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1 Introduction

Progress in high-throughput experimental techniques
in the past decade has resulted in a rapid accumula-
tion of protein-protein interaction data [27, 17, 28].
High-quality protein-protein interaction maps are
useful for a deeper understanding of how proteins
may together to carry out specific functions. How-
ever, high-throughput methods are known to yield
a non-negligible rate of false positives, and to miss
a fraction of existing interactions [28, 26, 10]. As
a result, further carefully-focused small-scale experi-
ments are often needed to complement the large-scale
methods to validate the detected interactions. There-
fore computational analysis techniques for assessing
and ranking the reliability of a protein-protein inter-
action are highly desirable.

I describe here our work in assessing and improv-
ing the reliability of protein-protein interactions from
these high-throughput experiments. I also show the
impact of more reliable protein interaction data on
recognition of protein complexes.

2 Functional Homogeneity, Lo-
calization Coherence

One of the earliest ideas for assessing the reliabil-
ity of protein interaction experiments is to consider
supporting evidence from the biological perspective.
For example, a pair of interacting proteins are gen-
erally expected to be localized to the same cellular
component or to have a common cellular role [26, 6].
Therefore one rough estimate of the reliability of a

Assay Reliability

Affinity chromatography 0.82
Affinity precipitation 0.46
Biochemical assay 0.67
Dosage lethality 0.50
Purified complex 0.89
Reconstituted complex 0.50
Synthetic lethality 0.37
Synthetic rescue 1.00
Two hybrid 0.27

Figure 1: Estimated reliability for each protein in-
teraction assay in the GRID dataset [4], computed
based on functional homogeneity [10].

protein interaction assay is the proportion of inter-
acting protein pairs reported by that assay that have
a common cellular role or are localised to the same
cellular component [20, 10]. Figure 1 contains such
rough estimates for various protein interaction assays,
computed based on common cellular role [10].

Protein functional annotations and subcellular local-
ization annotations are generally incomplete; and not
all protein pairs localized to the same cellular com-
partment or participating cellular process interact in
reality. So a more elaborate scheme [26] can be con-
ceived as follows. The proportion D of interacting
pairs reported by the assay in question is contributed
by (a) the proportion I of true interacting pairs that
are co-localized or have common cellular role that
are correctly detected by the assay, and by (b) the
proportion R of random pairs that are co-localized or
have common cellular role that are falsely detected by
the assay. More formally, D = TP ∗ I +(1−TP )∗R.
Thus the true-positive rate TP of the assay can be
derived as TP = (D−R)/(I −R). The proportion I
can be estimated from a large-enough gold standard
protein interaction data set.
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3 Information Fusion

Besides estimating reliability of a protein interaction
assay as a whole, it is also desirable to assess reliabil-
ity of an individual reported protein interacting pair.
An early idea for this is that of repeatability. An
interaction observed in two or more separate exper-
iments is obviously more reliable than one observed
only in one experiment.

Suppose the reliability ri of each protein interaction
assay i is known or has been estimated as in previ-
ous section. Assume that a set Eu,v of protein in-
teraction assays that report an interacting pair of
proteins (u, v) are independent. Then the reliabil-
ity ru,v of the interaction of (u, v) can be taken as
the probability that at least one of the assays in-
volved is reliable [10, 20]. More formally, ru,v =
1−

∏
i∈Eu,v

(1−ri)ni,u,v , where ni,u,v is the number of
times the pair (u, v) is observed to interact in assay
i.

Another common technique for assessing the relia-
bility of an interacting pair from multiple assays is
to compute a p-value based on the hypergeomet-
ric distribution [16]. Suppose a total of h interac-
tions are reported. Suppose proteins u and v are
reported to participate in m and n interactions re-
spectively. Then the probability for u and v being
reported to interact in k experiments at random is
P (k|n, m, h) =

(
h
k

)(
h−k
n−k

)(
h−n
m−k

)
/
(

h
n

)(
h
m

)
. Then the p-

value for x and y being reported to interact in k0

experiments is
∑

k≥k0
P (k|n, m, h).

4 Topology of Interactions

A large number of more sophisticated approaches ex-
ist for estimating error rates of protein interaction as-
says [3, 13, 21] and for ranking individual protein in-
teracting pairs [15, 24, 25, 19]. These approaches gen-
erally require the use of additional information such
as annotations on proteins or the use of information
from multiple assays. By contrast, Saito et al [23, 22],
Chen et al [6, 7, 8], and Albert and Albert [1] are
much more interesting in the sense that they are able
to rank the reliability of an interaction between a pair

of proteins using only the topology of the interactions
between that pair of proteins and their neighbours
within a short “radius”.

For example, the “interaction generality index” (IG)
of Saito et al [22] uses the property of two-hybrid
assay that a large number of false positives in two-
hybrid assay are due to self activators and “sticky”
proteins that transactivate the reporter gene without
actually interacting with their partners. A character-
istic of these self activators and sticky proteins is that
they appear to have a large number of interaction
partners in experiment, but these partners typically
do not interact with each others. Thus the IG on a
pair of reported interacting proteins (u, v) is simply a
count of the number of isolated interaction partners
that they have. The larger this count is, the more
unlikely that (u, v) is interacting.

The “interaction pathway reliability index” (IPR) of
Chen et al [7] relies on the assumptions that a bi-
ological function is generally performed by a highly
interconnected network of interactions and that evo-
lution favours adding interactions that shorten the
pathways of the function. Therefore, a pair of pro-
teins that are connected by a short path of reliable
interactions are likely to directly interact. Thus the
IPR on a pair of candidate interacting proteins (u, v)
is defined as the maximum reliability of the short-
est nonreducible indirect path connecting (u, v). By
assuming independence, the reliability of a nonre-
ducible indirect path can be computed as a product
of the rough estimates of the reliability of individual
interactions in the path. Chen et al [7] uses IG as
the rough estimate of the reliability of an individual
interaction.

Newer examples are indices that exploit a topolog-
ical consequence of the functional homogeneity ex-
pected of true interacting protein pairs. As we have
mentioned earlier, a pair of real interacting proteins
are generally expected to have a common cellular
role. It has been observed that proteins that have
common interaction partners have a high chance of
sharing a common function [10]. Therefore, a reli-
ability index for a pair of reported interacting pro-
teins can be formulated in terms of the proportion of
interaction partners that two proteins have in com-
mon. A simple and direct formulation of such an in-
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dex is the Czekanowski-Dice distance, CD-Distu,v =
2|Nu,v|/(|Nu| + |Nv|), where Nu,v is the set of in-
teraction partners shared by u and v, and Nu and
Nv are respectively the set of interaction partners of
u and v. Another example is the FSWeight mea-
sure, FSWeightu,v = (2|Nu,v|/(|Nu −Nv|+ 2|Nu,v|+
λu,v))(2|Nu,v|/(|Nv − Nu| + 2|Nu,v| + λv,u)), where
λu,v is a pseudo count to penalize similarity weights
between protein pairs when any of the proteins has
too few interacting partners. Both were originally
used for the purpose of protein function prediction
from protein interaction graphs [5, 10].

The effectiveness of these indices can be gauged by
their correlation with functional homogeneity and lo-
calization coherence. For example, as shown in Fig-
ure 2, over 80% (70%) of the top 10% of protein inter-
actions ranked by FSWeight (CD-Dist) have a com-
mon cellular role and over 90% (80%) of them have a
common subcellular localization. Similar strong cor-
relations are observed between these indices and the
gene expression correlation of highly ranked candi-
date interacting proteins, as well as between these
indices and number of times highly ranked candidate
pairs are observed in multiple protein interaction as-
says. See my GIW2006 keynote paper for further
details [6].

5 Protein Complex Prediction

Protein complexes are useful for understanding prin-
ciples of cellular organizations [12]. MCODE [2],
RNSC [18], and MCL [14] are three better-known ap-
proaches to protein complex prediction. PCP [9] is
probably the latest approach to this problem.

Figure 3(a) shows the performance of MCODE, MCL,
RNSC, and PCP on the BioGRID dataset [11].
RNSC and PCP correctly predict, by analysing the
yeast protein interaction network in BioGRID, 10%
(20%) of the known yeast protein complexes at 80%
(50%) precision. MCODE and MCL do not perform
as well on this dataset. There is thus much to be
improved in the capability of these methods.

Protein interaction datasets contain a lot of noise [26].
If such noise can be reduced in the input protein in-

Figure 2: Comparison of IG [22], IPR [7], CD-Dist [5],
and FSWeight [10] indices on their correlation with
(a) function homogeneity and (b) localization coher-
ence. This comparison was performed in [6] using
data on 19452 interactions in yeast from the GRID
database [4]. We can see, for example, over 80% of
the top 10% of interacting protein pairs ranked by
FSWeight have a common cellular role and over 90%
of them have a common subcellular localization.

teraction network, MCODE, MCL, RNSC, and PCP
should improve in performance. We have shown ear-
lier that FSWeight is a good index of the reliability of
an interaction. Thus we can preprocess the protein
interaction network by computing the FSWeight of
each interaction and retaining only the high-scoring
interactions. Also, while proteins within a complex
interact to perform some common functions, they
need not have full mutual interactions. As shown
in [10], a high FSWeight between two indirectly inter-
acting proteins is an excellent indication of function
sharing, and thus the two proteins are likely to be
indirect interaction partners within a complex. As
MCODE, MCL, RNSC, and—to a lesser extent—
PCP rely on direct interaction partners, their perfor-
mance can be boosted if we can modify the input net-
work by augmenting it with direct edges between in-
direct interaction proteins that have high FSWeight.

Figure 3(b) shows the impact of these two types of
preprocessing of the input protein interaction net-
work on MCODE, MCL, RNSC, and PCP. For ex-
ample, the precision of PCP on the BioGRID dataset
is increased by almost 10% in the 10–20% sensitivity
range. MCL benefits even more significantly, with
sensitivity increasing from 10% to 20% and precision
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Figure 3: Comparison of MCODE [2], RNSC [18],
MCL [16], and PCP [9]. The comparison was per-
formed in [9] on (a) the original BioGRID [11] yeast
interaction data and (b) the modified BioGRID yeast
interaction data.

improving by over 20% in the entire sensitivity range.
For more details, please see my CSB2007 paper [9].

6 Summary and Thanks

I have provided an overview of methods for estimat-
ing the reliability of protein-protein interaction ex-
periments. I have shown that it is possible to rank
the reliability of an individual reported interaction by
the topology of its local interaction network. I have
also demonstrated the beneficial effect of cleansing a
protein interaction network on the problem of protein
complex prediction.
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Hsu, Mong Li Lee, Hon Wai Leong, See-Kiong Ng,
Rintaro Saito, and Wing-Kin Sung.
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