LGTs (Zhaxybayeva, 2009). Unfortu-

nately, there are still no practical network-based methods for modeling LGT. Neverthe-

less, some researchers have done preliminary work towards the modeling of LGT with

phylogenetic networks. Among them, tree-based network and LGT network seems quite

promising.

Tree-based networks are subclasses of phylogenetic networks that are particularly

appropriate to model LGTs (Francis and Steel, 2015; Zhang, 2016). Tree-based means

that the evolution can be represented by a rooted tree and linking edges. The rooted tree

represents the evolution of speciation and the linking edges naturally represent LGTs.

This representation is also relevant to the long-standing debate of whether the evolution

is tree-like with reticulations or the tree should be dispensed.

But tree-based itself does not confer any particular evolution mechanism for the taxa

under study. For example, other reticulation events, such as hybridization, can also be

used to explain the linking edges in the network. Different from hybridization, LGT

is an asymmetric evolutionary event, so all parents of a reticulate node should not be

treated equally in a network model.

Based on this observation, Cardona et al. (2015) introduced LGT network, a tree-

based network with LGTs which embeds a principal tree and a set of secondary edges

between nodes in this tree. The principal tree represents the primary line of evolution,

and the secondary edges represent LGTs. A LGT network can generate a principal

subtree and a set of secondary subtrees. The principal subtree can be obtained by

contracting nodes with outdegree one in the principal tree. Each secondary subtree can

be obtained by keeping one secondary edge to a reticulate node in the network. They also

developed an algorithm to reconstruct a restricted LGT network given a principle subtree
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and a set of secondary subtrees. Figure 3.2 shows such a network reconstructed from four

phylogenetic trees which were obtained from real biological data. However, rigorous

conditions are required to assure that the principle subtree and secondary subtrees are

pairwise different and they can determine a LGT network. These conditions on the input

are too strict to find many examples for application of this algorithm.

4 3 2 1 5 6 7 8 9 

Figure 3.2: A restricted LGT network obtained from real biological data, re-

drawn from Figure 15 in (Cardona et al., 2015). The 9 leaves in the network

represent Roseobacte denitrificans OCh 114, Ruegeria pomeroyi DSS-3, Ruegeria
sp. TM1040, Dinoroseobacter shibae DFL 12, Paracoccus denitrificans PD122,

Rhodobacter sphaeroides ATCC 17025, Rhodobacter sphaeroides KD131, Rhodobac-
ter sphaeroides ATCC 17029, and Rhodobacter sphaeroides 2.4.1, respectively. The

specific LGT events in this figure (the dashed arrows) are still not reported in literature

yet, but several LGT events among Rhodobacter sp., Ruegeria pom. and Ruegeria sp.

are known.

3.2.2 Methods to solve the TCP and CCP

The TCP and CCP are two fundamental questions in the study of phylogenetic networks.

The characterization of a network as its displayed trees and (soft) clusters serves as

the basis for network reconstruction and evaluation. To assess a reconstructed species

network, it is required to ensure that the network is consistent with known biological

knowledge regarding the species. One way to check this is to determine whether

existing genes trees are displayed in the network. Besides, by finding whether a gene

tree is embedded in a species network, one can detect the presence of reticulation events,

such as LGT. It is also of biological interest to know whether a set of taxa forms a

clade (is a cluster) in a given phylogenetic network. However, it is not easy to solve the

TCP and CCP for general phylogenetic networks. In the following subsections, we will

briefly review previous efforts on solving these two problems on restricted classes of

phylogenetic networks in chronological order.
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Methods to solve the TCP

It is non-trivial to solve the TCP, because the number of trees displayed in a network

grows exponentially with the number of reticulate nodes. Actually, the TCP is similar to

a hard problem, the subgraph isomorphism problem which asks whether a graph contains

a subgraph that is isomorphic to another graph (Gunawan et al., 2016a). The difficulty

to solve the TCP lies at how to examine all the reticulate nodes. A naïve algorithm is

to randomly delete one edge entering a reticulate node. It will take O(2 |R(N ) |) time to

examine them simultaneously in a network N , where |R(N)| is the number of reticulate

nodes in N . The key to an efficient solution is to identify the set of reticulate nodes that

can be dissolved simultaneously in polynomial time. To simplify the problem, solutions

are often pursued for restricted classes of networks.

Nakhleh and Wang (2005) first developed a quadratic-time algorithm for the TCP on

the binary tree-child networks. They utilized a network decomposition technique. The

runtime is bounded by O(|V(N)| |L(N)|) for a network N , where |V(N)| is the number

of nodes in N and |L(N)| is the number of leaves in N . Then, Kanj et al. (2008) proved

that the TCP is NP-complete for general networks by reducing the TCP to the problem

of Node-disjoint Paths. By reducing from the TCP and CCP on general networks, van

Iersel et al. (2010b) showed the TCP and CCP are NP-complete for tree-sibling, time-

consistent and regular networks. They also developed polynomial-time algorithms for

solving the TCP on normal networks, binary tree-child networks and level-k networks.

Later, Gambette et al. (2015a) developed a quadratic-time algorithm for binary

nearly-stable networks. This algorithm utilizes so-called subtree-free property. Namely,

if a network and a tree share a common subtree, this subtree will be replaced by a

new leaf. Then the network will not contain a subtree with more than two leaves. By

considering the longest root-to-leaf path with at least four nodes and different types of

specific nodes along the path, the algorithm iteratively deletes a reticulation edge at the

end of the longest root-to-leaf path until it becomes a tree. Then, it is easy to check

whether two trees are isomorphic and find the solution to the TCP. The time complexity

of this algorithm for a network N is O(|L(N)|2) time, where |L(N)| is the number of

leaves in N .

Then, Gambette et al. (2015b) developed a quadratic-time algorithm for genetically
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stable networks. The algorithm depends on an observation that a network displays a tree

if and only if a network modified by removing two disjoints paths from a tree node to

two sibling leaves displays the tree modified by removing the two sibling leaves. The

subtree induced by two sibling leaves and their parent in a tree is called a cherry. The

algorithm is recursive and a cherry is selected in the tree and resolved at each step.

Extending on previous work, Gunawan et al. (2016a) developed a cubic-time algo-

rithm for reticulation-visible networks that can be binary or non-binary. They observed

two useful properties of reticulation-visible networks: reticulation separability and vis-

ibility inheritability. These properties lead to a powerful decomposition theorem. The

decomposition theorem states that a reticulation-visible network can be decomposed into

a set of disjoint connected tree-node components such that each component contains

either all the parents of a reticulate node or a leaf. This theorem makes it feasible to

solve the TCP and CCP by the divide-and-conquer algorithm in which the tree-node

components can be resolved in succession from the bottom up. For the TCP, a dynamic

programming algorithm was used to resolve all the reticulate nodes right below a tree-

node component. The time complexity for an arbitrary reticulation-visible network N

and a phylogenetic tree T is O(|V(T)| ∗ |E(N)| ∗ |R(N)|, where |V(T)| is the number of

nodes in T , |E(N)| is the number of edges in N , and |R(N)| is the number of reticulate

nodes in N .

This algorithm was later simplified into a quadratic-time algorithm by using proper

data structures in (Gunawan et al., 2017). The time complexity for an arbitrary

reticulation-visible network N and a phylogenetic tree T is O(|E(N)| ∗ |L(T)|, where

|E(N)| is the number of edges in N and |L(T)| is the number of leaves in T .

Methods to solve the CCP

Given a phylogenetic tree, it is easy to determine whether a cluster is represented by

the tree in linear time in the number of taxa. Similarly, one can determine whether a

cluster is represented by a phylogenetic network in polynomial time. However, similar

as the TCP, it is challenging to determine whether a soft cluster is represented by a

phylogenetic network, because the number of soft clusters displayed in a network also

grows exponentially with the number of reticulate nodes (Huson et al., 2010). As a

result, the solutions to the CCP are also pursued for restricted classes of networks.
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Nakhleh and Wang (2005) developed a quadratic-time algorithm for the binary tree-

child networks. The runtime is bounded by O(|V(N)|2) for a network N , where |V(N)|
is the number of nodes in N .

Then, Kanj et al. (2008) proved that the CCP is NP-complete for general networks by

reducing the CCP to the problem of Infinite Site on Phylogenetic Networks. They also

showed that the CCP is solvable in time O(2k/2n2) when parameterized by the number

of reticulate nodes k in the network, where n is the number of reticulate nodes in the

network.

By reducing the CCP to 3-SAT problem, Huson et al. (2010) proved that the CCP

is NP-complete for general networks as well. They also provided a polynomial-time

algorithm for the CCP on reticulation-visible networks (Huson et al., 2010). The

algorithm proceeds by considering whether a cluster is represented by an edge in the

network.

Later, van Iersel et al. (2010b) proved that the CCP can be solved in polynomial

time for binary level-k networks. The algorithm is based on their TCP algorithm for

tree-child networks.

Taking advantage of the decomposition theorem, Gunawan et al. (2016a) developed

linear-time algorithms for the CCP on reticulation-visible networks. Similar as their

solution to the TCP, after decomposing the network into a set of tree-node components,

they apply a dynamic programming algorithm on each tree-node component in a bottom-

up manner. They firstly proposed a O(|L(N)|) algorithm for a binary reticulation-visible

network N , where |L(N)| is the number of leaves in N . Then they extended it for

non-binary reticulation-visible networks Gunawan et al. (2017). The CCP algorithm

for a non-binary reticulation-visible network N was proved to have O(|E(N)|) runtime,

where |E(N)| is the number of edges in N .

3.2.3 Distance measures to compare phylogenetic networks

To assess the robustness of network reconstruction methods, one has to be able to

compare the reconstructed network with simulated networks or true networks. Besides,

for the same input, different reconstruction methods may return different networks and

a single reconstruction method may return multiple networks. Therefore, it is necessary

to compare them to evaluate the performance of reconstruction.
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The differences between networks can be quantified by distance metrics. But it is

difficult to define a proper metric that is easy to compute, since zero distance means

graph isomorphism which is computationally hard. Two kinds of practical approaches

have been proposed to solve this problem. One approach is to use rough estimates of

similarity. The other approach is to focus on restricted class of phylogenetic networks.

Using these two approaches, many distance metrics have been defined (Cardona et al.,

2008a; Huson et al., 2010; Than et al., 2008).

Most distance metrics are designed by comparing the represented data in networks

(Huson et al., 2010), such as displayed clusters or trees. The distances in this category

include: RF (hardwired cluster) distance (Huson et al., 2010), SRF (softwired cluster)

distance (Huson et al., 2010), tripartition distance (Moret et al., 2004; Cardona et al.,

2009a), cluster-based measure (Than et al., 2008), displayed tree distance (Huson et al.,

2010), and tree-based measure (Than et al., 2008).

Some distance metrics compare the topological invariants between networks (Huson

et al., 2010). The distances in this category include: subnetwork distance (triplet

distance) (Cardona et al., 2009b), path-multiplicity distance (μ-distance) (Cardona et al.,

2009c), and nested-labels distance (nodal distance) (Cardona et al., 2009b; Nakhleh,

2010).

Among these distance metrics, only subnetwork distance is a proper metric on

all phylogenetic networks. The other distances are only proper metric on subsets of

phylogenetic networks. The nested-labels distance is a proper metric on tree-child

networks. The RF distance, tripartition distance and path-multiplicity distance were

proved to be proper metrics on time-consistent tree-sibling networks (Cardona et al.,

2009a).

Now we briefly review the work on computing these distances. Suppose n is the

number of leaves, m is the number of nodes and e is the number of edges in each network.

The RF distance can be computed in O(m(m + e))) time (Cardona et al., 2009a). Asano

et al. (2010) proposed a faster algorithm for computing the RF distance on general

networks. The algorithm makes use of word-level parallelism and has O(ne/logn)
runtime. The tripartition distance can be computed in O(m(logm + n)) time (Cardona

et al., 2009a). The path-multiplicity distance can be computed in O(mn) time (Cardona

et al., 2009a). The runtimes for the SRF distance, the displayed tree distance, cluster-
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and tree-based measures are exponential in the number of reticulate nodes in the two

compared networks (Huson et al., 2010; Than et al., 2008).

Dendroscope 3 (Huson and Scornavacca, 2012) implemented the calculations of

six distance metrics for networks, including the RF distance, SRF distance, tripartition

distance, displayed tree distance, path-multiplicity distance, and nested-labels distance.

The Perl package Bio::PhyloNetwork (Cardona et al., 2008b), included in the BioPerl

bundle, implemented the computation of the path-multiplicity distance. Than et al.

(2008) implemented three distance metrics in PhyloNet, including tree-based measure,

cluster-based measure, and tripartition-based measure.

The computation of the SRF distance implemented in Dendroscope is very straight-

forward. This method exhaustively searches the clusters that are in a phylogenetic tree

displayed in one network but are not in any phylogenetic tree displayed in another.

Hence, more efficient methods to compute the SRF distance are still in need.

3.2.4 Summary

The prevalence of reticulation events, including LGTs, makes it promising to use phy-

logenetic networks to model evolution of life. Among the different kinds of networks,

tree-based network is a natural model for LGT. Particularly, LGT network, a kind of

tree-based network which accounts for the asymmetricity of LGT, has been proposed to

model LGT. But it is computationally challenging to reconstruct a phylogenetic network

from biological data. The current reconstruction algorithm for a restricted class of LGT

network is imposed with strict conditions and not widely applicable. Besides, some

fundamental problems arising in the reconstruction of phylogenetic networks are still

not solved, such as the TCP and CCP. The efficient solutions to these basic problems

may facilitate the development of network reconstruction methods.

In recent years, several efficient algorithms have been developed for the TCP and

CCP. But these algorithms work on restricted classes of networks, such as reticulation-

visible networks. According to simulation results on the distribution of reticulation-

visible networks, reduced networks, and tree-based networks, a large fraction of phylo-

genetic networks are not reticulation-visible (Zhang, 2016). Therefore, it is necessary

to develop algorithms for the TCP and CCP on arbitrary phylogenetic networks that are

not necessarily reticulation-visible or binary.
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In view of this need, we developed fast algorithms for solving the TCP and CCP on

arbitrary phylogenetic networks, which will be presented in Section 3.5 and Section 3.6,

respectively. The solution to the CCP on arbitrary networks makes it straightforward to

efficiently compute the SRF distance. We will present our program for computing the

SRF distance in Section 3.6.

3.3 Basic concepts and notation

In this section, we define basic concepts and notation used later. We define tree nodes

to be the root and nodes of indegree one and outdegree of at least one, and reticulate

nodes to be nodes of outdegree one and indegree of at least two. We allow degree-two

nodes in a network.

Here, we use the following notation for a network N:

• T(N): the set of tree nodes in N .

• L(N): the set of leaves in N .

• R(N): the set of reticulate nodes in N .

• V(N): the set of all nodes in N , namely T(N) ∪ L(N) ∪ R(N).

• E(N): the set of edges in N .

• ρ(N): the root of N .

• N − E: the subnetwork (V(N), E(N)\E) for a subset E ⊆ E(N).

• N − S: the subnetwork (V(N)\V(S), E ′), where E ′ = {(x, y) ∈ E(N) | {x, y} ⊆
V(N)\V(S)} for a subnetwork S of N .

For u, v ∈ V(N), u is a parent of v and v is a child of u if (u, v) ∈ E(N). We use c(r)
to denote the unique child of r ∈ R(N). If there is a direct path from u to v, v is called a

descendant of u.

We use [r]N to denote the subnetwork below r ∈ V(N), which consists of all the

descendants of r and the edges between them in N . For a leaf � below r , we use

N − [r]N + � to denote the subnetwork obtained by replacing [r]N with � so that �

becomes the child of r .
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Consider a phylogenetic network M over a set of taxa X and a phylogenetic tree G

over a set of taxa Y such that Y ⊆ X . After all but one incoming edges are removed for

every reticulate node, M becomes a tree M ′ (Figure 3.3). Note that some internal nodes

of M may have become leaves in M ′. After the nodes that are not in any path from ρ(M)
to a leaf in Y and all the edges incident to them are removed from M ′, M ′ becomes a

tree M ′′ over Y . M ′′ is called a sub-tree history of the network M for Y . The tree G is

displayed in M if G can be obtained from a sub-tree history of M for Y by contraction

(that is, contracting all the nodes with both indegree and outdegree one) (Figure 3.3).

If M is a tree without nodes of indegree and outdegree one over the same set of taxa as

G, by definition, M = M ′ = M ′′ and so G will not be displayed in M unless they are

identical.

We allow a network to have dummy nodes (i.e., unlabeled nodes of outdegree zero)

because such a network may be generated in a recursive step of our algorithms. A dummy

reticulate node is a node that has indegree greater than one and outdegree zero, and a

dummy leaf is an unlabeled leaf. As an evolutionary model, a phylogenetic network is

assumed not to have such nodes, as they are not meaningful. However, the algorithm

to be developed works in a recursive manner. Occasionally, the input network will be

simplified into a network with such kind of nodes when the algorithm runs. Therefore,

in this work, for convenience, we allow a phylogenetic network to have dummy reticulate

nodes and dummy leaves. Such a network is called a general phylogenetic network.

For a phylogenetic network N over X and Y ⊂ X , we use NY to denote the general

phylogenetic network obtained from N by removing all the leaves not labeled by a taxa

in Y . It is not hard to see that NY is over Y . It is also true that a phylogenetic tree G over

Y is displayed in N if and only if G is displayed in NY .

Given the set of taxa X , a cluster is any proper subset of X (excluding the empty set

and the full set). A cluster is trivial if it contains only one element.

In a phylogenetic tree T over X , each non-root node induces a unique set of taxa

that consists of the labels of the leaves below the node, which is called the cluster of the

node. A cluster is displayed in T if it is the cluster of some node in T .

A cluster B ⊂ X is a soft cluster displayed in a phylogenetic network N if there is a

tree T displayed in N such that B is a cluster displayed in T . A tree node in a network may

represent multiple soft clusters, which could be obtained from different trees displayed
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in the network. We use SC(N) to denote the set of soft clusters displayed in N .

M M’ M’’ G

Figure 3.3: Illustration of tree containment. M is a phylogenetic network over taxa

{�1, �2, �3, �4}. Reticulate nodes are represented by filled circles. An incoming edge for

the root is added for visualization. G is a phylogenetic tree over {�1, �2, �3} displayed in

M .

3.4 Network decomposition technique

The key to solving the TCP and CCP is the network decomposition theorem, which was

first proposed by Gunawan et al. (2017) for reticulation-visible networks.

Let N be a network over a set of taxa X . For u, v ∈ V(N), v is a vertical descendant

of u if a direct path exists from u to v that contains either a single edge from u or

multiple edges, each of which enters a tree node. Let VD(u) denote the set of all vertical

descendants of u. If u is a dummy reticulate node, VD(u) is empty.

Let r ∈ R(N) have a unique child c(r). If c(r) is also in R(N), VD(r) = {c(r)}. If

c(r) � R(N), then VD(r) ⊆ T(N) ∪ L(N). Additionally, VD(r) induces a subtree of N

with the vertex set VD(r) and the edges set {(v′, v′′) ∈ E(N) | v′, v′′ ∈ VD(r)}. This

subtree is denoted by C(r) and is called a tree component of N . The subtree induced by

{ρ} ∪ [VD(ρ) ∩ (T(N) ∪ L(N))] is also called a tree component, where ρ is the root of

N .

In summary, the decomposition theorem says that an arbitrary network N can be

decomposed into a set of connected tree components which are separated by reticulate

nodes. Specifically, there is a tree component Cr for each r ∈ R(N) ∪ {ρ(N)}, which is

either {c(r)} if r ∈ R(N) and c(r) ∈ R(N), or a subtree induced by all the tree nodes and

leaves that are reachable from r .

A tree component is trivial if it contains only one leaf or if it is empty (for a dummy
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reticulate node). A node is visible on a leaf � if it lies on all the paths from ρ(N) to �. If

a node r ∈ R(N) ∪ {ρ(N)} is visible on a leaf �, its tree component Cr is visible on � as

well. Given two tree components Cr′ and Cr′′, r ′ and Cr′ are right below Cr′′ if a parent

of r ′ is in Cr′′. A tree component is exposed if it contains only one leaf or if all the tree

components right below it are trivial.

Obviously, N contains at least one exposed non-trivial tree component. In addition,

we have the following lemma (see Appendix B for the proof).

Lemma 3.4.1. Let C be an exposed tree component. C is visible if and only if C contains

a leaf or if a reticulate node r exists right below C such that the parents of r are all in C.

The above concepts are briefly illustrated in Figure 3.4. See (Gunawan et al., 2017)

for more details of the decomposition theorem.

Figure 3.4: A network N and its tree components. There are nine tree components in N .

Five of these components are non-trivial: Cr, Cr1, Cr2, Cr5, and Cr6, where Cr6 = {r4}.
Cr7 and r7 are right below Cr5, Cr2, and Cr. Cr is visible on all the leaves. Cr1 and Cr2

are visible, but neither of them is exposed. Cr5 is exposed but not visible.
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C0

C2C1

C3

N G

Figure 3.5: A network N and a phylogenetic tree G displayed in N . Left panel: C0

is the tree component below the root; Ci = C(ri) for 1 ≤ i ≤ 3. For each of the other

reticulate nodes, the tree component contains only its unique child. Right panel: G0,

G1 and G2 are subtrees branching off the path from the root v0 to �2.

Based on the network decomposition technique, our TCP and CCP algorithm work

as follows:

To determine whether or not a tree G (cluster C) is displayed in a phyloge-

netic network N , the algorithm selects a non-trivial exposed component M

of N . If M is visible, we either find the negative answer to the problem by

working on M or we obtain an instance of the problem that is simpler than

the input instance (G, N) ((C, N)) in polynomial time proportional to the

size of M . In the latter, we reduce the original instance of the TCP (CCP)

to a simpler instance.

If M is not visible, there is then a reticulate node which has a unique leaf

child and does not have all parents in M . In this case, two phylogenetic

networks N1 and N2 are derived from N , which contain fewer nodes than

N . The algorithm is then called on both instances (C, N1) ((G, N1)) and

(C, N2) ((G, N2)) recursively.
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3.5 Locating a tree in an arbitrary phylogenetic network

In this section, we present a fast algorithm for the TCP on an arbitrary phylogenetic

network, which was developed by using the decomposition technique reported in Section

3.4. Although this algorithm is of exponential time in the worst case, the theoretical

analysis shows that it is much faster than the naïve program for binary phylogenetic

networks. The evaluations on both random and real networks also demonstrate that it is

very fast in practice.

Formally speaking, the TCP is formulated as below:

Instance: A phylogenetic network N over X and a phylogenetic tree G over Y such that

Y ⊆ X .

Question: Is G displayed in N?

Here, we would like to point out that the TCP has been studied only for a phylogenetic

network and a phylogenetic tree over the same set of taxa in literature (Huson et al.,

2010).

3.5.1 Methods

In this subsection, we describe the main idea of the TCP algorithm, followed by some

important issues in its implementation.

Description of the TCP algorithm

Let N and G be a network and a phylogenetic tree over the same set of taxa X , respectively

(Figure 3.5). In the rest, for simplicity, we use the same symbol to denote the leaf that

represents the same taxon in G and N .

Consider r ∈ R(N) such that C(r) is non-trivial, exposed, and visible. Let Lr be the

set of network leaves with respect to which C(r) is visible and let � ∈ Lr . A unique path

then exists from the tree root ρ(G) to � in G:

P� : v0 = ρ(G), v1, · · · , vt, vt+1 = �, (3.1)

where t ≥ 0. P�2 is shown in the tree G in Figure 3.5, where t = 2. It is not hard to see

that G − P� is a union of t + 1 disjoint trees Gi, each of which branches off from P� at
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vi for i = 0, · · · , t. For example, in Figure 3.5, G0 consists of �1, �3 and their parent; G1

and G2 are simply �5 and �4, respectively. For convenience, we set Gt+1 = {�}.
Define

sG(r) = min{ i | 0 ≤ i ≤ t + 1, L(Gi) ∩ Lr � ∅ }, (3.2)

where L(Gi) denotes the set of labeled leaves in Gi. Since � ∈ L(Gi) ∩ Lr , the index

sG(r) is well defined. For G in Figure 3.5, if Lr = {�2, �5}, we have sG(r) = 1, as G1

contains �5 in Lr but G0 contains neither �2 nor �5; if Lr = {�2}, then sG(r) = 3.

The index sG(r) can be computed by a simple dynamic programming algorithm on

G and Lr , which takes linear time O(|L(G)|) (see (Gunawan et al., 2017)).

For each vi, we use G′(vi) to denote the subtree rooted at vi in G. Formally, for

each sG(r) ≤ i ≤ t + 1, G′(vi) is said to be displayed in the subnetwork below r , if it is

displayed in the following subnetwork

[r]N − {c(r ′), r ′ | r ′ ∈ R(N) such that c(r ′) � L(G′(vi))}, where c(r ′) is the unique leaf

child for r ′ ∈ R(N).
If G is displayed by N , the subtree G′(vsG (r)) must be displayed in the subnetwork

of N below r . The reason is that r and C(r) are visible with respect to a leaf �′, which

is in GsG (r), as well as �, forcing vi to correspond to a node in C(r) in any display of G

in N .

However, a super subtree containing G′(vsG (r)) may possibly be displayed below r

in N . We define:

dG(r) = min{ j | G′(vj) is displayed below r in N }. (3.3)

The index dG(r) can be computed in quadratic time (Gunawan et al., 2017).

For network N ′ in Figure 3.6, C(r3) = C3. It is visible with respect to �2 and exposed.

For tree G in Figure 3.5, since Lr3 = {�2}, sG(r3) = 3. However, dG(r3) = 2, as G′(v2)
is displayed in the subnetwork below r3.

Let N − C(r) + � denote the network obtained from N as follows:

• for each x ∈ R(N) right below C(r), removing the edges to x from its parents in

C(r) if the child of x is not in the subtree G′(vdG (r)), and

• replacing the resultant subnetwork below r with � so that � becomes the child of
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Figure 3.6: Illustration of the TCP algorithm. Top left panel: The network N ′ obtained

from N (Figure 3.5) by deleting the edge entering the parent of �2 from a node in C1.

Note that C3 is visible with respect to �2 in N ′. Top right panel: The network N ′′

obtained from N (Figure 3.5) by deleting the edge entering the parent of �2 from a node

in C3. Bottom left panel: The network derived from N ′ by replacing C3 with �2 after the

subtree G′(v2) is found to be displayed below r3. Bottom right panel: The tree obtained

from G (Figure 3.5) by replacing G′(v2) with �2. G′(v2) is the subtree of G consisting

of �2, �4 and its parent v2 (Figure 3.5).

r .

Similarly, we use G−G′(vdG (r))+ � to denote the tree obtained from G by replacing

G′(vdG (r)) with �.

For C(r3) = C3 and �2 in the network N ′ in Figure 3.6 and G in Figure 3.5, since

dG(r3) = 2, N ′ − C3 + �2 and G − G′(v2) + �2 are those shown in the second row in

Figure 3.6.

The following theorem was first proved for reticulation-visible networks by Gunawan

et al. (2017). Its correctness for arbitrary networks is proved in Appendix B.

Theorem 3.5.1. Assume C(r) is non-trivial, exposed and visible with respect to � in N .
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Let sG(r), dG(r), N − C(r) + �,G − G′(vdG (r)) + � be defined as above.

(i) If dG(r) > sG(r), N does not display G.

(ii) If dG(r) ≤ sG(r), N displays G if and only if N−C(r)+� displays G−G′(vd(r))+�.

Consider r ∈ R(N) such that C(r) is exposed and non-trivial. Assume that C(r) is

not visible but a reticulate node r ′ exists right below C(r) such that C(r ′) consists of

only a leaf. Since C(r) is not visible, r ′ has at least one parent not in C(r).
We define:

N ′ = N − {(x, r ′) ∈ E(N) | x � C(r)} (3.4)

and

N ′′ = N − {(x, r ′) ∈ E(N) | x ∈ C(r)}. (3.5)

If r ′ has only one parent in C(r) in N , r ′ is of indegree and outdegree one in N ′. In

this case, r ′ becomes a tree node and is merged into C(r) in N ′ (Figure 3.6). If r ′ has

multiple parents in C(r), C(r ′) is only right below C(r) in N ′. Hence, C(r) has become

visible with respect to the unique leaf child of r ′ in N ′. For example, in Figure 3.5, C3

in the network N is exposed, but not visible. If the parent of �2 is chosen, N ′ and N ′′

are shown in the top row in Figure 3.6.

By the definition of tree containment, a tree is in N if and only if it is in either N ′ or

N ′′.

By combining the two possible cases discussed above, we obtain an algorithm for

solving the TCP summarized in Figure 3.7.

Implementation of the TCP algorithm

A couple of issues arising during implementation of our algorithm are worth mentioning

here.

Firstly, since the algorithm decodes tree components one by one, the input network

and any additional networks created in Step 3 of the algorithm are each represented as a

sorted list of non-trivial tree components. The non-trivial tree components are sorted in

post order so that after the tree components listed before a tree component are dissolved,

the latter becomes exposed. In this way, the non-trivial components are dissolved from

the first to the last. When a tree component is dissolved, each tree component listed

behind it will be updated if a reticulate node below the former is also below the latter.
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TCP Algorithm

Input: An arbitrary network N and a phylogenetic tree G.

Output: TRUE if N displays G and FALSE otherwise.

0. If N is NULL, output FALSE;

1. Select an exposed and non-trivial tree component C(r);
2. If C(r) is visible with respect to a leaf �

2.1. Compute sG(r) and dG(r) as defined in Eqn.(3.2) and (3.3);

2.2. If dG(r) > sG(r), output FALSE;

2.3. If dG(r) = 0, output TRUE;

2.4. If 0 < dG(r) ≤ sG(r) do {

(i) Compute Nr = N − C(r) + � and

Gr = G − G′(vd(r)) + � as defined above;

(ii) Output TRUE if Nr displays Gr and FALSE if not;

}

3. If C(r) is not visible but a leaf exists below C(r), do {

3.1. Compute N ′ and N ′′ as defined in Eqn. (3.4) and (3.5);

3.2. If N ′ displays G, output TRUE;

3.3. If N ′′ displays G, output TRUE;

3.4. Output FALSE;

}

4. If no leaf exists below C(r), do {

4.1. If N − r − C(r) displays G, output TRUE;

4.2. Output FALSE;

}

Figure 3.7: An algorithm for solving the TCP on an arbitrary network.

Our evaluation tests showed that the runtime of our algorithm was very sensitive to

the order in which the tree components were listed. Ideally, visible tree components

with more nodes should be listed first whenever possible. We used an array to save

the leaf below each reticulate node for which the tree component is a single leaf. The

list is updated at the end of Step 2.4.(i) when an exposed and visible tree component is

replaced by a network leaf.

Secondly, we used a two-dimensional table to implement a dynamic programming

method for computing dG(r), defined in Equation (3.3). The details of the dynamic

programming method can be found in (Gunawan et al., 2017).

3.5.2 Results

In this subsection, we first analyze the worst-case time complexity of the TCP algorithm.

We then report its performance on random networks and on one of the largest networks
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in the literature.

Theoretical analysis of the time complexity

Our algorithm is recursive by nature. There are mainly three useful observations on its

efficiency.

Firstly, the runtime of the algorithm is proportional to the number of non-trivial tree

components. If the input network N has only one non-trivial tree component, this tree

component is rooted at the network root and hence must be visible with respect to each

leaf, implying that the network is visible. In this case, both Step 3 and Step 4 are not

executed; Step 2 of the algorithm is executed only once, taking O(|E(N)| |L(G |) time

(Gunawan et al., 2017), where | · | denotes the cardinality of a finite set.

Secondly, when Step 3 is executed, the algorithm will run on two simplified copies

of the current network in sequential order. Since the time spent on each exposed and

visible tree component is quadratic to the number of nodes in the component (Gunawan

et al., 2017), the runtime of the algorithm is bounded above by O((m + 1)|E(N)| |L(G |),
where m is the number of times Step 3 is executed on the input network N . Since the

TCP is NP-complete, m is likely an exponential function of the number of reticulate

nodes in N , |R(N)|, unless NP = P.

Thirdly, the input network N and tree G satisfy L(G) ∈ L(N). Hence, we simply

use |L(N)| to replace |L(G)| in the time complexity analysis. In this way, the time

complexity of our algorithm is written as O((m + 1)|E(N)| |L(N |).
Given a reduced network N and a phylogenetic tree G, the naïve algorithm will

consider all the reticulate nodes one by one. For each reticulate node r , there will be

kr possibilities if the indegree of r is kr . Therefore, the naïve algorithm will create∏
r ∈R(N ) kr trees and then take linear time to determine whether or not G is displayed

in each of them.

Assuming the indegrees of reticulations nodes of N are constant-bounded, we have∏
r ∈R(N ) kr = Θ(2 |R(N ) |). Combining this fact and the third point made above, we

propose to measure the efficiency of our algorithm by comparing log2 m against |R(N)|.
The former is denoted by b(N,G) and is called the effective reticulation number of the

algorithm for N and G. Additionally, b(N) = maxG b(N,G).
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A theoretic bound for bicombining networks The analysis of our algorithm is diffi-

cult in general. However, we are able to establish the following theorem for bicombining

reduced networks (see Appendix B for the proof).

Theorem 3.5.2. For any bicombining reduced network N , b(N) ≤ log2

(
1+

√
5

2

)
×

|R(N)| ≈ 0.694|R(N)|.

The above theorem indicates that Step 3 of our algorithm is executed 20.694 |R(N ) |

times at most on an input network N and a phylogenetic tree. Hence, the algorithm has

time complexity O
(
20.694 |R(N ) | |E(N)| |L(N)|) .

Performance for random networks

For performance evaluations, we ran the program over thousands of phylogenetic trees

and networks with 5 to 30 leaves on a cluster with 32 GB RAM and 8 cores. The

simulated networks were generated by using a network generator reported by Zhang

(2016).

Since the spaces of trees and networks with 10 or more leaves are both huge, it was

very hard to have unbiased evaluation. For instance, for many random networks over 20

to 30 leaves generated by a computer, it is impossible to run our program on every tree

against each of them. On the other hand, since there were only a small fraction of random

trees displayed in each generated random network, our program finished very quickly

for most trees. Additionally, it is impossible to ran the naïve method on a network with

30 reticulate nodes on any computer currently. These facts prevented us to have a clear

picture of our program’s performance on the entire spaces of trees and networks.

Here, we report the performance of our program on five groups of random networks

with seven leaves. Each group contained 18 random networks. The networks in the k-th

group had 5(1 + k) reticulate nodes, for each k from one to five. The percentages of the

trees in the entire tree space with the same effective reticulation numbers were calculated

and summarized in Figure 3.8. There are 10,395 phylogenetic trees with seven leaves.

We obtained several facts about our test. For all but three networks, over 90% of

phylogenetic trees had an effective reticulation number of seven or less. There was a

network with 20 reticulate nodes for which about 95% of phylogenetic trees had the

effective reticulation number of 9 (represented by the orange bar in the middle). For the
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Figure 3.8: Summary of the performance of the TCP program on simulated random

networks. The data were collected from our test on 90 random networks with seven

leaves, which were divided into five groups. Each group contained 18 networks with the

same number of reticulate nodes, arranged roughly in increasing order of the smallest

effective reticulation number in a row along the x-axis. The five groups were arranged

from left to right in increasing order of the number of reticulate nodes. Each of the

stacked bars in a column represents the percentage of trees that had the same effective

reticulation number when the program ran on them against the corresponding network.

rightmost network with 30 reticulate nodes, almost every tree had an effective reticulation

number of 9 or more. These facts strongly suggest that the effective reticulation number

is at most half the number of reticulate nodes in the network for each tree and each

network.

In terms of CPU time, the whole test on 5 × 18 × 10, 395 network-tree pairs took 18

hours and 38 minutes, implying the program took 7.2 centiseconds on average for each

network-tree pair.

Application to a network in the literature

We selected one of the largest networks in the literature to validate the performance of

our TCP algorithm. This is a bicombining network over seven taxa (denoted A, Figure

B.1) from (Charlton et al., 2008) that has as many as 32 reticulate nodes. This network is

an ancestral recombination graph reconstructed to study the phylogenetic relationships

among the M2 double-stranded RNA in the Rhizoctonia species complex. Here, we

report b(A,G) for each of the 10,395 possible phylogenetic trees over the seven taxa.

The distribution of b(A,G) is presented in Table 3.1. There are 4,255 trees displayed
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Table 3.1: The distribution of b(A,G) in the space of phylogenetic trees over the same

set of taxa as A.

No. of trees displayed in A No. of inconsistent trees
4 63

5 561

6 278

7 544

8 411

9 478

10 659

11 766 40

12 433 416

13 62 5,352

14 322

Each entry is the number of trees with b(A,G) being equal to the corresponding number in the

first column

in the network model A. The effective reticulation numbers b(A,G) for these trees vary

from 4 to 14. However, b(A,G) for the 6,140 trees not displayed in A ranges narrowly

from 10 to 14.

Network A has 77 nodes (32 reticulate nodes, 38 tree nodes, and 7 leaves). Table

3.1 shows that for each tree, the effective reticulation number is less than 32/2. Hence,

based on our theoretical analysis, the program is roughly 851 (= 216/77) times as fast

as the naïve approach.

3.6 Comparing arbitrary phylogenetic networks via soft clus-

ters

In this section, we present an algorithm for the CCP on an arbitrary phylogenetic network,

which was developed by using the decomposition technique reported in Section 3.4 We

then extend it into an algorithm for computing the SRF distance. Similar to the TCP

algorithm in Section 3.5, these two algorithms have exponential time complexity in the

worst case, but they were shown to be very fast in evaluations on both random and real

networks. As an application of the programs, we examined the differences of networks

reconstructed for two datasets in the literature. We also conducted a preliminary study

of the distributions of the RF and SRF distances in the phylogenetic network space.

Formally speaking, the CCP is formulated as below:
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Instance: A phylogenetic network N over a set of taxa X and B ⊂ X .

Question: Is B ∈ SC(N)?
Let N1 and N2 be two networks over the same set of taxa X . The SRF distance

between them is defined to be (|SC(N1)\SC(N2)| + |SC(N1)\SC(N2)|) /2, denoted by

dSRF (N1, N2).
It is worth noting that the SRF distance is not a strict metric, since two distinct

networks may represent the same set of soft clusters and hence the SRF distance between

them will be zero (Huson et al., 2010). Nevertheless, the SRF distance provides a useful

measure of network dissimilarity.

3.6.1 Methods

In this subsection, we describe the main idea of the CCP algorithm and the algorithm to

compute the SRF distance.

Description of the CCP algorithm

With the aid of the generalized decomposition theorem, we extend the linear-time CCP

algorithm for reticulation-visible networks in (Gunawan et al., 2017) to arbitrary net-

works. Although this algorithm seems simple, it has significantly less time complexity

when the input network is binary.

Let N be a network over X and B ⊂ X , respectively. We examine a non-trivial

exposed tree component Cr of N .

The reticulate nodes below Cr are divided into inner-reticulate nodes for which the

parents are all in Cr , and cross-reticulate nodes for which some parents are not in Cr .

We use IR(Cr ) and CR(Cr ) to denote the sets of inner- and cross- reticulate nodes,

respectively. For example, in Figure 3.4, IR(Cr5) = ∅ and CR(Cr5) = {r4, r7, r8}.
We use Lr to denote the set of leaves on which Cr is visible:

Lr = {c(r ′) | r ′ ∈ IR(Cr )} ∪ L(Cr ).

We use Ľr to denote the set of leaves below Cr which are in B and on which Cr is not

visible:

Ľr = {c(r ′) | r ′ ∈ CR(Cr ) s.t. c(r ′) ∈ B)}.
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For example, in Figure 3.4, Lr5 = ∅ and we can get Ľr5 = {leaf1, leaf2} when assuming

B = {leaf1, leaf2, leaf5}.
Suppose that Lr is non-empty. Cr is then visible with respect to a leaf � ∈ Lr .

We first check whether B is a soft cluster in Cr . This can be solved by a linear-time

algorithm (Gunawan et al., 2017). If not, we then solve the CCP according to the

relationship between Lr and B.

Let B̄ = X\B. If Lr ∩ B � ∅ and Lr ∩ B̄ � ∅, B must be a soft cluster of a node in

Cr if B is a soft cluster in N (Gunawan et al., 2017).

If Lr ∩ B̄ = ∅, B may be a soft cluster of ρ(Cr ) or a node in a larger subnetwork

containing Cr . Assuming that r ′ ∈ CR(Cr ), we then define:

Na = N − {(u, r ′) ∈ E(N) | (c(r ′) � B ∧ u ∈ V(Cr )}

−{(u, r ′) ∈ E(N) | (c(r ′) ∈ B ∧ u � V(Cr ))}.

The leaves below the root of Cr in Na (i.e., L([ρ(Cr )]Na )) are then Lr ∪ Ľr . We denote

L([ρ(Cr )]Na ) as B̂ for convenience.

Since Lr ⊆ B and Ľr ⊆ B, B̂ ⊆ B. If B̂ = B, B is a soft cluster of ρ(Cr ) in Na.

Otherwise, if B̂ ⊂ B, we set:

⎧⎪⎪⎨
⎪⎪⎩

B′ = (B ∪ {�})\B̂,

N ′
a = N − [ρ(Cr )]Na + �.

(3.6)

If Lr ∩ B = ∅, B may be a soft cluster of a node in Cr if Ľr � ∅. Otherwise, when

B is not a soft cluster of a node in Cr and r ′ ∈ CR(Cr ), we define:

Nb = N − {(u, r ′) ∈ E(N) | (c(r ′) � B ∧ u � V(Cr ))}

−{(u, r ′) ∈ E(N) | (c(r ′) ∈ B ∧ u ∈ V(Cr ))}.

We can then set:

N ′
b = N − [ρ(Cr )]Nb

+ �. (3.7)

With this notation, we can get Theorem 3.6.1 for arbitrary networks, which is similar

to a theorem proved for reticulation-visible networks in (Gunawan et al., 2017). Theorem
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3.6.1 is proved in Appendix B.

Theorem 3.6.1. Assume that Cr is a non-trivial, exposed and visible tree component in

a network N over the taxa set X , and that B ⊂ X . Let Lr , B̂, B′, N ′
a, and N ′

b
be defined

above.

(i) If B̂ ⊂ B, B is a soft cluster in N if and only if B′ is a soft cluster in N ′
a.

(ii) If B is not a soft cluster of a node in Cr and Lr ∩ B = ∅, B is a soft cluster in N

if and only if B is a soft cluster in N ′
b
.

Suppose that Cr is not visible. If Cr � {c(r)}, there is at least one reticulate node

r ′ right below Cr such that Cr′ is trivial and at least one parent of r ′ is not in Cr . If

Cr = {c(r)} and c(r) = r ′, then at least one parent of r ′ is not r . We can now define:

N ′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N − {(u, r ′) ∈ E(N) | u � Cr } if Cr � {c(r)}

N − {(u, r ′) ∈ E(N) | u � r} if Cr = {c(r)}
(3.8)

and

N ′′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N − {(u, r ′) ∈ E(N) | u ∈ Cr } if Cr � {c(r)}

N − {(u, r ′) ∈ E(N) | u = r}. if Cr = {c(r)}
(3.9)

Clearly, B is a soft cluster in N if and only if B is a soft cluster in either N ′ or N ′′.

In consideration of all the cases above, we have come up with an algorithm for

solving the CCP on an arbitrary network, which is given in Figure 3.9.

Description of the SRF distance algorithm

We now use the CCP algorithm to compute the SRF distance between two arbitrary

networks on the same taxa set X .

For X , we define a k-cluster as a cluster having k taxa. We enumerate all the possible

clusters over X by generating all the k-clusters of X for each k ranging from 1 to |X | −1.

We then call the CCP algorithm on each cluster to see whether it is a soft cluster in only

one network.

The time complexity of this SRF distance algorithm is O(2 |L(N ) |T(N)), where T(N)
is the time complexity of the CCP algorithm.

In contrast, the program for computing the SRF distance in Dendroscope first finds

trees displayed in each network, then extracts clusters from these trees to get the soft
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The CCP algorithm

Input: An arbitrary network N and a cluster B ⊂ L(N).
Output: TRUE if B ∈ SC(N) and FALSE otherwise.

0. If |V(N)| ≤ 1, output FALSE;

1. If |B| = 1, output TRUE;

2. Select an exposed and non-trivial tree component Cr ;

3. If Cr is visible with respect to a leaf �, do {

3.1 If B ∈ SC(Cr ), output TRUE;

3.2 If B � SC(Cr ), do {

3.2.1. If Lr ∩ B � ∅ and Lr ∩ B̄ � ∅, output FALSE;

3.2.2. If Lr ∩ B̄ = ∅, do {

3.2.2.1. If B̂ = B, output TRUE;

3.2.2.2. If B̂ ⊂ B, set B = B′ and N = N ′
a

as defined in Eqn. (3.6);

}

3.2.3. If Lr ∩ B = ∅, set N = N ′
b

as defined in Eqn. (3.7);

3.2.4. Output TRUE if B ∈ SC(N) and FALSE otherwise;

}

}

4. If Cr is not visible but a leaf exists below Cr , do {

4.1. Compute N ′ and N ′′ as defined in Eqn. (3.8) and (3.9);

4.2. If B ∈ SC(N ′), output TRUE;

4.3. If B ∈ SC(N ′′), output TRUE;

4.4. Output FALSE;

}

5. If no leaf exists below Cr , do {

5.1. If B ∈ SC(N − r − Cr ), output TRUE;

5.2. Output FALSE;

}

Figure 3.9: An algorithm for solving the CCP on an arbitrary network.

clusters displayed in each network, and finally traverses the two sets of soft clusters

to compute their symmetric difference. If the networks are bicombining, the time

complexity for this method is O(2|L(N)| ∗ 2 |R(N ) | + 2q), where q is the number of

the soft clusters displayed in a network. We will compare this approach and our SRF

distance program in next section.

3.6.2 Results

In this subsection, we first report the performance of the CCP algorithm, including its

time complexity as well as performance on both simulated and empirical networks. Next

we show the comparison of the program in Dendroscope and our program for the SRF
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distance. As an application, we then examine the SRF distances between phylogenetic

networks reconstructed from two datasets in the literature. Finally, we present our

preliminary comparison of the RF and SRF distances.

Performance of the CCP program

Theoretical analysis of the time complexity According to the analysis in (Gunawan

et al., 2017), the runtime of Step 4 of the CCP algorithm is O(|E(Cr )|), where E(Cr )
is the set of edges in the tree component Cr . Thus the time complexity of the CCP

algorithm is O((m + 1)|E(N)|) for a general network N , where m is the number of times

Step 4 is executed. Note that m should be an exponential function of |R(N)| because

of the NP-completeness of the CCP. If N is a bicombining reduced network, the time

complexity of the CCP algorithm is
(
20.694 |R(N ) | |E(N)|) .

We denote log2(m) as b(N, B) and call it the effective reticulation number of the

CCP algorithm for the network N and the cluster B. We use b(N) = maxB b(N, B) to

represent the effective reticulation number of the CCP algorithm for the network N .

To the best of our knowledge, the only previously known algorithm for solving

the CCP on an arbitrary network is the naïve algorithm which considers all the trees

displayed in a network and checks whether the input cluster is displayed in one of

them. The number of possible trees displayed in a network N can be as large as∏
r ∈R(N ) deg−(r), where deg−(r) is the indegree of r . This number equals 2 |R(N ) | when

N is bicombining. It takes O(|L(T)|) time to check whether a cluster is displayed in a

tree T (Huson et al., 2010). Thus the effective reticulation number seems to be a good

indicator of the efficiency of the CCP algorithm. If log2(m) is smaller than |R(N)|, the

CCP algorithm will be faster than the naïve algorithm in theory.

Performance on random networks We examined the performance of the CCP pro-

gram on random networks in term of the effective reticulation number. The tests were

done on computers each with 32 GB RAM and a 2.1 GHz AMD Opteron 32-core CPU.

We tested the CCP program on random networks with 10 to 30 leaves and 10 to 80

reticulate nodes. Given that the number of clusters over 15 leaves is huge, it was hard to

conduct the evaluation on the whole space of clusters. We therefore generated random

clusters for testing on networks with more than 15 leaves. According to the results, the
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effective reticulation number for each network–cluster pair was frequently smaller than

half the number of reticulate nodes in the network.

Here, we report the performance of the CCP program on five groups of networks

with 10 leaves and all the possible 1022 (= 210 − 2) clusters. Each group contained 20

networks, and the networks in the k th group had 5(1 + k) reticulate nodes for each k

from 1 to 5. The wall clock time on 102,200 (= 5 × 20 × 1022) network–cluster pairs

was 15 minutes and 15 seconds, implying that on average, the program took about one

centisecond for each network–cluster pair.

Figure 3.10 shows the percentages of the clusters displayed in the entire cluster

space with the same effective reticulation numbers for each network. Several facts were

observed from the test. Firstly, the effective reticulation numbers for the networks in

each group increase with the number of reticulate nodes. For example, the effective

reticulation numbers for most networks are <5 for the first group, whereas the effective

reticulation numbers for more than half of the networks are >9 for the last group.

Secondly, there are at least three distinct values of effective reticulation numbers for

each network and all the clusters, except for five networks. The effective reticulation

number of value one appears for all the networks, since it is easy to determine whether

the trivial clusters are soft clusters displayed in a network. Thirdly, the highest effective

reticulation number 12 only appears for the 12th network in the last group and one cluster,

which is barely seen in Figure 3.10 because of the extremely low percentage.

Application to a network in the literature We selected the same network as in

Section 3.5.2 to validate the performance of the CCP algorithm. Our test showed that

all the clusters on the seven taxa appear as soft clusters displayed in the network A. We

calculated b(A, B) for each cluster B on the seven taxa. The distribution of b(A, B) is

shown in Table 3.2. The effective reticulation number b(A) is 8, 1/4 of the number of

reticulate nodes in A. This suggests that the CCP program is about thousands of times

as fast as the naïve method for this real network.

Performance of the program for the SRF distance on random networks

The comparison tests for the program in Dendroscope and our program were performed

on computers each with 128 GB RAM and a 2.6 GHz Intel Xeon E5-2690 24-core CPU.

88



0

25

50

75

100

# 
of

 c
lu

st
er

s 
(%

)

0

12

Figure 3.10: Summary of the performance of the CCP program on five groups of random

networks with 10 leaves. Along the x-axis, the five groups were arranged from left to

right in increasing order of the number of reticulate nodes. The 20 networks in each

group were arranged roughly in increasing order of the smallest effective reticulation

number. Each stacked bar in a column represents the percentage of clusters that had the

same effective reticulation number when the program ran them against the corresponding

network.

Table 3.2: The distribution of b(A, B) in the space of clusters over the same set of taxa

as the network A.

b(A, B) 0 2 4 6 8

#Cluster 8 3 45 49 21

#Cluster refers to the number of soft clusters with the same value of b(A, B).

For the generation of random networks, we considered six cases. In the k th case, we

generated six groups of network pairs. The j th group consists of 3000 pairs of networks

with 4k leaves and k j/4 reticulate nodes, where k was from 1 to 6 and j = 1, 2, 4, 5, 6.

In the comparison test, we computed the SRF distance for each pair of networks in

every group. The results are summarized in Figure 3.11.

Our program ran faster than the program in Dendroscope for networks with up to

16 leaves. However, our program became slower than the latter when there were more

than 16 leaves. This is reasonable, since the number of clusters displayed increases

exponentially with the number of taxa and it takes even long time for our program to

merely list all the possible clusters when there were more than 16 leaves.

Additionally, the memory usage of our program was extremely low compared with
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Figure 3.11: Performance of our program (dashed line) and the program in Dendroscope

(solid line) on random networks. The x-axis represents the number of reticulate nodes

in a network.The random networks examined had 4 (top left), 8 (top right), 12 (middle

left), 16 (middle right), 20 (bottom left), and 24 leaves (bottom right).

the program in Dendroscope. The memory usage of the Dendroscope program increased

rapidly with the number of reticulate nodes in a network. For example, the average

maximum resident memory for networks with 12 leaves and 18 reticulate nodes was

around 95 GB, which is approximately six times that for networks with 12 leaves and

15 reticulate nodes. Because of this, the average runtime of the Dendroscope program

for networks with 12 leaves and 18 reticulate nodes sharply increased. During test, the

Dendroscope program failed to get results for networks with more than 12 leaves and

20 reticulate nodes. Hence, some data points are missing for the Dendroscope program

in the two panels at the bottom in Figure 3.11. In contrast, our program can run on

networks with more than 30 reticulate nodes. Even for networks with 24 leaves and

36 reticulate nodes, the average maximum resident memory of our program was less

than 32 MB. Thus the test shows that our program is computationally efficient when the

number of reticulate nodes in the input network is large.
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Table 3.3: The average pairwise SRF distances between the output networks from

Hybroscale on three sets of gene trees reported by van Iersel et al. (2010a).

Gene trees #Taxa #Ret #Networks Avg pairwise SRF distance
rbcL, waxy, ITS 11 6 63 12.2

ndhF, rbcL, waxy 12 5 123 8.0

phyB, rbcL, rpoC 15 6 40 1.4

#Ret refers to the number of reticulate nodes in the reconstructed networks.

Although our program runs slow for networks with many leaves, it can be easily

parallelized for speeding up. We used OpenMP to implement a parallel version of it

by parallelizing the enumerations of clusters. This parallel version ran at least 20 times

faster than the original program with slightly extra memory. For 3,000 pairs of networks

each with 20 leaves and 25 reculation nodes, the parallel version finished in about 36

seconds with less than 40 MB memory on average.

Computing the SRF distances on real biological data We first computed the SRF

distance between networks over a set of grass species. The Proaceae dataset, originally

from Grass Phylogeny Working Group (2001), has often been used for validating network

reconstruction methods. The dataset contains sequences for six loci: ITS (internal

transcribed spacer of ribosomal DNA), ndhF (NADH dehydrogenase, subunit F), phyB

(phytochrome B), rbcL (ribulose 1,5-biphosphate carboxylase/oxygenase, large subunit),

rpoC (RNA polymerase II, subunit β′′), and waxy (granule bound starch synthase I).

Rooted binary gene trees were built for these loci previously by (Schmidt, 2003). From

the six trees, van Iersel et al. (2010a) constructed 57 subsets of gene trees for comparisons

of network reconstruction methods.

A recent method called Hybroscale (Albrecht, 2015) can compute all the representa-

tive networks with the minimum number of reticulate nodes from a set of multiple binary

phylogenetic trees. We ran Hybroscale on three subsets of gene trees from the grass

dataset, which are on 11, 12, and 15 taxa, respectively (Table 3.3). The reconstructed

networks have less than seven reticulate nodes. Since there are tens of output networks

for each input dataset, we computed their pairwise SRF distances to examine their dis-

similarity. As shown in Table 3.3, the average SRF distances between the networks for

all the datasets are relatively small, which implies that the computed networks are rather

similar.
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On the other hand, different network reconstruction methods on the same data could

produce very different networks. Using five gene trees (ITS, ndhF, phyB, rbcL, rpoC2),

we constructed three networks: a cluster network (Figure B.2) obtained from a program

in (Huson and Rupp, 2008), a galled network (Figure B.3) obtained from a program in

(Huson et al., 2009), and a reticulate network (Figure B.4) obtained from PIRN (Wu,

2010). Since the original network reconstructed by PIRN had reticulate nodes with

more than one child and leaves with more than one parent, it was transformed into

an equivalent one satisfying our definition in this work. The three networks have 18,

7, and 13 reticulate nodes and contain 445, 261, and 209 soft clusters, respectively.

The SRF distance between the cluster network and the galled network is 199. The SRF

distance between the galled network and the reticulate network is 118. The SRF distance

between the reticulate network and the cluster network is 185. This suggests that the

galled network is more similar to the reticulate network than to the cluster network. This

also reflects that the SRF distance is sensitive to the structural properties of phylogenetic

networks.

We also computed the SRF distance between networks over six mosquito species.

To study phylogenetic relationships and introgression among six mosquito species in the

Anopheles gambiae species complex, Fontaine et al. (Fontaine et al., 2015) constructed

a network (denoted M1) by employing tree-based methods on the whole-genome se-

quences. Later, Wen et al. (Wen et al., 2016) rebuilt a similar network (denoted M2) for

the six species by directly applying a network inference method on the gene trees. The

two networks are shown in Figure B.5. M1 has three reticulate nodes and M2 has four

reticulate nodes. There are 18 and 24 soft clusters displayed in M1 and M2, respectively.

The SRF distance between M1 and M2 is 7, implying that the two networks are still

quite different in the embedded soft clusters.

Comparison of the RF distance and the SRF distance

Although the RF and SRF distances were proposed to measure the dissimilarity of

networks, their relationship is unclear (Huson et al., 2010). Here, we performed a

preliminary comparison of these two measures.

Given a fixed number of leaves and reticulate nodes, we generated 100,000 random

network pairs and computed their RF and SRF distances. Figure 3.12 shows the distri-
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Figure 3.12: The distribution of the RF (black) and SRF (grey) distances between

random networks. Histograms of the number of network pairs with k leaves and m
reticulate nodes, where (k,m) = (5, 10) (top left), (5, 20) (top right), (10, 10) (middle

left), (10, 20) (middle right), (15, 10) (bottom left), and (15, 20) (bottom right).

butions of these two measures in the space of networks with different numbers of leaves

and reticulate nodes. The results suggest the following three facts:

(i.) There are at least as many soft clusters as clusters displayed in a network. There-

fore, as expected, the SRF distance has larger range than the RF distance.

(ii.) The RF distance seems to have a normal distribution of small mean and small

variance.

(iii.) The distribution of the SRF distances seems not to be normal. It is skewed towards

small distances (especially for networks with more leaves) and a small fraction of

network pairs had much larger SRF distances than the average SRF distance.

Taken altogether, these three facts indicate that the SRF distance is a fine metric for

networks and hence more suitable than the RF distance for measuring the dissimilarity

of networks.
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3.7 Summary

In chapter 3, we study the modeling of LGTs by phylogenetic networks. Although tree-

based network and more specifically LGT network provide a natural representation of

LGT, challenges in efficiently reconstructing a network from biological data still prevent

the wide application of LGT modeling in networks. Some basic problems arising in

network reconstruction and verification are still to be solved, including the NP-complete

TCP and CCP.

Based on a network decomposition technique, we implemented fast programs for

solving the TCP and CCP for arbitrary phylogenetic networks in which nodes are not

necessarily binary. The resulting CCP program is further extended into a computer

program for fast computation of the SRF distance between phylogenetic networks.

These programs were implemented in C. The TCP program is available on http:

//www.math.nus.edu.sg/~matzlx/tcp_package. The CCP program and the SRF

program are available on https://github.com/icelu/PlyloNetwork.

For the TCP program and the CCP program, the theoretical analysis shows that they

are much faster than the naïve programs. The evaluations on random and empirical

networks demonstrate that they are fast enough to solve real instances arising in evo-

lutionary genomics. For the SRF distance program, our simulation experiments show

that it ran fast for networks with an intermediate number of leaves and reticulate nodes.

The comparisons between the RF and SRF distance suggest that it is more appropriate

to use the SRF distance to measure networks dissimilarity of network. Therefore, the

SRF distance program is ready for assessing a network reconstructed by a new method

via comparing it with other networks.

In short, although these programs have exponential time complexity in the worst

case, they may facilitate reconstructing and validating network models in evolutionary

and comparative genomics. The programs for solving the TCP and CCP may serve as a

stepping stone towards the development of methods for reconstructing a LGT network.

The program for computing the SRF distance can then help to compare the reconstructed

LGT networks.
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Chapter 4

Detecting LGTs via multiple

methods - a case study

4.1 Introduction

In this chapter, we first provide a brief description of challenges in LGT detection. Then,

we give a detailed review about known methods for detecting LGTs. Finally, we report a

case study which investigates the performances of different LGT detection methods on

cyanobacterial genomes.

The major evidence to detect LGTs is the indirect information reflected in the DNA

or protein sequences, as these sequences provide the best clues about their origin and

ancestry (Ochman et al., 2000). However, The compound factors in evolutionary history

left intricate puzzles. For example, the available sequences may have undergone impor-

tant signal loss due to reticulate evolution and several frequently occurring biological

processes that dim the evolutionary history, such as amelioration and obliteration by sub-

sequent events (Ragan and Beiko, 2009). Therefore, it is computationally challenging

to infer LGT events from a collection of extant DNA or protein sequences.

Three major challenges in LGT detection are listed below:

1. The laterally transferred sequences may evolve in the host genome via amelio-

ration (Lawrence and Ochman, 1997). Amelioration means that the transferred

sequences become adjusted to the composition properties of the resident genome.

Because the transferred sequences may subject to the same mutational processes

as the recipient after being integrated, they may have evolved and adopted the
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signature of native sequences. As a result, it is challenging to distinguish between

foreign sequences and native sequences.

2. The scenarios of LGTs may be quite complicated. The genes transferred into one

organism may be further transferred to another organism. In case of multiple

LGT events, it is hard to detect the exact order and direction of each event.

LGT, together with other evolutionary mechanisms such as gene duplication and

loss, can generate gene histories which deviated from species history. It is non-

trivial to distinguish these different events. To validate the LGT candidates, other

possibilities have to be eliminated.

3. It is difficult to detect LGTs occurring between closely related organisms, as the

donor and recipient organism share high sequence similarity.

It is still not clear which measure can best capture the clues left by LGTs. In practice

two measures are commonly used: anomalous sequence composition and unexpected

evolutionary history (Koonin et al., 2001). The unexpectedness of evolutionary history

can be measured by several criteria, such as unexpected tree topologies between gene

tree and species tree, unanticipated ranking of sequence similarity among homologs,

and unusual phyletic patterns (or sporadic phylogenetic distribution).

Different kinds of LGT detection methods have been developed by utilizing different

criteria. Ravenhall et al. (2015) provided a comprehensive review of these methods.

Here, we classify these methods from a slightly different perspective. As shown in

Figure 4.1, the available LGT detection methods can be roughly classified into two

categories, which are further divided into several subcategories.

4.2 Literature review

In this section, we first briefly review compositional methods for LGT detection. Then

we discuss implicit phylogenetic methods and tree-based methods in more detail. The

network-based methods for LGT modeling have been reviewed in Section 3.2.1. After

obtaining a LGT network, it is easy to figure out LGT events. for this reason, we do not

review network-based methods here.
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Figure 4.1: The hierarchical overview of computational methods for detecting LGTs.

4.2.1 Compositional methods for LGT detection

Compositional methods detect sequences acquired by LGT based on the discrepancies

of compositional properties between laterally transferred regions and native regions in

a single genome.

Many compositional methods were developed for detecting GIs. GIs provide the

genomic context for locating individual genes probably acquired by LGT. Even if the

species-specific features of a transferred gene have become weak, the location of this

gene in a well-specified GI may still suggest its non-native origin (Ravenhall et al.,

2015). GI prediction methods have been reviewed in Section 2.2.

Methods based on gene sequence composition are often designed for LGT detection.

Azad and Lawrence (2011) gave a comprehensive review of the available methods devel-

oped from 1998 to 2009. They also proposed a multiple-threshold method to improve the

performance of most compositional methods via two steps Azad and Lawrence (2011),

which firstly identify alien and native genes with strong features by using conservative

thresholds and then classify genes of ambiguous features by incorporating additional

annotations. To reduce the interference of potential foreign genes on computing the av-

erage measures for the whole genome, Elhai et al. (2012) proposed a method called Core
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Gene Similarity (CGS), which utilizes the differences of octamer frequencies between

a query gene and a selected set of conserved core genes.

Pros and Cons

Methods based on sequence composition can efficiently uncover all the putative genes

of foreign origin given the genome sequence and/or gene annotations of an organism.

Because they do not rely on comparisons with other genomes, they can identify orphan

genes of alien origin that do not have orthologs.

However, most foreign genes detected by compositional methods are recently trans-

ferred, because anciently transferred sequences may have adapted to the host genome

via amelioration. There are several other limitations of compositional methods as well.

These methods may not provide information of the potential donors of foreign genes

based on just one genome. They are also well known to be error-prone, since codon bias

and base composition were discovered as poor indicators of LGT (Koski et al., 2001).

Sequences with ambiguous compositional features may be poorly classified. Some na-

tive regions with atypical composition for reasons other than LGT (such as stochastic

factors and selection for unusual composition) may easily be detected as false positives

(Cortez et al., 2009).

4.2.2 Implicit phylogenetic methods for LGT detection

Implicit phylogenetic methods utilize evolutionary relationships of different organisms

without building phylogenetic trees. They often use three indicators to detect LGTs:

unexpected evolutionary distances, unusual taxonomy distribution, and anomalous se-

quence similarity scores. Most of these methods use sequence alignments to compute the

pairwise evolutionary distances between organisms. In contrast, a few methods detect

LGTs without relying on alignment. Based on using alignment or not, implicit phy-

logenetic methods can be classified into alignment-based methods and alignment-free

methods.

Alignment-based methods

According to the criteria used, alignment-based methods can be further classified into

three subcategories: distance-based methods, phyletic profile methods, and similarity-
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based methods.

Distance-based methods Distance-based methods aim to detect unexpected evolu-

tionary distances between genes in a cluster of orthologous group (COG) and corre-

sponding genomes, assuming that each relevant organism is represented by only one

protein in a set of COGs. They are often based on the molecular clock hypothesis which

states that the evolution rate of homologous genes is approximately constant in different

species.

The evolutionary distance can be measured in different ways. Clarke’s phylogeneti-

cally discordant test method (Clarke et al., 2002) measures the distance by the ranking

of reciprocal best blast match for each gene. Some other methods measure the differ-

ences based on substitution rates, as genes inherited by descent should often accumulate

substitutions at a constant rate (Novichkov et al., 2004; Dessimoz et al., 2008). The

significant deviation of gene distance from genome distance can be detected by statistical

techniques. For example, DLIGHT uses a likelihood test to check the hypothesis of a

LGT event and no LGT event (Dessimoz et al., 2008).

Phyletic profile methods Taxonomy distribution among organisms is often depicted

by phyletic profile, the presence and absence of genes in multiple organisms. An

unexpected phyletic profile may suggest the occurrence of LGT. For instance, if the

orthologs of a gene are present in all or almost all sequenced bacterial genomes but

only in one archaeon genome, it is highly likely that this gene was transferred from a

bacterium to the archaeon (Novichkov et al., 2004).

Phyletic profile methods try to use the most parsimonious explanation (via LGT or

gene duplication or gene loss) to infer the patchy distribution of genes. Genes present

only in distantly related organisms are strong indications of LGT, because the alternative

explanation by differential gene loss would require all the closely related organisms

carried this gene previously, which seems unfavourable. For example, GeneTrace (Kunin

and Ouzounis, 2003) assumes that: if a gene is present in multiple members of a clade, it

was probably vertically inherited; if a gene is absent in some members of a clade, there

was probably gene loss; if a gene shows patchy distribution in distantly related clades,

it was likely to be laterally transferred. This kind of methods usually first finds a set of
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homologs among selected organisms and then investigates the taxonomy distribution of

these homologs. Similarity search methods or clustering algorithms are often used to

find homologs.

Similarity-based methods Similarity-based methods assume that laterally transferred

genes have anomalous high sequence similarity with genes from evolutionarily distantly

related organisms. The rational is that more similar sequences are often more closely

related. In practice, BLAST-based best match methods are often used for LGT detec-

tion. The presence of top BLAST hit in an unrelated organism for a gene is also a

straightforward use of phyletic profile.

Some sophisticated techniques based on BLAST were also designed, because the top

BLAST hit may not be most phylogenetically relevant. One earlier method Darkhorse

(Podell and Gaasterland, 2007) integrates the lineage frequency of BLAST matches over

the whole query genome to rank all the laterally transferred candidates. A recent method

HGTector (Zhu et al., 2014) systematically analyzes the BLAST hit distribution patterns

based on a predefined evolutionary classification.

Alignment-free methods

There are only a few available alignment-free methods for LGT detection. Three

earlier methods are based on frequency profile of k-mers (FFP) (Sandberg et al., 2001;

Dalevi et al., 2006) and Chaos Game Representation (CGR) (Dufraigne et al., 2005),

respectively. These three methods are also classified as compositional methods (Azad

and Lawrence, 2011), as they use k-mer frequencies in the genome sequences to detect

LGTs. The two methods based on FFP use naïve Bayesian classifier to predict the

most probable origin of a query sequence from all the input genomes. Their major

differences lie on the underlying assumption in computing the probability P(M |G) of

a k-mer M within genome G. The method in (Sandberg et al., 2001) simply assumes

the probabilities P(M |G) for all k-mers are independent, whereas the method in (Dalevi

et al., 2006) utilizes Markov models to handle dependencies among k-mers. The method

based on CGR assumes that a DNA fragment whose CGR deviates from that of the whole

genome was laterally transferred. So this method can also be used with only one genome.

When applied to multiple genomes, this method assumes that genomes whose CGRs
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are similar to the CGR of the putative laterally transferred DNA fragment are potential

donors.

One recent method ALFY (Domazet-Lošo and Haubold, 2011) makes use of exact

word matching to search local homologs of a query genome from a set of other genomes,

assuming that the sudden changes of local homology along the query genome indicate

the occurrence of LGT. A latest method developed by Cong et al. (2016) adopts TF–

IDF, a measure frequently used in information retrieval, to identify LGTs. This method

requires to first divide the input genomes into taxonomic groups. Then, TF represents

frequencies of k-mers from a DNA segment in genomes of its own group and IDF

represents frequencies of k-mers from a genome in all the groups.

Pros and Cons

Distance-based methods are fast as they do not rely on multiple sequence alignments

or inference of gene trees. In spite of the absence of phylogenetic trees, this kind of

methods can still provide details of LGTs in a robust way, including the donor and

recipient, and the distance to past LGT events (Dessimoz et al., 2008). But the clock

assumption used in distance-based methods is often violated in practice.

Phyletic profile methods are also very efficient, as the only time-consuming part is

the homology search. However, they may not detect orthologous replacement, which

cannot be depicted by patchy distribution of genes in a gene family.

Similarity-based methods can systematically identify all putative laterally transferred

genes in an entire genome, based on all-against-all search of each protein against the

database. But blasting each protein in a large genome against a huge database takes a

considerable amount of time. Besides, errors in database may affect the predictions.

The similarity may also be due to conservation or convergent evolution.

Alignment-free methods are usually much faster. They can quickly identify a can-

didate list of putative laterally transferred regions, serving as effective complements of

alignment-based methods (Domazet-Lošo and Haubold, 2011). They also avoid issues

in aligning large amounts of data which may be too divergent to get meaningful align-

ments. Besides, they do not take genes as analysis unit and thus can detect any genomic

regions of potential lateral origin. But the predictions from alignment-free methods still

need to be further investigated by other more reliable methods.
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4.2.3 Phylogenetic tree-based methods for LGT detection

Phylogenetic tree-based methods detect LGTs based on the assumption that a gene with

significantly different evolutionary history may be laterally transferred, since all native

genes in the genome are supposed to have similar evolutionary histories.

The application of tree-based methods for LGT detection in practice is quite cumber-

some, mainly including four steps: (1) selecting gene families; (2) aligning sequences

of gene families; (3) reconstructing (unrooted) gene trees and (rooted) reference tree;

(4) identifying incongruences between gene trees and reference tree. However, most

tree-based methods are specifically designed to solve the last step.

Ideally, the gene tree for a set of orthologous genes related through speciation events

should be consistent with the species tree. But the occurrence of xenologs arisen by

LGTs may cause inconsistencies between the two trees. To detect LGTs, different gene

trees are compared with the reference species tree to assess the significance of any

incongruities. The significant incongruities between a gene tree and the species tree

may be caused by LGT.

Based on ways to discriminate topology incongruences between trees, tree-based

methods can be roughly divided into four categories: methods based on test of tree

topology, methods based on tree distance, methods based on genome spectrum, and

methods based on reconciliation model. Some earlier tree-based methods were assessed

and reviewed in (Poptsova and Gogarten, 2007; Poptsova, 2009).

Methods based on test of tree topology

Methods based on test of tree topology mainly use likelihood-based statistical tests

to assess the likelihood of the topology of a gene tree given the species tree as the

null hypothesis (Ravenhall et al., 2015). The commonly used tests include: Kishino-

Hasegawa (KH) test, Shimodaira-Hasegawa (SH) test, Approximately Unbiased (AU)

test (Poptsova, 2009), and expected likelihood weights (ELW) test (Abby et al., 2010).

The greater the p-value, the more likely the tested gene tree is consistent with the species

tree. The gene tree with p-value lower than a certain threshold is considered to be

incongruent with a species tree, which is probably due to LGT. However, this kind of

methods cannot detect specific LGT events.
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Methods based on tree distance

Methods based on tree distance detect LGTs by comparing gene trees and species

tree with different distance measures. If the distance between a gene tree and the

species tree is significantly larger than the mean of the distances between each gene

tree and the species tree, LGT might have occurred. The commonly used distance

measures include: Robinson–Foulds (RF) distances, Subtree Pruning and Regrafting

(SPR) distances, Maximum Agreement Forest (MAF). The RF distance only gives the

number of different bipartitions between trees (Poptsova, 2009). SPR and MAF are

said to be the most appropriate models to explain LGTs (Abby et al., 2010), aiming to

identify minimal series of steps via which the gene tree and species tree can be rendered

congruent.

SPR refers to pruning a subtree from a tree by cutting one edge and then regrafting

the subtree by the same cut edge to another edge of this tree (Beiko and Hamilton,

2006). In particular, the edge regrafted onto represents the donor taxon and the cut edge

corresponds to the recipient taxon. A series of SPR operations consist of an edit path

which can be applied to the species tree to generate a topology consistent with the gene

tree. SPR has been utilized by several programs to infer LGTs, such as EEEP (Beiko

and Hamilton, 2006), RIATA-HGT (Nakhleh et al., 2005; Than and Nakhleh, 2008),

and T-Rex (Boc et al., 2010).

MAF refers to finding the smallest number of edges to cut in both gene tree and

species tree in order to obtain two identical “forests" of rooted subtrees (Abby et al.,

2010). Prunier utilizes MAF to detect LGTs by statistical reconciliation of phylogenetic

forests (Abby et al., 2010).

Methods based on genome spectrum

Genome spectral approaches first decompose a gene tree into small subtrees, mainly

bipartitions or quartets, and then check whether the statistically supported substructures

are congruent with those represented by the majority gene trees or not (Zhaxybayeva,

2009). Hence, they do not require a completely resolved reference tree.

Bipartition is a decomposition of a phylogenetic tree into two parts connected by

a single edge. In bipartition analysis, a gene tree which gives rise to statistically
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supported bipartitions conflicting with those represented by a plurality of gene trees can

be considered to have experienced LGT events (Poptsova and Gogarten, 2007).

Since the support for bipartitions tends to be smaller when the number of organisms

in the gene tree increases, quartet decomposition method was proposed. Quartet is

a subtree with four leaves. The rational is similar as that of bipartition methods.

Specifically, if the statistically supported quartets of a gene tree are incompatible with

those represented by most gene trees, LGT events might occur to this gene family

(Zhaxybayeva et al., 2006).

Methods based on reconciliation model

The reconciliation of gene tree and species tree is a typical tree-based method. Given

a species tree and a gene tree, this kind of method uses a mathematical model to map a

range of evolutionary events onto the gene tree in a way consistent with the species tree

(Ravenhall et al., 2015). Besides LGTs, other possible evolutionary events considered in

the model include gene duplication, gene loss, incomplete lineage sorting or homologous

recombination. The reconciliation problem is NP-hard under most formulations (Bansal

et al., 2013). Various models, algorithms, and programs have been developed to reconcile

gene tree and species tree, which were comprehensively reviewed in (Doyon et al., 2011).

Generally speaking, there are two frameworks for reconciliation (Doyon et al.,

2011). One is parsimony framework which seeks an optimal solution given the costs

of considered evolutionary events. The other is probabilistic framework which aims to

find a solution with maximum posterior probability or maximum likelihood. Other than

differences in the framework, different methods may also differ in the kind of events

considered. For example, the parsimony method PHYLTR (Tofigh et al., 2011) only

accounts for gene duplications and LGTs, whereas the parsimony algorithm in (Stolzer

et al., 2012) takes into account gene duplication, transfer, loss, and incomplete lineage

sorting. The types of input gene trees or species trees that can be handled by different

methods are also different. Most methods require binary trees as input. Only a few

programs can deal with non-binary trees (Stolzer et al., 2012). Some programs require

either rooted or unrooted gene trees, whereas others can accept both rooted and unrooted

gene trees (Jacox et al., 2016).
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Pros and Cons

The phylogenetic tree-based methods are generally considered to be more reliable in

inferring LGTs (Gogarten and Townsend, 2005; Keeling and Palmer, 2008; Daubin and

Szöllősi, 2016). They are not sensitive to amelioration and hence can detect very ancient

transfers. The details of LGT events can be predicted, including the donor and recipient

organisms, the direction of transfers, and the order of different transfers.

But tree-based methods are computationally expensive. Moreover, their predictions

are still not definitive and suffer from diverse sources of uncertainties or errors. The

accuracy of these methods strongly depends on several prerequisites, such as the se-

lection of gene families, the reliability of species tree, and the inference of gene trees

(Poptsova, 2009). For example, it is non-trivial to distinguish LGTs from potential

artefacts generated in tree building. Besides, tree-based methods only consider genes

with orthologs or single copy genes and thus may miss many laterally transferred genes

(Poptsova, 2009; Wellner et al., 2007).

4.2.4 Summary

Owing to the difficulty in obtaining a reliable set of LGTs, it is hard to evaluate different

kinds of methods. Despite that simulation can be used for validation, the simulated

data may not reflect the true extent of LGTs (Ravenhall et al., 2015). Nevertheless, it

is believed that available methods can still not provide a very precise picture of LGTs

in the whole genome of one organism, suffering from false negatives and false positives

to an unknown extent (Zhaxybayeva, 2009). For instance, they may easily detect some

native genes as transferred, because these native genes may have atypical features to

support their biological functions.

In general, each kind of methods recognizes LGTs of different features based on

different criteria and assumptions (Lawrence and Ochman, 2002). For example, ac-

cording to the benchmark work of several compositional methods on simulated data,

the performance of each method varied with different characteristics of LGTs, includ-

ing the origin, quantity, size, host genome, and recipient genome (Becq et al., 2010).

Besides, different methods may detect LGTs at discrepant ages, with low overlap some-

times smaller than expected by chance, especially for methods from different categories
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(Ragan, 2001; Ragan et al., 2006; Zhu et al., 2014).

As each method may predict only a subset of true LGT events, different methods

are often complementary to each other. Taken altogether, they form a tool box for LGT

detection. Thus, the utilization of multiple methods seems necessary in practice. It was

suggested that applying multiple methods can yield better predictions of LGT (Lawrence

and Ochman, 2002). For example, predicted LGTs from phylogenetic methods can be

verified by compositional methods, and vice versa (Elhai et al., 2012; Sjöstrand et al.,

2014).

However, it is still unclear how the different combination of predictions from diverse

methods affect the accuracy of final results (Zhaxybayeva, 2009). There were few

studies that systematically investigate how the predictions from a variety of methods

complement with each other in practice. The analysis of LGTs detected by various

methods on well-studied organisms may provide a good starting point. In consideration

of this need, we conducted a case study on cyanobacteria, which will be presented in

Section 4.3.

4.3 Case study

In this section, we present our case study on cyanobacterial genomes, which was aimed

to investigate the complementary performances of different kinds of LGT detection

methods on real biological datasets.

Cyanobacteria belong to a phylum of bacteria that obtain their energy through

photosynthesis. They are the only known bacteria with the function of oxygenic photo-

synthesis. A large number of cyanobacterial genomes have been completely sequenced.

With the available genomes, numerous studies have been done to analyze LGTs in

cyanobacteria. Extensive LGTs among cyanobacteria were reported, especially between

marine Synechococcus and Prochlorococcus marinus (Beiko et al., 2005; Zhaxybayeva

et al., 2006, 2009; Abby et al., 2012). Hence, cyanobacteria serve as ideal organisms

for a case study on performances of LGT detection methods.

After selecting a set of cyanobacterial genomes, we applied several representative

compositional and phylogenetic methods to predict LGTs. We also included our new

methods present in Chapter 2 and 3, which illustrates the application of these methods
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in practice. Finally, we analyzed the results to find similarities and differences among

the predictions from different methods.

4.3.1 Methods

In this subsection, we describe our methods to detect LGTs with different compositional

and phylogenetic methods.

Given that there are numerous LGT detection methods, we only selected a few rep-

resentatives in different categories based on their availability and known performances.

The overall procedure and adopted tools are shown in Figure 4.2. The details are

provided in the following subsections.

Figure 4.2: The pipeline of utilizing both compositional and phylogenetic methods to

detect LGTs in selected cyanobacterial genomes.

Selection of cyanobacterial genomes

For phylogenetic analysis, we mainly used 40 cyanobacterial genomes, of which 37

genomes are included in database HOGENOM (Penel et al., 2009) and 3 genomes were

studied in (Zhaxybayeva et al., 2006), which are shown in Table 4.1. The abbreviations

for these genomes are the same as those in database or literature, respectively. We chose

these genomes because there are known gene trees for gene families selected from them
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in literature (Zhaxybayeva et al., 2006, 2009; Abby et al., 2012; Szöllősi et al., 2012,

2013a,b). Since it is difficult to build accurate gene trees from real data, we did not

build gene trees from scratch but used the available gene trees which are supposed to be

of high reliability.

For GI prediction, we selected genome Synechococcus sp. WH8102 (SYNPX) as a

representative, since a high portion of genes in this genome were reported to be affected

by LGT (Dufresne et al., 2008). We also predicted GIs on genome Synechococcus sp.

CC9605 (SYNSC) because this genome was shown to have extensive gene exchanges

with SYNPX.

LGT detection via compositional methods

Among various compositional methods, we mainly used GI prediction methods, in-

cluding IslandViewer 4 and the two methods developed in Chapter 2 (GI-SVM and

GI-Cluster). Given the DNA sequence of a selected genome, we applied GI-SVM

and GI-Cluster to detect GI candidates. For GI-Cluster, we also took as input the

gene predictions and coding sequences downloaded from new NCBI ftp site (ftp:

//ftp.ncbi.nlm.nih.gov/genomes/all/GCF/, June 2017). We downloaded GI

predictions from IslandViewer 4 (June 2017).

We collected GIs predicted on the selected cyanobacterial genomes from literature

as reference (Dufresne et al., 2008). These GIs were obtained via methods based on

sequence composition, mobility evidence, and the presence of core gene blocks.

Given the GI predictions, we extracted genes within each GI, which are candidates

of laterally transferred genes. The extracted genes were represented by their RefSeq

IDs.

LGT detection via phylogenetic tree-based methods

Among various phylogenetic tree-based methods, we chose methods based on rec-

onciliation model, since they are more realistic by considering reticulation events

other than LGT when explaining the conflicts between gene tree and species tree.

Among the available tools for gene tree-species tree reconciliation, Notung (http:

//www.cs.cmu.edu/~durand/Notung/) is a well-maintained package that includes

sophisticated reconciliation algorithms. Different from other similar methods, Notung
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Table 4.1: The 40 cyanobacterial genomes used in the case study.

Genome Abbreviation
Synechococcus elongatus elongatus SYELO1

Synechococcus elongatus PCC 6301 SYNP6

Synechococcus elongatus PCC 7942 SYNE7

Synechococcus sp. CC9311 SYNS3

Synechococcus sp. CC9605 SYNSC

Synechococcus sp. CC9902 SYNS9

Synechococcus sp. JA-2-3B’a(2-13) SYNJA

Synechococcus sp. JA-3-3Ab SYNJB

Synechococcus sp. PCC 7002 SYNP2

Synechococcus sp. RCC307 SYNR3

Synechococcus sp. WH 7803 SYNPW

Synechococcus sp. WH 8102 SYNPX

Synechocystis sp. PCC 6803 SYNY3

Prochlorococcus marinus str. AS9601 PROMS

Prochlorococcus marinus str. MIT 9211 PROM4

Prochlorococcus marinus str. MIT 9215 PROM2

Prochlorococcus marinus str. MIT 9301 PROM0

Prochlorococcus marinus str. MIT 9303 PROMM

Prochlorococcus marinus str. MIT 9312 PROM9

Prochlorococcus marinus str. MIT 9313 PROM3

Prochlorococcus marinus str. MIT 9515 PROM5

Prochlorococcus marinus str. NATl1a PROM1

Prochlorococcus marinus str. NATl2a PROMT

Prochlorococcus marinus subsp. marinus str. CCMP1375 PROMS

Prochlorococcus marinus subsp. pastoris str. CCMP1986 PROMP

Cyanothece sp. ATCC 51142 CYAA5

Cyanothece sp. PCC 7424 CYAP7

Cyanothece sp. PCC 7425 CYAP4

Cyanothece sp. PCC 8801 CYAP8

Nostoc punctiforme PCC 73102 NOSP7

Nostoc sp. PCC 7120 ANASP

Anabaena variabilis ATCC 29413 ANAVT

Trichodesmium erythraeum IMS101 TRIEI

Thermosynechococcus elongatus BP-1 THEEB

Microcystis aeruginosa NIES-843 MICAN

Acaryochloris marina MBIC11017 ACAM1

Gloeobacter violaceus PCC 7421 GLVIO1

Prochlorococcus marinus MED4 2Prochloro

Nostoc punctiforme ATCC 29133 Nostoc

Crocosphaera watsonii WH 8501 Crocosphae

The first 37 genomes are included in database HOGENOM, of which the first one is included in

version 4 and the others are included in version 5. The last 3 genomes are from (Zhaxybayeva

et al., 2006).

captures incomplete lineage sorting, which can reduce overestimation of other events

(Stolzer et al., 2012). Moreover, Notung is easy to use and yields comprehensive output
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regarding LGTs. Due to the disparities among methods based on reconciliation model,

we only used Notung 2.9 to infer LGTs from different sets of gene trees and species

trees, aiming to investigate the performance of the same tree-based method on slightly

different input.

We applied Notung on seven sets of gene trees reported in literature (Table 4.2).

Except for dataset T1809 and T1127, the gene families used for tree building were

extracted from database HOGENOM. For unrooted gene trees, we used Notung to root

them. Because some trees could not be rooted, slightly fewer gene trees were used in

reconciliation analysis. The species tree for dataset T465, T469, T474, and T1099 was

from (Szöllősi et al., 2012). The species trees for the other three datasets are from the

same sources as the gene trees.

Table 4.2: The seven sets of gene trees used in this case study.

Dataset #Taxa #Original trees Original root #Rooted trees Reference
T465 36 474 unrooted 465 (Szöllősi et al., 2012)

T469 36 474 unrooted 469 (Szöllősi et al., 2012)

T473 36 473 rooted 473 (Szöllősi et al., 2013b)

T1099 36 1099 rooted 1099 (Szöllősi et al., 2013a)

T1809 18 1812 unrooted 1809 (Zhaxybayeva et al., 2009)

T977 14 977 unrooted 977 (Abby et al., 2012)

T1127 11 1128 unrooted 1127 (Zhaxybayeva et al., 2006)

The genomes represented by these trees are all included in Table 4.1. T465, T469, T473, and

T1099 are for the same 36 genomes from HOGENOM version 5. All the 14 genomes

represented by trees in T977 are included in HOGENOM, except that one of them is only

included in version 4. For the 18 genomes represented by trees in T1809, one of them is

2Prochloro and the others are included in HOGENOM version 5. For the 11 genomes

represented by trees T1127, 8 of them are included in HOGENOM version 5. There were two

datasets of unrooted trees reported in (Szöllősi et al., 2012). One dataset, denoted by T465,

includes gene trees inferred by PhyML. The other dataset, denoted by T469, includes gene trees

inferred by Treefinder.

To find laterally transferred genes in a genome, predictions of Notung on only five

datasets were used, because it is hard to find the corresponding gene families from

dataset T1809 and T1127. From these predictions, we extracted gene families with

incoming transfers to the genome. Then we obtained their RefSeq IDs by first mapping

HOGENOM ID to UniProt ID and then utilizing the ID mapping service provided by

UnitProt (The UniProt Consortium, 2017).

For reference, we also included the sets of 323 core genes and 359 shell genes

(laterally transferred genes) predicted by a tree-based method on 682 gene families from

13 cyanobacterial genomes (Shi and Falkowski, 2008). Of the 13 genomes, 12 of them
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are included in Table 4.1 and the last one is Prochlorococcus marinus SS120. We found

RefSeq IDs for these genes via previously reported locus. Due to annotation update,

some of these genes have been removed. As a result, 319 core genes and 358 shell genes

were obtained.

LGT detection via network-based methods

There are very few available programs for building a rooted phylogenetic network

from a large set of gene trees. We tried the only algorithm for building a (restricted)

LGT network developed by Cardona et al. (2015). To show the conflicts among gene

trees, we used Dendroscope (Huson and Scornavacca, 2012) to build several kinds of

rooted phylogenetic networks that are easy to compute, including cluster network, galled

network, and level-k network. These networks cannot model LGT explicitly, but they

show alternative placements of taxa represented by different gene trees.

Because these methods require as input rooted gene trees for single-copy gene

families, we only used the 473 rooted gene trees (dataset T473) from (Szöllősi et al.,

2013b) for network reconstruction.

As a validation step, we checked whether some well-known clades are represented

by the reconstructed networks. Previous results show that high-light adapted Prochloro-

coccus spp. are a monophyletic clade and low-light adapted Prochlorococcus spp. are

a paraphyletic group (Zhaxybayeva et al., 2009). Thus, among the 36 cyanobacterial

genomes represented by the input trees, we checked whether the high-light adapted

Prochlorococcus spp. (including PROMS, PROM2, PROM0, PROM9, PROM5, and

PROMP) and low-light adapted Prochlorococcus spp. (including PROM4, PROMM,

PROM3, PROM1, PROMT, and PROMS) are soft clusters displayed in the reconstructed

networks. This was performed by the CCP program developed in Section 3.6.

Although all the input clusters are displayed in the cluster network, galled network,

and level-k network, some input trees may not be displayed. To get a basic idea of how

the input trees are represented by these networks, we checked whether each input tree is

displayed in each of the three networks, respectively. This was performed by the TCP

program developed in Section 3.5.
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4.3.2 Results

In this subsection, we report the results from three aspects: the overlap of predictions

from different methods; the highways of LGT and their correlation to GIs; the properties

of reconstructed phylogenetic networks.

The overlap of predictions from different methods

We computed putative laterally transferred genes predicted by different methods for

genome SYNPX. Then we measured the overlap of predictions from methods in the

same category, from the same method on different input, and from methods across

different categories. To quantify the agreements among different methods, the overlap

factor (OF) between two datasets was also calculated as described in (Zhu et al., 2014).

The larger OF means that the two sets of predictions are more consistent and thus the

two methods are more likely to predict the same sets of laterally transferred genes.

Generally speaking, the predictions from GI detection methods were more consistent,

as indicated by the relatively high overlap in Figure 4.3 and large OFs in Table 4.3 .

This is probably because that these methods rely on similar assumptions on GI-related

features, such as atypical composition and evidence of specific functions. However, 188

laterally transferred genes reported in literature were still not predicted by the other four

methods. GI-Cluster also yielded 281 uniquely predicted alien genes.

Surprisingly, extremely low overlap occurs among the predictions from the same

tree-based method (Notung) on different sets of input trees (Figure 4.4 and Table 4.3).

Except for predictions on dataset T465 and T469, which had more overlaps (39 genes)

between each other, the predictions on the other datasets had very few overlaps. One

possible reason is that tree-based methods usually generate only a few predictions. For

example, the numbers of laterally transferred genes predicted on dataset T1099, T977,

T473, T469, and T465 were 11, 41, 3, 58, and 62, respectively. However, the large

discrepancies among results from the same method on different input trees built for

similar genomes suggest that tree-based methods are easily affected by multiple factors

such as taxa sampling and tree topology.

Across different method categories, the overlap was also very low (Figure 4.5 and

Table 4.3). In other words, the alien genes predicted by compositional methods and
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Figure 4.3: The overlap of predicted laterally transferred genes by different GI prediction

methods. GI-Cluster/GI-SVM represents the predictions of GI-Cluster based on the

output of GI-SVM. Literature represents GIs collected from literature.

tree-based methods were mostly not overlapping. This is not unexpected given the large

discrepancies between the two kinds of methods, which is also consistent with previous

results on Escherichia coli K12 MG1655 genome (Ragan, 2001; Ragan et al., 2006)

and Rickettsia felis genome (Zhu et al., 2014). Interestingly, around a quarter of the

core genes were predicted by other methods as laterally transferred, and a majority of

the shell genes were not predicted by other methods. This implies that the sets of core

and shell genes are largely determined by the adopted methods and conclusions derived

from these genes should be treated with caution.
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Figure 4.4: The overlap of predicted laterally transferred genes by Notung from different

sets of gene trees and species trees.

Table 4.3: Agreement among different LGT detection methods measured by overlap

factor (OF).

GI prediction methods Tree-based methods Methods of different kinds
Dataset 1 Dataset 2 OF Dataset 1 Dataset 2 OF Dataset 1 Dataset 2 OF
IslandViewer GI-Cluster 237.64 T1099 T977 0 GI-Cluster Literature 191.62

IslandViewer GI-SVM 404.25 T1099 T473 4.34 GI-Cluster T465 4.53

IslandViewer GI-Cluster/GI-SVM 326.61 T1099 T469 1.60 GI-Cluster shell 16.35

IslandViewer Literature 291.59 T1099 T465 1.55 GI-Cluster core 13.84

GI-Cluster GI-SVM 403.58 T977 T473 0 Literature T465 0

GI-Cluster GI-Cluster/GI-SVM 319.19 T977 T469 4.46 Literature shell 51.03

GI-Cluster Literature 191.62 T977 T465 4.25 Literature core 71.07

GI-SVM GI-Cluster/GI-SVM 674.93 T473 T469 6.48 T465 shell 18.33

GI-SVM Literature 373.06 T473 T465 11.15 T465 core 22.71

Literature GI-Cluster/GI-SVM 285.00 T469 T465 125.45 core shell 0

OF equals 0 when there are no overlapping genes between two datasets.

Highways of gene sharing

A highway of gene sharing between two taxa represents that many individual LGT

events occurred between these two taxa (Beiko et al., 2005). Highways may represent
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Figure 4.5: The overlap of predicted laterally transferred genes by methods across

different categories (GI detection methods and phylogenetic tree-based methods). Here,

“core” and “shell” represent the set of core genes and shell genes (laterally transferred

genes) predicted in (Shi and Falkowski, 2008), respectively. For predictions from

Notung, only those on dataset T465 are included in this plot because there are too few

predictions on other datasets.

major evolutionary events and have important biological implications (Bansal et al.,

2011). Here, we say a path exists between two taxa in a dataset if LGTs occurred

between these two taxa in either direction, and a highway is then roughly defined as a

path on which the number of LGTs is relatively large in the dataset. For each dataset

in Table 4.2, we computed the top highway and counted the numbers of LGTs involved

in the highways. Particularly, we computed the highways involving SYNPX as well as

the numbers of outgoing or incoming LGTs for SYNPX. Finally, we investigated the

relationship between highways and GIs.
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In general, extensive gene flow was detected between SYNPX and other cyanobac-

teria. SYNPX was involved in the top first highway for five datasets (T465, T469, T977,

T1127, and T1809). For dataset T473 and T1099, SYNPX was not involved in the top

20 highways. This is probably because that gene trees in these two datasets were built

by significantly different methods (Szöllősi et al., 2013b,a).

The predicted frequent gene exchange parters of SYNPX in highways were also

consistent on most datasets, in spite of numerical differences in the predicted LGTs

(Table 4.4). The most frequent gene exchange parter of SYNPX was detected to be

SYNSC on five datasets. On dataset T473, SYNSC was the second most frequent gene

exchange parter of SYNPX. On dataset T1127, the most frequent partner of SYNPX

was PROM3, which was probably because that SYNSC was not included in the sampled

taxa. Additionally, SYNPX transferred more genes to others than genes it received,

except for dataset T1127.

Table 4.4: The numbers of LGTs involving SYNPX and the common gene exchange

parters of SYNPX in highways, detected by Notung on different datasets.

T465 T469 T473 T1099 T1809 T977 T1127
#LGT_in 74 66 3 9 132 44 520

#LGT_out 165 175 14 87 533 359 95

Top 1 partner SYNSC SYNSC SYNPW SYNSC SYNSC SYNSC PROM3

Top 2 partner SYNS9 SYNS9 SYNSC,SYNR3 SYNS9 GLVIO1_SYNJA(B) SYNS9 PROMS

LGT_in represents incoming LGTs to SYNPX, and LGT_out represents outgoing LGTs from

SYNPX. GLVIO1_SYNJA(B) represents the ancestor of GLVIO1, SYNJA, and SYNJB.

However, the numbers of LGTs in highways predicted on different datasets had a

wide range, from 6 LGTs in the top first highway on dataset T473 to 403 LGTs in the

top first highway on dataset T1127. These differences are probably caused by taxa

sampling and the inference of gene trees. More LGTs were likely to be detected among

certain set of taxa. For instance, 309 LGTs were involved in the top first highway

predicted on dataset T1809, which are for 18 genomes from marine Synechococcus and

Prochlorococcus marinus. The methods of inferring gene trees also affect the results

a lot. For example, gene trees in dataset T473, T469, and T465 were built for almost

the same set of gene families in the same genomes, but much less LGTs were detected

on dataset T473 whose gene trees were built by a method that takes into account the

unrepresented species.

On one hand, a large number of genes were exchanged between two taxa on highways.
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On the other hand, GIs are reservoirs of laterally transferred genes. Therefore, it seems

interesting to understand the relationship of genes inside GIs with genes involved in

highways. To study this relationship, we computed the overlap between genes within

GIs and genes participated in highways for genome SYNSC, which was predicted to

receive many genes from SYNPX. We obtained GI candidates on genome SYNSC from

three sources (predictions in literature, predictions from GI-SVM and GI-Cluster), and

computed the top first highway from SYNPX to SYNSC on five datasets (T469, T465,

T473, T977, and T1099) with Notung. For illustration purposes, we only selected

predictions from Notung on two datasets (T469 and T977) which had more genes

involved in highways. As shown in Figure 4.6, there was no overlap between genes

involved in highways and genes in GIs, expect one gene predicted by both GI-Cluster and

Notung on dataset T977. This extremely low overlap is consistent with previous results

that highways predicted by phylogenetic methods cannot be detected by compositional

methods (Sjöstrand et al., 2014).

Phylogenetic networks showing conflicts among taxa

The power of network-based methods in inferring LGTs is still very limited. Here, we

mainly show conflicts among taxa that were detected by network-based methods and

examine the consistencies of these conflicts with predictions from other sources.

When applying the program for reconstructing a restricted LGT network on dataset

T473, we only found three subtrees with three taxa (CYAP4, THEEB, ACAM1) on

which the program can be applied. This is not surprising in consideration of the strict

restrictions of this program on input. When using all clusters appearing in more than

20% of the 473 input gene trees, the cluster network, galled network, and level-k network

built by Dendroscope all showed only one reticulation which was also among these three

taxa. Notung also reported tens of LGTs among these three taxa on dataset T465 and

T469, despite that it reported no LGTs among these taxa on dataset T473. Hence, there

might be gene exchanges among these species, which is worth further analysis.

In Figure 4.7, we show the cluster network, galled network, and level-k network

built by Dendroscope for all clusters appearing in more than 10% of the 473 input

gene trees. Since these networks have 36 leaves and only a few reticulate nodes, we

used Dendroscope to quickly compute distances between each pair of networks. The
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Figure 4.6: The overlap of genes within predicted GIs by different programs on SYNSC

and genes involved in the top first highway from SYNPX to SYNSC predicted by Notung.

SRF and RF distance between the cluster network and the galled network are 0.5 and

1, respectively. The SRF and RF distance between the galled network and the level-k

network are 0 and 1, respectively. The SRF and RF distance between the cluster network

and the level-k network are 0.5 and 2, respectively. Because of the few topological

differences among these three networks, it is reasonable that the SRF distances and RF

distances are small. As galled network and level-k network are built to represent the

same set of soft clusters, their SRF distance is 0 despite their network topologies are

slightly different.

There are mainly three groups of taxa with conflicts (reticulations) in the three

networks (Figure 4.7). Except one group containing ACAM1, CYAP4, and THEEB, the

other two groups are: (a) the clade containing MICAN, CYAP7, CYAA5, and CYAP8;
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Figure 4.7: The cluster network (top), the galled network (middle), and the level-k
network (bottom), built by Dendroscope from 473 rooted gene trees for 36 cyanobacterial

genomes.

(b) the clade containing Prochlorococcus spp. and marine Synechococcus. For these

two groups, there were also tens of LGTs detected by Notung on dataset T473, T465,

and T469, respectively. For species in group (b), frequent LGTs among them were also
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reported in (Zhaxybayeva et al., 2006, 2009). Therefore, network-based methods can

effectively detect conflicts that are probably caused by LGT.

Consistent with previous results, the high-light adapted Prochlorococcus spp. are

a soft cluster of some node in each of the three networks in Figure 4.7, whereas the

low-light adapted Prochlorococcus spp. are not soft clusters of any node in the three

networks.

It is interesting that the cluster network, galled network, and level-k network display

the same set of 53 gene trees. This is probably because that these 53 gene trees can

represent all the input clusters. The fact that a majority of gene trees are not displayed

in these networks suggests that these networks may fail to represent the evolutionary

history of a large number of gene families.

4.4 Summary

In chapter 4, we focus on the general detection of LGT events. The accurate estimates

of LGT can provide insights on the impact of LGT and deepen our understanding on

evolution of life. Unfortunately, like other problems in computational evolutionary

biology which infer past events from the extant data, the clues left for LGT detection

were dimmed and perplexed owing to various evolutionary and stochastic factors. In

spite of the challenges, numerous methods have been proposed to unravel the extent of

LGT, including GI detection methods discussed in Chapter 2 and network-based methods

discussed in Chapter 3. However, current methods often give discrepant predictions,

especially for methods in different categories. Hence, most of these methods are believed

to be complementary to each other. But the agreements among predictions from multiple

methods in practice have not been fully investigated.

In view of this gap, we conducted a case study by analyzing the predictions of

multiple LGT detection methods on a set of cyanobacterial genomes. Our results

suggest that different kinds of methods generated diverse predictions with low agreement,

which is consistent with previous results in literature. For compositional methods,

their predictions had relatively higher overlap in spite of certain inconsistencies. For

phylogenetic tree-based methods, the predictions from the same program applied on

different sets of gene and species trees for similar genomes yielded extremely low
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overlap despite broad agreements on general outcomes, suggesting that this kind of

method is easily affected by the choice of taxa and the building of input trees. Although

highways of LGT detected by tree-based methods involved tens to hundreds of genes,

most of these genes did not overlap with genes in predicted GIs, implying the disparities

between the two kinds of methodology. Network-based methods could show several

LGT-related conflicts among taxa, but much work is still to be done to model LGTs

explicitly with networks.

To sum up, the results from this case study indicate the huge limitations of a single

kind of LGT detection methods in practice. To get a more comprehensive picture

of LGTs in a genome or several genomes, it is indeed necessary to utilize multiple

methods. Despite that the great disparities among different kinds of methods make it

hard to reconcile the differences, predictions obtained from multiple methods should

be carefully examined before reliable conclusions can be reached, whenever possible.

For phylogenetic methods, taxa sampling and tree inferences should also be prudently

performed to avoid potential bias.
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Chapter 5

Conclusion

5.1 Summary

LGT is an important evolutionary process. It can play a significant role in genome

innovation and biological diversity, particularly for prokaryotes. LGT is also related to

the spread of antibiotic resistance and pathogenicity. However, debates regarding the

impact and extent of LGT still exist. To further understand the role of LGT, it is critical

to quantify the prevalence of LGT. In this thesis, we tried to approach three problems

arising in the quantitative characterization of LGT.

The first problem is about how to detect GIs in a genome. We address this problem

in Chapter 2. GI is an important tool of LGT and genome evolution for bacteria. GIs

often contain genes involved in important adaptive functions. Therefore, GI prediction

in bacterial genomes is of great importance. The rapid increase of newly sequenced

genomes requires better GI detection methods to quickly locate important regions for

further analysis. In view of this need, we developed two machine learning methods

to detect GIs in a single genome: GI-SVM and GI-Cluster. GI-SVM is designed for

first-pass GI predictions without relying on annotations. GI-Cluster is designed to detect

GIs by integrating multiple GI-related features, relying on pre-built databases to obtain

annotations. According to the evaluations on real biological datasets, GI-SVM is highly

sensitive and GI-Cluster can achieve a good balance of recall and precision. Additionally,

GI-Cluster can further refine the predictions from GI-SVM or other sensitive programs.

In short, GI-SVM and GI-Cluster provide researchers two alternative tools for better GI

detection.
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The second problem is how to model LGT with rooted phylogenetic networks. We

address this problem in Chapter 3. Tree-based network, especially LGT network, can

represent LGTs in a natural way. But it is quite challenging to build such rooted phylo-

genetic networks from biological data. So, we mainly aimed to solve two fundamental

problems arising in the reconstruction and verification of phylogenetic networks: the

TCP and CCP. Even the TCP and CCP are NP-complete in general. By utilizing a

powerful decomposition technique, we implemented fast programs for solving them on

arbitrary phylogenetic networks. The resulting CCP program is further extended into a

program for quickly computing the SRF distance between phylogenetic networks. The

time complexities of these programs are exponential due to their inherent difficulties,

but they were shown to be fast enough to solve real biological instances in evolutionary

studies. These programs may help to develop more practical programs for building and

comparing phylogenetic networks in general, and hence promote the reconstruction of

LGT networks.

The third problem is how to infer LGT events. This problem is more general than

the first two problems, and actually the solutions to the first two problems may help to

solve this third problem. We address this problem in Chapter 4. Based on different

criteria, numerous methods have been developed to detect LGTs. These methods exhibit

a wide range of diversity, and they are suggested to be used together to provide better

predictions. However, very few studies systematically investigated the complementary

performances of various methods in practice. To further understand how individual

methods complement with each other, we performed a case study on cyanobacterial

genomes which have been extensively studied in terms of LGT. We applied both com-

positional methods and phylogenetic methods to the selected genomes, including the

methods for GI detection and network reconstruction that are discussed in Chapter 2 and

3, respectively. Consistent with previous outcomes, our results reveal very low overlap

among predictions of different methods, particularly methods from different categories.

Our study also shows extremely low overlap among predictions of the same method on

different input. Therefore, for accurate LGT detection in practice, it is necessary to

carefully apply multiple methods and treat conclusions with caution.
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5.2 Future work

Our work on the three problems related to LGT analysis can be further improved or

extended to other applications. In this section, we briefly discuss the future work for

each problem, respectively.

Several work can be done with regard to GI detection. Firstly, our new methods for

GI detection can be further enhanced. For instance, more intelligent spectrum kernels

may improve GI-SVM by making full advantage of informative k-mers of fixed-order

or variable orders. It also seems promising to improve the methods to find possible

donors of GIs. Secondly, our programs may be applied to metagenomics datasets to find

potentially interesting discoveries. Currently we only tested GI-SVM and GI-Cluster on

genome sequences. Since huge amounts of metagenomics dataset have been available, it

seem possible to investigate whether there are extensive gene exchanges among environ-

mental bacteria from these data. Lastly, the methodology used in developing GI-SVM

and GI-Cluster may also be extended to other problems. For example, one-classed SVM

based on k-mer frequencies may be used for detecting outliers in different contexts, such

as identifying contamination in next-generation sequencing data. In addition, the con-

sensus clustering approach may also be adapted in other scenarios that require effective

integrations of heterogeneous features.

For our work on phylogenetic networks, our current programs for phylogenetic

networks still have relatively limited applications. To make phylogenetic networks more

useful in practice, more efficient algorithms have to be developed. For example, the

time complexity of algorithms for solving TCP and CCP can be further reduced. We

are trying to improve the CCP algorithm by resolving the invisible tree components in

a more smart way. This new CCP algorithm will then help to improve the efficiency of

our SRF program. The improvement of the TCP algorithm may help to develop new

methods for reconstructing a tree-based network from multiple gene trees. Moreover,

the TCP and CCP may help to solve other problems in a more general context. The most

related context is when it is required to check whether a tree is represented by a graph,

or whether a set of leaves is represented by some node in a graph. The ideas adopted in

solving the TCP and CCP may also be helpful for other similar problems.

Finally, regarding our case study, only a small set of genomes and LGT detection
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methods were included. The workflow applied in this case study could also be used in

investigating more genomes and methods to get more general conclusions. In addition,

it may be helpful to collect a relatively reliable set of LGTs at different time scales for

cyanobacteria which have a relative abundance of fossil record (Szöllősi et al., 2012).

These reliable LGTs may provide a benchmark set for evaluating LGT detection methods

in future. The evaluations may in turn provide insights on the development of better

methods for LGT detection.
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Appendix A

Supplementary materials for

Section 2.4

In this chapter, we give more details about GI-Cluster method presented in Section 2.4.

A.1 Supplementary details of GI-Cluster method

In this section, we provide more technical details regarding the GI-Cluster method.

A.1.1 Feature extraction step

We compute four groups of features for a genomic segment: (1) sequence composition;

(2) gene function; (3) boundary signature; and (4) gene distribution. Gene prediction

was performed by Prodigal (version 2.6.3) (Hyatt et al., 2010), a commonly used tool

for microbial gene finding. The computation for each feature is via custom scripts

or database search (Table A.1). The details for computing each group of features are

described in the following subsections.

Computation of sequence composition

For each gene, we compute several metrics measuring its GC content, codon usage, and

k-mer frequency. For each segment, we compute several metrics measuring its k-mer

frequency, GC content and the average of metrics for codon usage of genes within the

segment.
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GC content is the simplest and earliest type of features proposed to detect LGT

events (Tsirigos and Rigoutsos, 2005b). A genomic region with GC content that deviates

significantly from GC content of the genome is likely to be laterally transferred. We

compute the GC content of each gene as well as GC(k), with k = 1, 2, 3, the GC content

determined by considering only the nucleotides occupying the k th position within each

codon of a gene. In clustering, we exclude the GC content of second codon positions

since it was shown to be very similar across species (Lawrence and Ochman, 1997).

The GC content for each segment is measured by the average of the values for all genes

within it when gene predictions are available. To measure the GC deviation of each gene

(segment) from the genome, we compute χ2 value between GC content for each gene

(segment) and GC content for the genome, which was used in previous studies (Lawrence

and Ochman, 1997; Tsirigos and Rigoutsos, 2005b). A higher χ2 value means that the

GC content of the gene or segment deviates more from that of the genome.

Codon usage is another commonly used compositional feature to detect GIs (Waack

et al., 2006). A genomic region with atypical codon usage patterns is likely to be

laterally transferred. To measure the codon usage deviation of each gene, we compute

several metrics that are commonly used for detecting regions with atypical codon usage,

including χ2 of relative synonymous codon usage (RSCU) (Lawrence and Ochman,

1997), codon usage bias (Cub) (Zhang and Zhang, 2004), amino-acid usage bias (AAub)

(Zhang and Zhang, 2004), and codon adaptation index (CAI) (Sharp and Li, 1987). Cub

and χ2 value measure the codon usage bias of a gene against the average of all genes in

Table A.1: The methods used for extracting GI-related features in a genome.

Feature Discriminant criterion Measure Computation method

Sequence composition

GC content χ2 Python scripts

Codon usage χ2, Cub, AAub, CAI CodonW, Python scripts

k-mer frequency Covariance Python scripts

Gene function

Mobility-related gene Percentage HMMer against Pfam

Phage-related gene Percentage BLAST against PHAST

Virulence factor Percentage BLAST against VFDB

Antibiotic resistance gene Percentage BLAST against CARD

Novel gene Percentage BLAST against COG

Non-coding RNA Count Infernal against Rfam

Gene distribution
Gene density Definition Python scripts

Intergenic distance Definition Python scripts

Boundary signature
tRNA Binary (presence-absence) tRNAscan-SE

Short repeat Binary (presence-absence) Repseek

Discriminant criterion in bold can be applied to genomes without gene predictions.
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the genome. A higher value suggests that the gene is more likely to have atypical codon

usage. Similarly, AAub is the amino acid usage bias of a gene against the average of

all genes in the genome, and a gene with a larger AAub value may be atypical. CAI

measures the similarity of the codon usage of a gene to that of highly expressed genes

for an organism. A gene with a higher CAI value are more likely to be normal. CAI

is computed by CodonW (Peden, 1999) and the other three metrics are computed by

custom scripts.

The frequencies of k-mers (k usually ranges from two to nine) in different genomes

show species-specificity (Sandberg et al., 2001, 2003). It has been demonstrated that

k-mer frequencies are better indicators in detecting LGT events (Becq et al., 2010).

The order of k-mer may affect its discrimination power. Generally, high order k-mers

(k >= 4) can provide more sufficient discrimination of regions with atypical composition

than low order k-mers, but there may not be enough data for high order k-mers in a

sequence (Vernikos and Parkhill, 2006). Thus we compute the frequencies for k-mers of

size two to eight of a gene or segment and the genome. To measure k-mer frequency bias

of each gene or segment, we compute the distance of k-mer frequency vectors between

each gene and the genome. We use covariance distance measure, which was shown to be

effective in detecting laterally transferred genes (Tsirigos and Rigoutsos, 2005b). The

final values were scaled to be between zero and one. A genes or segment with a lower

covariance value is more likely to be atypical.

Computation of gene function

For each gene, we find whether it encodes specific functions related to GIs, including

mobility, phage, virulence factor, antibiotic resistance, novel function and non-coding

RNA (ncRNA). For each segment, we compute the percentage of each kind of genes

within it. The detection of such kind of genes relies on homologous search against

related databases.

The presence of mobility-related genes in a genomic segment may serve as evidence

of LGT, so it was used in several tools for GI prediction (Hsiao et al., 2005; Mantri and

Williams, 2004). Mobility-related genes mainly include: insertion sequence element,

transposase and integrase. We use HMMer (HMMER 3.1b2, http://hmmer.org/) to find

these genes by searching against 128 HMM profiles retrieved from the Pfam HMM
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library for Pfam-A families (Finn et al., 2014) (version Nov 2016).

Prophage can be seen as one kind of GIs (Langille et al., 2010). To find phage-related

genes, we use BLAST (version 2.5.0) (Altschul et al., 1997) against PHAST prophage

and virus database (Zhou et al., 2011) (version Nov 2016).

Novel genes are genes with no detectable homologs in public databases. They were

reported to be significantly more prevalent in GIs than non-GIs in many organisms

(Hsiao et al., 2005). We use COG (clusters of orthologous groups of proteins) database

(Galperin et al., 2015) to identify novel genes. Genes are assigned to different COG

functional categories and those without COG assignments are considered novel.

Virulence factors were shown to be disproportionately associated with GIs in

pathogens (Ho Sui et al., 2009). So we use BLAST to search the presence of viru-

lence factors against protein sequences of full dataset from VFDB (Chen et al., 2016)

(version Nov 2016) which contains high-quality virulence factors from various bacterial

pathogens and is updated regularly.

GIs are also often related to the dissemination of antibiotic resistance (Juhas et al.,

2009). So we detect antibiotic resistance genes by blasting against CARD (McArthur

et al., 2013) (version 1.1.1, Nov 2016) which provides rigorously curated antibiotic

resistance genes.

The ribosomal RNA (rRNA) operon often has atypical composition for reasons other

than LGT (Vernikos and Parkhill, 2008). Besides, a region with a few tRNAs is also

not likely be a GI. So we count the number of rRNA and tRNA genes within each

segment and exclude segments with more rRNA and tRNA genes than protein-coding

genes during clustering. We find ncRNA genes by using Infernal (Nawrocki and Eddy,

2013) to search against Rfam covariance models (Nawrocki et al., 2015) (version Dec

2016).

Computation of boundary signature

For each segment, we identify the presence of flanking tRNA genes or short repeats

around its boundaries. The computed boundary signatures are mainly used for refining

boundaries of segments that are assigned to the group of GIs after clustering.

The tRNA genes often serve as insertion sites of GIs and have been used for detecting

a subset of GIs (Mantri and Williams, 2004; Ou et al., 2006; Hudson et al., 2015). We
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use tRNAscan-SE (version 1.3.1) (Lowe and Eddy, 1997) to predict tRNA genes in a

genome. Then we use custom scripts to find tRNA genes flanking each segment.

Short repeats of varying sizes are also reported to be around the endpoints of some

GIs (Hacker et al., 1997). We use Repseek (version 6.6) (Achaz et al., 2007) to detect all

the repeats in a genome. Then we use custom scripts to find short direct repeats (DRs)

or inverted repeats (IRs) flanking each segment.

Computation of gene distribution

For each segment, we compute its gene density and intergenic distance according to

their definitions. Gene density refers to the number of genes per kilo base in a region.

Intergenic distance refers to the average gene distance in a region.

GIs were suggested to have lower gene densities and shorter intergenic distances

than non-GIs (Che et al., 2014b). It was shown that the average intergenic distance for

non-GIs are generally shorter than that of GIs (Wang et al., 2011). These features may

have some differentiation power, but they may not be as effective as compositional and

functional features (Che et al., 2014b). Moreover, the size of genomic segments affects

the values of gene density and average intergenic distance. Thus, we compute these two

features only for postprocessing and manual analysis.

A.1.2 Consensus clustering step

To deal with feature variety, after getting the clusterings of segments on each feature, we

may use subsampling to randomly select the clusterings for different subsets of features

and combine them into a single clustering. If the results of consensus clustering are more

stable and robust to sampling variability, we are more confident that the attained clusters

represent the real separation of GIs from non-GIs. In principle, the more samplings are,

the more stable results should be. For simplicity, we can also combine the clusterings

of all the computed features.

When using feature subsampling, we get a set of consensus matrices on different

subsets of features, and then obtain a single consensus matrix as the average of all these

consensus matrices. When using the clusterings on all the features, we combine all the

connectivity matrices to obtain a single consensus matrix.

We use optimal 1D k-means clustering (Wang and Song, 2011) and model-based
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clustering (kernel density estimation) (Scrucca et al., 2016) on each feature for now,

but other clustering methods can also be used. Due to the complexity of genome, the

demarcation between normal segments and atypical segments may not be very clear

and there may be some segments with weak memberships in both normal and atypical

groups. So we set the cluster number to be three when using 1D k-means clustering.

For model-based clustering, the cluster number can be automatically estimated.

For clustering on the final consensus matrix, hierarchical clustering with average

linkage is used by default because it is intuitive and often gives reasonable results. The

heat map obtained from hierarchical clustering can also be used to assess the composition

of resultant clusters. Other clustering methods can also be used by parameter passing.

Due to the uncertainties of parameter choices in the clustering process, the results of

GI-Cluster may be slightly different in different runs. In practice, users can try different

parameters to find more reasonable results, with the aid of extensive annotations provided

by GI-Cluster.

A.1.3 Postprocessing step

Among the initial non-GI segments, the following postprocessing rules are used by

default: a segment with the presence of flanking tRNA gene(s) and mobility-related

genes is reclassified as a GI segment; a segment with at least five protein-coding genes

and no less than 80% genes being phage-related genes or novel genes is also redesignated

as a GI segment.

Among the initial GI segments, a segment with more than five protein-coding genes

but no flanking tRNA genes or mobility-related genes is reclassified as a non-GI segment.

At the same time, a segment with the following properties is also excluded: there are

no flanking tRNA genes or mobility-related genes; the percentages of virulence factors,

phage-related genes, antibiotic resistance genes and novel genes are smaller than given

thresholds; the gene density is higher than a given threshold; the intergenic distance is

smaller than a given threshold. By default, the thresholds are set to be the median value

of the values for all segments in the genome or 0.1 if the median value is very low.

If the input is from the GI candidates detected by methods with high recall but

low precision, the above rules are changed a bit. An initial non-GI segment with the

presence of flanking short repeats and mobility-related genes is also reclassified as a GI
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segment. An initial non-GI segment with no less than 60% of the genes being either

virulence factors, or phage-related genes, or antibiotic resistance genes or novel genes

is considered as a GI segment too. If an initial non-GI segment has phage-related genes

and the percentage of phage-related genes and novel genes is no less than 60%, it is

included into the GI group as well. Among the initial GI segments, a segment with the

following properties is excluded: there are no flanking tRNA genes or mobility-related

genes; the percentages of virulence factors, phage-related genes, antibiotic resistance

genes and novel genes are all smaller than 20%.

For segments belonging to the GI group, their boundaries are firstly revised according

to the positions of flanking tRNA genes or short repeats. By default, we use tRNA genes

or short repeats around 1 kb of the endpoints of each segment to refine its boundary.

Then, we relocate the obtained segments by the closest genes, requiring that at least half

of a gene overlap with a segment. Finally, we merge adjacent segments if the distance

between them is less than a threshold (5000 bp by default).

A.1.4 Visualization of predicted GIs

To intuitively display multilayered annotations, we use Circos (Krzywinski et al., 2009),

which is effective in showing positional relationships between genomic segments.

For the feature plot, we allocate eight tracks, because there are too many features

to display them all in the limited space. The default configuration contains one track

for each of the following features: GC content, codon adaptation index, covariance for

4-mers, the percentage of mobility-related genes, the percentage of phage-related genes,

the percentage of virulence factors, the percentage of antibiotic resistance genes, and the

percentage of novel genes. Users can adjust parameters to see the distribution of other

features.

For the comparison plot, users can easily adapt the provided configuration files to

show at most nine sources of predictions in a Circos plot.

A.2 Supplementary Results

In this section, we first provide more details about the datasets and metrics used for

performance evaluation. Then we provide more evaluation results.
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A.2.1 Evaluation approach

Reference datasets

The overall information of 10 selected bacterial complete genomes for evaluation is

summarized in Table A.2. For simplicity, we refer to each genome in shorthand, as

indicated in the first column.

For CT18, LESB58, and NCTC13129, we used GIs collected in (Lu and Leong,

2016b) as reference. For LESB58, we also included the newly predicted GIs in (Jani et al.,

2016). For HI4320, we refined the boundaries of some GIs according to annotations

from NCBI and added two GIs predicted by Islander and in literature (Pearson and

Mobley, 2007), respectively. For CFT073, BAA894, and DSM12804, we also added

one additional GI predicted by Islander, respectively. For Sequi4047, we added two GIs

and refined the boundaries of some GIs according to annotations from NCBI.

Table A.2: The general information of 10 complete bacterial genomes for evaluation of

GI prediction tools, grouped by taxonomic orders.

Genome Accession Size (bp) GC (%) #GI (Gene) GI size (bp)
J2315 NC_011000 3,870,082 66.68 9(339) 358,581

DSM12804 NC_010170 5,287,950 65.48 8(1078) 1,057,881

NCTC13129 NC_002935 2,488,635 53.48 23(432) 473,944

BAA894 NC_009778 4,368,373 56.77 14(429) 355,771

CFT073 NC_004431 5,231,428 50.47 14(934) 819,327

HI4320 NC_010554 4,063,606 38.90 9(452) 420,364

CT18 NC_003198 4,809,037 52.09 19(497) 600,015

CIP105476 NC_010161 2,619,061 38.86 16(745) 729,224

Sequi4047 NC_012471 2,253,793 41.28 8(303) 272,740

LESB58 NC_011770 6,601,757 66.30 23(659) 730,819

In addition, for eight known integrative and conjugative elements (ICEs) (ICEP-

miUSA1, ICEPm1, ICESe2, ICE-GI1, ICE-GI2, ICE-GI3, ICE-GI6 and SPI-7), we

used boundaries from ICEberg database (Bi et al., 2012), expect for ICE-GI2 and

ICE-GI3. Since ICE-GI2 (from 1350129 to 1493558) and ICE-GI3 (from 1493541 to

1595651) are overlapping, we combine them into one, denoted as ICE-GI2(3).

For C-data set, there are positive datasets (GIs) and negative datasets (non-GIs) for

nine of these genomes (except P. aeruginosa LESB58).
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Evaluation metrics

We used eight metrics to evaluate the performance of GI prediction tools, including recall

(TPR, sensitivity), precision, F-measure (F1 score), true negative rate (TNR, specificity),

overall accuracy (OACC), accuracy (ACC), Matthews correlation coefficient (MCC) and

the average of absolute error (ABE) in predicted boundaries (Langille et al., 2008; Lu

and Leong, 2016b; Wei et al., 2017). Their definitions are as follows:

Precision =
|T P |

|T P | + |FP | ;

Recall(T PR) = |T P |
|T P | + |FN | ;

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
;

T NR =
|T N |

|T N | + |FP | ;

OACC =
|T P | + |T N |

|T P | + |T N | + |FP | + |FN | ;

ACC =
T PR + T NR

2
;

MCC =
2 ∗ Precision ∗ Recall

Precision + Recall
;

ABE = |x − x0 |.

The evaluations on L-data set are based on the number of protein-coding genes

overlapping with a GI candidate. A gene is predicted if at least half of its sequence over-

laps with a GI. True positives (TPs) are predicted genes overlapping with the reference

GIs; false positives (FPs) are predicted genes not overlapping with reference GIs; false

negatives (FNs) are genes which overlap with the reference GIs but not the predicted

GIs.

The evaluations on C-data set are based on the number of nucleotides overlapping

with a GI candidate. TPs are nucleotides included in both the reference GIs and the

predicted GIs; FPs are nucleotides in the predicted GIs overlapping with the negative

dataset; FNs are nucleotides in the reference GIs but not in the predicted GIs.

For ABE, x is the reference left (right) endpoint of a GI and x0 is the predicted left

(right) endpoint.
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A.2.2 Performance evaluation on real biological datasets

Evaluations on L-data set and C-data set

GI-Cluster had better performance than GIHunter on some real biological datasets (Table

A.3). For example, GI-Cluster had better precision and accuracy than GIHunter on both

L-data set and C-data set of genome CIP105476 and Sequi4047. GI-Cluster also had

better recall and accuracy than GIHunter on the L-data set of genome CT18 and LESB58.

For genome CT18, although GI-Cluster had lower precision than GIHunter on L-data

set, GI-Cluster had higher recall than GIHunter on C-data set.

Table A.3: Comparison of GI-Cluster and GIHunter on several genomes.

Data Tool #Gene #GI Recall Precision F1 ABE(bp) TNR OACC ACC MCC C.Recall C.Precision C.F1

CIP105476

GI-Cluster 662 53 0.659 0.742 0.698 6,267 0.871 0.795 0.765 0.545 0.618 0.685 0.650

GIHunter 1351 8 0.962 0.531 0.684 169,053 0.521 0.680 0.742 0.488 0.981 0.482 0.646

Difference -0.303 0.211 0.014 -162,786 0.350 0.141 0.023 0.057 -0.363 0.203 0.004

Sequi4047

GI-Cluster 393 30 0.842 0.649 0.733 4,957 0.919 0.907 0.880 0.686 0.583 0.899 0.707

GIHunter 862 15 0.987 0.347 0.513 46,801 0.668 0.717 0.828 0.474 0.765 0.630 0.691

Difference -0.145 0.302 0.220 -41,844 0.251 0.082 0.052 0.212 -0.182 0.269 0.016

CT18

GI-Cluster 748 64 0.873 0.580 0.697 4,245 0.913 0.908 0.893 0.664 0.771 0.727 0.748

GIHunter 608 23 0.827 0.676 0.744 10,394 0.945 0.931 0.886 0.709 0.697 0.727 0.712

Difference 0.046 -0.096 -0.047 -6,149 -0.032 0.023 0.007 -0.045 0.074 0.000 0.036

LESB58

GI-Cluster 807 82 0.721 0.589 0.648 4,039 0.937 0.913 0.829 0.603

GIHunter 511 16 0.584 0.753 0.658 18,678 0.976 0.932 0.780 0.628

Difference 0.137 -0.164 -0.010 -14,639 -0.039 0.020 0.049 -0.025

C.Recall, C.Precision, and C.F1 represent the recall, precision and F1 computed on C-data set.

The other metrics were computed on L-data set.
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Appendix B

Supplementary materials for

Chapter 3

In this chapter, we provide formal proofs of several theorems and supplementary data

for the work presented in Chapter 3.

B.1 Proof of Theorems

In this section, we prove a few theorems used in developing the TCP and CCP algorithm.

B.1.1 Proof of Lema 3.4

Proof. If C contains a leaf x, the root u of C is then a tree node and there is a unique

path P from u to x that contains only tree nodes. Consider a path P′ from the network

root to x. If u does not appear in P′, P′ and P intersects at a reticulation node in P′, as

x is in them. This is impossible. Hence P′ must contain u, implying that u is visible

with respect to x. Similarly, we can prove that u is visible with respect to the child of

a reticulation node y if all the parents of y are in C. By definition, C is visible if u is

visible.

Conversely, let C be visible with respect to a leaf x and let x be not in C. Since C is

exposed, x is the child of a reticulation node r right below C. Assume a parent y of r is

not in C. Since C is exposed, y is not below C, as there is a non-trivial component below

C otherwise. This implies that any path from the network root to x through y does not

contain the root of C, contradicting the visibility assumption on C. This completes the
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proof.

B.1.2 Proof of Theorem 3.5.1

Proof. For convenience, we simply set s = sG(r) and d = dG(r).
(i). The statement is equivalent to that if N displays G, then d ≤ s.

Assume N displays G. By definition, a subtree history M of N exists such that that

G is obtained from M by contracting nodes of in-degree and out-degree one. Without

loss of generality, we assume the root of M is the network root, i.e., ρ(M) = ρ(N).
Since r is visible with respect to �, the unique path ρ(M) to � in M must contain r .

G′(vt+1) is displayed below r . The proof is complete if s = t + 1.

If s < t + 1, by the definition of s, G(s) contains a leaf �̄ � � such that r is also

visible with respect to �̄. Thus, r is also in the unique path from ρ(M) to �̄. Thus, as the

least common ancestor of � and �̄, vs must be mapped to a node u below r in M . Hence,

G′(vs) can be obtained from the substree of M rooted at u by contraction. Hence, s ≤ d.

The proof of the fact (i) is completed.

(ii) Assume d ≤ s. Note that G′(vs) is a subtree of G′(vd).
(Sufficiency) Let Nr = N − C(r) + � and Gr = G − G′(vd) + �.
Assume Nr displays Gr . A subtree history Mr of Nr exists such that Gr can be

obtained from Mr by contraction.

On the other hand, since G′(vd) is displayed below r , a subtree history M ′′ exists in

[r]N − {c(r ′), r ′ | r ′ ∈ R(N) s.t. c′(r) � L(G′(vd))} from which G′(vd) can be obtained

by contraction. Let M ′ be the tree obtained from Mr by replacing the leaf � with M ′′.

Clearly, M ′ is a subtree history of N and G can be obtained from M ′ by contraction.

Hence, N displays G.

(Necessity) Assume that a subtree history M ′ of N exists from which G can be

obtained by contraction. If ρ(M ′) � ρ(N), there is a path from ρ(N) to ρ(M ′) consisting

of nodes of in-degree and out-degree one in M ′. Without loss of generality, we assume

that ρ(M ′) = ρ(N).
Let vd correspond to a node u ∈ V(M ′). Since vd is an ancestor of �, u is in the path

P from ρ(N) to �. Since r is visible with respect to �, r and its child c(r) are both in the

path P. Hence u is either below c(r) or above r , the root of the tree component C(r).
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If u is below c(r), by the definition of d, vd+1 must correspond to node above c(r)
in M ′. Let M ′

r be the subtree obtained from M ′ by replacing M ′(c(r)) with �, where

M ′(c(r)) is the subtree rooted at the unique child c(r) of r . Clearly, M ′
r is a subtree

history of Nr . In addition, Gr can be obtained from M ′
r by contraction. The proof is

completed for the case that u is below c(r).
If u is above r and hence strictly above c(r) in M ′. Let M ′′ be the subtree history of

[r]N − {c(r ′), r ′ | r ′ ∈ R(N) such that c′(r) � L(G′(vd))}, a subnetwork below r , from

which G′(vd) can be obtained by contraction. Let P(u, c(r)) be the path from u to c(r)
in M ′. We consider:

M = M ′ − M ′(u) + P(u, c(r)) + M ′′,

where M ′(u) is the subtree of M ′ rooted at u. Clearly G can be obtained from M by

contraction. Since M ′′ corresponds to G′(vd), the subtree obtained from M ′ − M(u) +
P(u, c(r)) by replacing c(r) with a leaf labeled with � is a subtree history of Nr from

which Gr can be obtained by contraction. This finishes the proof.

B.1.3 Proof of Theorem 3.5.2

Proof. Note that m(N) is equal to the largest possible number of times Step 3 is executed

on N and any phylogenetic tree. When Step 3 is first executed on N , the two networks

N ′ and N ′′ are created. For these three networks,

m(N) ≤ 1 + m(N ′) + m(N ′′). (B.1)

Let us assume that N ′ and N ′′ are created by examining an exposed non-trivial tree

component C and a reticulation node r right below C. Since the tree component C is

exposed, the child of r is a network leaf, say �. Because C is neither trivial nor visible,

another reticulation node r ′ exists right below C. By the construction of N ′, C is visible

with respect to � in N ′. Hence, when the algorithm is called on N ′, Step 2 should

first be executed, eliminating all the reticulations below C including r ′ simultaneously.

Additionally, r has become a tree node in N ′ and N ′′.

Let M(k) denote the largest possible number of times Step 3 is executed on any

bi-combining reduced network with k reticulation nodes and any phylogenetic tree,
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namely:

M(k) = max
N ∈S

{m(N) | |R(N)| = k},

where S is the set of bi-combining reduced networks. Here, clearly, M(1) ≤ 0 and

M(2) ≤ 1. By Eqn. (5.1), this discussion implies that:

M(k) + 1 ≤ [M(k − 2) + 1] + [M(k − 1) + 1].

Since the Fibonacci numbers Fk satisfy F0 = 1 and F1 = 1 and Fk = Fk−1 + Fk−2

(k ≥ 2), we have the following inequality:

M(k) + 1 ≤ Fk ≤ 1√
5

(
1

2
(1 +

√
5)
)k
+
1

2
,

implying that:

b(N) ≤ �log2 M(|R(N)|)� ≤ log2

(
1

2
(1 +

√
5)
)
× |R(N)|.

B.1.4 Proof of Theorem 3.6.1

Proof. (i). Assume that B′ is a soft cluster in N ′
a. Suppose B′ is a soft cluster of a

node u. Here, � is a leaf below u. If we re-expand � into [ρ(Cr )]Na to obtain N , the soft

cluster of u will become (B\B̂) ∪ B̂, namely B. Hence, B is a soft cluster in N .

Assume that B is a soft cluster in N . Suppose B is a soft cluster of a node v in a tree

T , where T = N − E and E ⊂ E(N). Because B̂ ⊂ B, B contains a leaf �̄ which is not

below ρ(Cr ). As �̄ is below v in T , v must be above ρ(Cr ) in T .

Let r ′ ∈ CR(Cr ) and c(r ′) ∈ B. Here, r ′ has at least one parent in Cr , and c(r ′) is

a leaf below v in T since Cr is exposed. Let (pr′, r ′) ∈ E(N) such that pr′ ∈ Cr , and

(p′
r′, r

′) ∈ E .

Let T ′ = T − {(p′
r′, r

′)} + {(pr′, r ′)}. B̂ is then the cluster of ρ(Cr ) in T ′ and B is the

cluster of v. After replacing [ρ(Cr )]Na with � to get N ′
a, the cluster of v is (B ∪ �)\B̂.

Hence, B′ is a soft cluster in N ′
a.

(ii) Assume that B is a soft cluster in N ′
b
. Since N ′

b
is a subnetwork of N , B is a soft

cluster in N .

Assume that B is a soft cluster in N . Suppose B is a soft cluster of a node v in a tree
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T , where T = N − E and E ⊂ E(N).
Since B is not a soft cluster of a node in Cr , Lr ∩ B = ∅ and ρ(Cr ) is visible on

leaves in Lr , ρ(Cr ) is not below v in T and v is not below ρ(Cr ) in T either.

Let r ′ ∈ CR(Cr ); r ′ then has at least one parent pr′ in Cr .

If c(r ′) ∈ B, c(r ′) is a leaf below v in T since Cr is exposed. Then p′
r′ is not in Cr .

If c(r ′) � B, p′
r′ may or may not be in Cr . Suppose (p′

r′, r
′) ∈ E . If p′

r′ � Cr , we can

replace (p′
r′, r

′) with (pr′, r ′) and define T ′ = T − {(p′
r′, r

′)} + {(pr′, r ′)}. The cluster of

v in T ′ is then the same as the cluster of v in T . After replacing [ρ(Cr )]Nb
with � to get

N ′
b
, the cluster of v is still B. Hence, B is a soft cluster in N ′

b
.

B.2 Phylogenetic networks on real biological datasets

In this section, we show several phylogenetic network used to show the application of

our programs.

B.2.1 A phylogenetic network over seven fungi species

Figure B.1 shows an ancestral recombination graph over seven fungi species, which was

reconstructed to study the phylogenetic relationships among the M2 double-stranded

RNA in the Rhizoctonia species complex (Charlton et al., 2008).

B.2.2 Three phylogenetic networks reconstructed from a grass dataset

Figure B.2, Figure B.3, and Figure B.4 show three different kinds of phylogenetic

networks, which were reconstructed from five gene trees (ITS, ndhF, phyB, rbcL, rpoC2)

of a grass dataset (van Iersel et al., 2010a) by three different algorithms (Huson and Rupp,

2008; Huson et al., 2009; Wu, 2010), respectively.

B.2.3 Two phylogenetic networks over six mosquito species

Figure B.5 shows two phylogenetic networks reconstructed over six mosquito species,

which were reported in (Fontaine et al., 2015) and (Wen et al., 2016), respectively.
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Figure B.1: A bicombining network redrawn from (Charlton et al., 2008).
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Figure B.2: A cluster network reconstructed by Dendroscope (Huson and Scornavacca,

2012) from five gene trees of a grass dataset.

Figure B.3: A galled network reconstructed by Dendroscope (Huson and Scornavacca,

2012) from five gene trees of a grass dataset.
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Figure B.4: A reticulate network reconstructed by PIRN (Wu, 2010) from five gene trees

of a grass dataset.
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Figure B.5: Left panel: A phylogenetic network redrawn from Figure 1C in (Fontaine

et al., 2015). Right panel: A phylogenetic network redrawn from Figure 6 in (Wen et al.,

2016).
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