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SUMMARY 
 

Keloid scars are aberrations in the wound healing process, resulting in the 

appearance of protrusive crab like extensions growing into normal tissue. They do not 

subside with time, and may develop over the most minor of skin wounds, such as insect 

bites or acne. Aside from being an aesthetic impediment, keloids are frequently 

associated with itchiness, pain and, when involving the skin overlying a joint, restricted 

range of motion. To date, none of the known treatment modalities have proven optimal.  

In recent years, a systems approach to understanding biology has gained 

eminence, in part due to the limitations of a purely reductionist approach in explaining 

biological phenomena. However, there are merits to the reductionist approach; much of 

what we know of biology today can be attributed to the work of molecular biologists of 

the past. In this dissertation, we will adopt both these approaches to tackling the keloid 

problem.  

 In the first part of this thesis, we examined the role played by a novel growth 

factor, the hepatoma-derived growth factor (HDGF), in keloid pathogenesis. Using a 

combination of immunohistochemical staining and Western blots, we found that secreted 

HDGF is increased in the keloid condition and its secretion is modulated by epithelial–

mesenchymal interactions. Furthermore, exogenous HDGF exerts a proliferative effect on 

keloid fibroblasts and increases the production of the angiogenic factor VEGF, indicating 

that it plays some role in the process of angiogenesis.  

 With the advent of high throughput technology, researchers are no longer 

confined to the study of individual molecules. In the second part of this dissertation, we 

utilized the microarray platform to assess the global transcriptional differences between 
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keloid and normal fibroblasts under serum free conditions. Many of the genes that have 

been found to be differentially expressed in previous studies were reconfirmed in this 

study. In addition, some interesting and novel genes not previously reported were also 

discovered. Gene Ontology terms that were found to be significantly enriched include 

those relating to immune response, antigen processing and presentation, chemokine and 

cytokine activity, extracellular matrix and ribosomal proteins. 

 In the third part of this thesis, we attempted to reverse engineer gene networks 

from microarray expression profiles of keloid and normal fibroblasts. Using a physical 

approach to model transcription factor interactions, we discovered some of the binding 

motifs that were active in the keloid condition. Furthermore, we used the influence 

approach to reverse engineer some of the networks that were found to be significantly 

enriched from the second part of this dissertation. Our results indicate that transcriptional 

networks were better suited for this process compared to cytokine receptor interactions 

and intracellular signaling networks. We also found that the NFKB transcriptional 

network that was inferred from normal fibroblast data was more accurate compared to 

that inferred from keloid data, suggesting a more robust network in the keloid condition. 

 The work done in this thesis, utilizing both molecular and computational 

approaches, has hopefully advanced our understanding of keloid scarring. In addition, the 

results from this study has generated new and promising future areas of research and is a 

small step forward to finding a solution to this condition. 
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IGFBP    Insulin-like growth factor binding protein 

IGFBP3   Insulin-like growth factor binding protein 3 

IHC    Immunohistochemical staining 

IL6    Interleukin 6 

IL8    Interleukin 8 

IL32    Interleukin 32 

IVT    In vitro transcription 

KEGG    Kyoto Encyclopedia of Genes and Genomes 

KF    Keloid fibroblasts 

KK    Keloid keratinocytes 

KRT19   Keratin 19 

LAMA2   Laminin alpha 2 

LEDGF   Lens epithelium-derived growth factor 

MEMO1   Mediator of cell motility 1 

MAPK    Mitogen-activated protein kinase 

MAS    Microarray suite 

MHC    Major histocompatibility complex 

MI    Mutual Information 

MMP    Matrix metalloproteinase 
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mRNA    Messenger RNA  

mTOR    Mammalian target of rapamycin 

MTT    3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium    

bromide 

MYO1D   Myosin 1D 

MYO19   Myosin 19 

NF    Normal fibroblasts 

NFKB  Nuclear factor kappa-light-chain-enhancer of activated B  

cells 

NGF    Nerve growth factor 

NK    Normal keratinocytes 

OAS1    2',5'-oligoadenylate synthetase 1 

PAI-1    Plasminogen activator inhibitor-1 

PCNA    Proliferating cell nuclear antigen 

PCA    Principal components analysis 

PCR    Polymerase chain reaction 

PDGF    Platelet-derived growth factor 

PDGFRB   Platelet-derived growth factor receptor beta 

PI3-K    Phosphatidylinositol 3-kinase 

POSTN   Periostin 

PPV    Positive Predicted Value 

PTGES   Prostaglandin E synthase 

PTX3    Pentraxin-related gene 
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RAC2    Ras-related C3 botulinum toxin substrate 2 

REDUCE Regulatory Element Detection Using Correlation with 

Expression 

RMA    Robust multichip analysis 

RNA    Ribonucleic acid 

RNAP    RNA polymerase 

RPS    Ribosomal protein 

RSAD2   Radical S-adenosyl methionine domain containing 2 

SEM    Standard error of the mean 

SEM5A   Semophorin-5A 

SFRP1    Secreted frizzled-related protein 1 

SLC39A8   Solute carrier family 39 member 8 

SOS2    Son of sevenless homolog 2 

TAP    Transporter associated with antigen processing 

TF    Transcription factor 

THBS1   Thrombospondin-1 

TNFAIP3   Tumor necrosis factor alpha-induced protein 3 

TNFAIP6   Tumor necrosis factor alpha-induced protein 6 

TNFSF10   Tumor necrosis factor superfamily member 10 

TGF-β    Transforming growth factor beta 

VEGF    Vascular endothelial growth factor 

WNT5A   Wingless-type MMTV integration site family member 5A 
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CHAPTER ONE 

INTRODUCTION 

 

“The availability of genome sequence is just the beginning. Scientists now want to 

understand the genes and the role they play in the prevention, diagnosis and treatment of 

disease.” 

 – Dr Randy Scott, President of Incyte 

 

1.1 Background and motivations for the thesis 

Since the discovery of deoxyribonucleic acid (DNA) in the 1950s by Watson and Crick, 

biology has moved at a rapid rate. Thanks to the Human Genome Project, we now have in 

our possession the complete genome of the human species. Future biomedical research 

would involve the application of this knowledge to the understanding of various 

biological processes in the hopes of uncovering new methods of treating the numerous 

diseases and medical conditions afflicting the human race.  

Among the many diseases to beset mankind, keloids do not rank very highly in 

the hall of fame. However, the appearance of these large protruding claw-like scars is 

bound to elicit shock and distress in most observers due to their unsightly nature. 

Furthermore, aside from causing emotional trauma, keloid scars can be painful or itchy, 

and may restrict mobility if formed over a joint (Lee et al. 2004). In a study assessing the 

quality of life of patients with keloid and hypertrophic scarring, it was demonstrated for 

the first time that the quality of life of these patients was reduced due to physical and/or 

psychological effect (Bock et al. 2006). The problem is further exacerbated by the fact 
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that there is no particularly effective treatment to date (Tuan & Nichter 1998; Louw 

2007). These scars also have a propensity to recur after surgery and have been considered 

as benign tumours (English & Shenefelt 1999). 

For all the reasons stated above, it would be beneficial if we could discover some 

effective method of treating these scars. To this end, an understanding of the molecular 

etiology of keloids would be useful. Furthermore, since keloid formation is generally 

considered to be a form of abnormal wound healing, any insights gained from this 

endeavour would also increase our understanding of the wound healing process. 

 

 

1.2 Approach and methodology  

We have decided to adopt both top down as well as reductionist approaches to 

understanding the mechanisms underlying keloid pathology. In the first part of this 

dissertation, we investigated the role played by a novel protein in the keloid condition 

using molecular biology techniques. While it was found that this molecule, the hepatoma-

derived growth factor (HDGF) is significantly expressed in keloids, our data also 

suggests that it is unlikely that this growth factor is able to induce keloid formation on its 

own. Therefore, while a reductionist, in depth study of this molecule would certainly 

increase our understanding about keloids, the knowledge gained would only be a small 

fraction of the complex mechanisms underlying keloid pathology.  

 Researchers today are no longer confined to studying one molecule at a time 

thanks to the development of various high throughput techniques. These technologies 

enable us to have a snapshot of the thousands of molecules present in the cell at any one 
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time. In the second part of this dissertation, we utilized one of these technologies, 

specifically the Affymetrix microarray platform, to gain insights into some of the system 

level differences between keloid and normal cells. Based on this approach, we would be 

able to identify all genes that are significantly different between the two conditions. The 

data generated from this study can then be utilized for further research by using a 

reductionist approach to study the genes individually, or by extracting biological meaning 

through a computational approach. 

 One way of increasing our biological knowledge is to learn how the different 

molecules in the cell are connected. In the third part of the dissertation, we attempt to 

reconstruct gene networks using a combination of probabilistic and regression 

techniques. There are two general strategies for reverse engineering gene networks – a 

physical approach where physical interactions between transcription factors and their 

promoters are modeled, and an influence approach where the mechanistic process is 

abstracted out as a black box. For the physical approach, we will use the entire 

microarray data set for modeling, but for the influence approach, we will focus on small 

networks of genes that have been found to be differentially expressed from the second 

part of this dissertation. Most attempts at modeling biological networks have been done 

using simulated data; our work would highlight some of the issues involved in working 

with experimental data. Furthermore, it is hoped that insights gained from this endeavor 

would provide some clues about the different transcriptional regulatory mechanisms 

present in keloid and normal fibroblasts. 
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1.3 Contributions of the thesis 

We first discovered increased expression of HDGF in keloid scars compared to normal 

skin. An in vitro study of the role of HDGF using keloid and normal derived cells suggest 

that epidermal mesenchymal interactions govern the increased secretion of this growth 

factor in the keloid condition. Furthermore, HDGF was found to increase the proliferation 

of keloid fibroblasts and was also found to increase the production of the vascular 

endothelial growth factor (VEGF). However, one of the hallmarks of keloids is an 

increased extracellular matrix production, and HDGF did not seem to contribute to this 

aspect of keloid formation. 

 In the second part of this dissertation, we used the microarray platform in an 

attempt to identify groups of genes that can be implicated in the formation of keloids. 

While other groups have utilized this technology previously, none had surveryed the 

global transcriptional landscape in serum starvation conditions. Furthermore, there was 

very little overlap in many of the microarray studies done, and it is hoped that our study 

would help identify some of the more consistent differentially expressed genes. Our 

results indicate some consistency with previous studies done on keloid fibroblasts. We 

also uncovered differentially expressed genes that have not been reported previously, and 

enrichment analysis indicate that processes such as immune response, antigen processing 

and presentation, chemokine and cytokine activity, extracellular matrix and ribosomal 

proteins are among those that are affected in the keloid condition.  

In the third part of this dissertation, we attempted to reverse engineer gene 

networks using the microarray data that was generated in the second part of the thesis, as 

well as any publicly available microarray data on keloid and normal fibroblasts that we 
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could find in the literature. Using the physical approach of correlating expression values 

to binding motifs, we found some consensus sequences that were active in the keloid 

condition, as well as some sequences that were responsive to steroids, one of the 

commonly used treatments for keloids. These consensus sequences are possible 

transcription factor binding sites and could be explored for developing future keloid 

treatments or to improve the efficacy of current steroid treatments. We also compared 

different normalization methods and influence approaches on the reconstruction of 

known gene networks taken from the KEGG database that were found to be statistically 

enriched in our microarray data. We found that the combination of the Bayesian 

algorithm, RMA normalization and transcriptional networks gave the best reconstruction 

results and this could serve as a guide for future influence approaches dealing with 

experimental data. 

 

 

1.4 Organization of the thesis 

The rest of the thesis is organized as follows. In Chapter Two, background information 

on wound healing and keloid scarring is presented. Chapter Three describes the materials 

and methods used in both molecular and computational approaches employed in this 

study. In Chapter Four, the importance of HDGF in keloid formation is studied using a 

combination of cell and molecular techniques. Chapter Five examines the global 

transcriptional differences between keloid and normal skin fibroblasts by utilizing the 

Affymetrix microarray platform. In Chapter Six, insights obtained from the reverse 
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engineering of keloid and normal fibroblast gene networks are discussed. Conclusions 

from the thesis are presented in Chapter Seven. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

 

2.1 Wound healing 

To understand the underlying mechanisms involved in pathologic conditions such as 

scarring and fibrosis, it is useful to first review what is known about normal tissue 

response to injury. Upon wounding, an orderly series of events is triggered, with the final 

desired outcome being the restoration of anatomical structure and function. These events 

can be grouped into four distinct but overlapping phases, hemostasis, inflammation, 

proliferation and remodeling (Mast 1992).  

 

2.1.1 Hemostasis and inflammation 

The healing cascade starts with the aggregation of platelets at the wound site and the 

release of clotting factors. This results in the formation of a fibrin clot to plug the wound 

(Clark 2001). At the same time, a cocktail of growth factors and cytokines are released 

from the serum of the disrupted blood vessels and degranulating platelets (Werner & 

Grose 2003). Following hemostasis, neutrophils infiltrate into the wound site and 

monocytes are activated to become wound macrophages. These inflammatory cells serve 

two purposes: firstly as a means of removing foreign material, bacteria and damaged 

matrix components by phagocytosis, and secondly as a source of growth factors that are 

required to initiate the next phase of the healing process (Sylvia 2003; Diegelmann, 

Cohen & Kaplan 1981). 
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2.1.2 Proliferation 

In the proliferative phase, the predominant cell in the wound site is the dermal fibroblast 

(Stadelmann, Digenis & Tobin 1998). This cell is responsible for producing collagen and 

other extracellular matrix components needed to restore structure and function to the 

injured tissue. At least 23 different types of collagen have been identified but type I is 

predominant in the scar tissue of skin (Prockop & Kivirikko 1995). Also during this 

phase, keratinocytes in the epidermis proliferate and migrate from the wound edge 

leading to the process of reepithelialization (Santoro & Gaudino 2005). In addition, local 

factors in the wound microenvironment such as low pH and reduced oxygen tension 

initiate the release of angiogenic factors leading to the migration and proliferation of 

endothelial cells (Knighton et al. 1983). Massive angiogenesis leads to the formation of 

new blood vessels, and the resulting wound connective tissue is known as granulation 

tissue because of the granular appearance of the numerous capillaries (Werner & Grose 

2003). Around a week after the wounding has taken place, fibroblasts have differentiated 

into myofibroblasts and the wound begins to contract. Myofibroblasts contain the same 

kind of actin as found in smooth muscle cells, alpha-smooth muscle actin (α-SMA) to 

produce more force during contracture (Hinz 2006).  

 

2.1.3 Remodeling 

In the final stage, collagen undergoes cross-linking to improve its strength and stability. 

This stage is characterized by continued collagen synthesis and collagen catabolism 

finally resulting in a normal scar (Parks 1999). This process requires a balance between 

matrix biosynthesis and matrix degradation. A disruption in this balance either due to 
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excessive matrix deposition or decreased matrix degradation leads to keloid and 

hypertrophic scars (Raghow 1994). 

 

Figure 2.1: Schematic representation of different stages of wound repair (Werner & Grose 

2003). A: 12–24 h after injury the wounded area is filled with a blood clot. Neutrophils invade 

into the clot. B: at days 3–7 after injury, macrophages are abundant in the wound tissue. 

Endothelial cells migrate into the clot; they proliferate and form new blood vessels. Fibroblasts 

migrate into the wound tissue, where they proliferate and deposit extracellular matrix. 

Keratinocytes proliferate at the wound edge and migrate above the provisional matrix. C: 1–2 wk 

after injury the wound is completely filled with granulation tissue. The wound is completely 

covered with a neoepidermis. 
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2.2 Keloid scarring 

 

2.2.1 Keloid versus hypertrophic scars 

The term cheloide was coined in 1802 to describe the lateral extensions often observed in 

these scars, which resemble the legs of a crab growing into normal tissue (Urioste, Arndt 

& Dover 1999). Keloids are commonly compared with hypertrophic scars, and the two 

share some similarities such as increased collagen secretion and a similar gross 

appearance. However, unlike hypertrophic scars that are confined to the area of injury, 

keloids may extend well beyond the confines of the original wound. Furthermore, 

hypertrophic scars usually subside with time, whereas keloids continue to evolve over 

time, without a quiescent or regressive phase (Nemeth 1993). While hypertrophic scars 

usually develop within a few weeks after skin injury, keloids normally show a delayed 

onset, normally forming months after skin trauma (Marneros & Krieg 2004). 

 

2.2.2 Epidemiology 

 It is not well documented how commonly keloids occur in the general population but the 

reported incidence range from a high of 16% among adults in Zaire to a low of less than 

1% among adults in England (English & Shenefelt 1999). It is widely accepted that dark-

skinned populations have a higher occurrence of keloids than light-skinned populations, 

with the reported incidence ratio between the two groups ranging from 2:1 to 19:1 

(Atiyeh, Costagliola & Hayek 2005). Among Asians, keloid incidence appears to be more 

common in Chinese (Shaffer, Taylor & Cook-Bolden 2002). Both autosomal dominant 
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and autosomal recessive genetic inheritance have been proposed but not confirmed and 

some data suggest familial occurrence (Bloom 1956; Omo-Dare 1975).  

A difference in occurrence of keloids based on gender has not been demonstrated 

convincingly (Marneros & Krieg 2004). However, most reported cases have occurred in 

individuals between 10 and 30 years of age (Rockwell, Cohen & Ehrlich 1989). Hormone 

levels are high at this age, indicating that they may have some influence on keloid 

formation. This hypothesis is supported by data showing an increased binding of 

androgens in keloid tissue (Ford et al. 1983; Schierle, Scholz & Lemperle 1997). 

Furthermore, some reports suggest that keloids appear more often in puberty, enlarge 

during pregnancy, and decrease in size after menopause (Moustafa, Abdel-Fattah & 

Abdel-Fattah 1975). However, other explanations such as increased neo-angiogenesis 

during pregnancy are also possible (Seifert & Mrowietz 2009). 

 

2.2.3 Clinical presentation 

Keloids are generally considered to be a result of excessive wound healing, although 

some also believe these scars to be a type of benign fibrous tumor (Slemp & Kirschner 

2006). They are characterized by an overgrowth of dense fibrous tissue coupled with 

excessive deposition of extracellular matrix (ECM) components such as collagen and 

fibronectin (Rockwell, Cohen & Ehrlich 1989; Babu, Diegelmann & Oliver 1989). They 

uniquely affect only humans, and may develop even after the most minor of skin wounds, 

such as insect bites or acne (Urioste, Arndt & Dover 1999). Keloids are frequently 

associated with itchiness, pain and, when involving the skin overlying a joint, restricted 

range of motion (Lee et al. 2004). For unknown reasons, keloids occur more frequently 
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on the chest, shoulders, upper back, back of the neck, and earlobes (Bayat et al. 2004). 

Corneal keloidal scarring has also been observed (Shukla, Arora & Arora 1975). 

 

Figure 2.2: Keloid formation in different parts of the body and in different patients (Marneros & 

Krieg 2004). 

 

 

2.2.4 Histopathology 

Normal skin contains distinct collagen bundles that run parallel to the epithelial surface. 

In hypertrophic scars, collagen bundles are flatter, less demarcated, and are arranged in a 

wavy pattern. In keloids, the collagen bundles are thick and are randomly oriented as 

swirls and whorls (Rockwell, Cohen & Ehrlich 1989). Keloid formations are 

characterized by active angiogenesis and hypoxia (Appleton, Brown & Willoughby 

1996). Occlusion of some microvessels by excessive endothelial cells may lead to local 

hypoxic conditions and apoptosis (Kischer 1992).  
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2.2.5 Etiology 

Several etiological factors for keloids have been proposed, with skin injury being the 

most obvious. Spontaneous occurrence of keloids in the absence of trauma is rare 

although a few cases have been reported (Shaffer, Taylor & Cook-Bolden 2002). 

However, such spontaneous occurrence could be the result of a minor, overlooked trauma 

to the skin (Marneros & Krieg 2004). Increased skin tension has also been postulated to 

play some role in keloid formation. However, soles and palms which are sites of high 

skin tension are rarely sites of keloid formation, and the most affected site reported, the 

earlobe, is under minimal tension (Seifert & Mrowietz 2009). 

 The role of immunologic factors in keloid formation has not been studied in detail 

and remains to be elucidated. Immune cell infiltrate in keloids include T lymphocytes and 

denditric cells (Santucci et al. 2001) and an increased number of macrophages, epidermal 

Langerhans cells and mast cells have been noted as well (Niessen et al. 2004; Smith, 

Smith & Finn 1987). Some authors have reported an association with cell membrane 

proteins, such as HLA-DRB-16, B-14, and BMW-16 (Datubo-Brown 1990), elevated 

tissue levels of IgG, IgA, and IgM (Kischer et al. 1983), and abnormal immune response 

to sebum (Yagi, Dafalla & Osman 1979). The sebum hypothesis provides an explanation 

for the absence of keloids on anatomical sites lacking sebaceous glands, such as palms 

and soles (Seifert & Mrowietz 2009). Dermal injury exposes the pilosebaceous unit to the 

systemic circulation, initiating a cell-mediated immune response in persons who retain T 

lymphocytes sensitive to sebum. Subsequent release of cytokines, including various 

interleukins and TGF-beta, stimulates chemotaxis of mast cells and production of 

collagen by fibroblasts. This hypothesis also gives a plausible reason as to why only 
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human beings, the only mammals with true sebaceous glands, are affected by keloid 

scarring (Al-Attar et al. 2006). 

Several studies have shown that many different cytokines and growth factors are 

involved in the formation of keloids. Some of the important molecules that were elevated 

in keloids include transforming growth factor beta (TGF-β) (Lee et al. 1999), interleukin-

6 (IL-6) (Ghazizadeh 2007) and vascular endothelial growth factor (VEGF) (Ong et al. 

2007). Keloid fibroblasts were also more responsive in mitogenic assays to platelet-

derived growth factor (PDGF) (Haisa, Okochi & Grotendorst 1994).  

Another possible factor underlying the growth and formation of keloids is their 

resistance to apoptosis. Keloid fibroblasts was found to be more resistant to Fas mediated 

apoptosis (Chodon et al. 2000) and the overexpression of insulin-like growth factor-1 

(IGF-1) receptor inhibited ceramid-induced apoptosis (Ishihara et al. 2000). Furthermore, 

decreased expression of proapoptotic genes (Sayah et al. 1999) and increased expression 

of apoptotic inhibitors (Messadi et al. 2004) have also been observed in keloid 

fibroblasts. 

 Tissue hypoxia could be another contributory factor to pathogenesis. An increased 

level of hypoxia marker, hypoxia induced factor-1α (HIF-1α) was detected in keloid 

tissues and hypoxia appears to elevate the expression of plasminogen activator inhibitor-1 

(PAI-1) (Zhang et al. 2003). Increased PAI-1 activity correlated with an elevated collagen 

expression in fibrin gel cultures of keloid fibroblasts (Tuan et al. 2003). Hypoxia-driven 

VEGF is also increased in keloids (Wu et al. 2004). 

 While most in vitro studies focus on keloid fibroblasts, recent evidence points to 

altered interactions between keratinocytes and fibroblasts in keloids. To examine 
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epithelial-mesenchymal cross-talk in skin, experiments using normal or keloid 

keratinocytes co-cultured with normal or keloid fibroblasts have been conducted. In such 

co-culture systems, keloid keratinocytes promoted the proliferation of keloid fibroblasts 

to a greater extent than normal keratinocytes, while the least proliferation was seen in 

keloid fibroblasts cultured without any keratinoctyes (Lim et al. 2001; Funayama et al. 

2003). Furthermore, co-culturing normal or keloid fibroblasts with keloid keratinocytes 

resulted in an increased expression of collagen I and III compared to the non co-cultured 

condition (Lim et al. 2002). These data suggest that epithelial-mesenchymal interactions 

could contribute to keloid pathogenesis. 

 

2.2.6 Treatment 

Like many other diseases, the best treatment for keloids is prevention. Although many 

different treatment modalities have been proposed, none have proven to be optimal. 

Surgical excision of a keloid is associated with a high recurrence rate and therefore has to 

be combined with some other adjunctive therapy.  These include compression therapy, 

silicone sheeting, cryotherapy, radiation or laser therapy (Slemp & Kirschner 2006; Louw 

2007).  

Unfortunately, there are drawbacks to many of these methods. Compression 

therapy is ultimately limited by the ability to adequately fit the garment to the wounded 

area and patient discomfort frequently reduces compliance (Cheng et al. 1984). The 

success of silicone sheeting is also limited by patient compliance, and silicone products 

may cause adverse effects, including skin maceration and excoriation (Slemp & 

Kirschner 2006). Cryotherapy could lead to permanent hypopigmentation resulting from 
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cold sensitivity of melanocytes and is therefore less desirable in patients with darker skin 

(Louw 2007). On the other hand, radiation therapy causes hyperpigmentation and carries 

the theoretical risk of radiation induced malignancy (Wolfram et al. 2009). The efficacy 

of laser treatment has been low with a recurrence rate of 50% (Apfelberg et al. 1989).  

Other pharmacologic therapies for reducing the recurrence rate exist, with the 

application of corticosteroids being the most well known. Potential side effects of 

corticosteroid injections include pain, skin atrophy, telangiectasia formation, 

depigmentation, and infection (Urioste, Arndt & Dover 1999). Treatment with 

interferons, which are cytokines secreted by T-helper cells, may help to reduce fibrosis, 

but  treatment has also been met with some success, but has severe side effects including 

fever, chills, night sweats, fatigue, myalgia and headache (Wolfram et al. 2009). 5-

Fluorouracil is another compound that has been used successfully as an antiproliferative 

agent. The injection can be painful however, and purpura and ulcers have been 

documented (Wolfram et al. 2009). 

The side effects of the above treatments notwithstanding, ultimately, none of the 

above methods are completely effective in preventing the recurrence of keloids. Many 

attempts have been made to find successful alternatives, with the ultimate direction of 

research geared toward understanding scarring at the molecular level in the hope of 

obtaining a permanent solution to this problem. 
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CHAPTER THREE 

MATERIALS AND METHODS 

 

 

3.1 Media and chemicals 

Dulbecco‟s modified eagle medium (DMEM), Hanks balanced salt solution (HBSS), fetal 

calf serum (FCS), streptomycin, penicillin, gentamicin and fungizone were purchased 

from Gibco. Keratinocyte growth medium (KGM) was purchased from Clonetics (USA). 

Phosphate buffered saline without Ca
2+

 and Mg
2+

 (PBS), epidermal growth factor (EGF), 

cholera toxin and hydrocortisone were purchased from Sigma Chemical Co (USA). 

Dispase II was purchased from Boehringer Mannheim (USA). Rhodamine counter stain 

was obtained from Difco (USA). Tris base was purchased from J.T Baker. Triton X-100, 

ethylenediaminetetraacetic acid (EDTA), 30% acrylamide/bis solution (37.5:1 2.6%C) 

and glycine were purchased from Biorad. Sodium Chloride (NaCl), nonidet P-40 (NP-

40), sodium dodecyl sulphate, hydrogen peroxide (H2O2), bovine serum albumin (BSA), 

tween-20, potassium chloride (KCL), potassium phosphate (K3PO4), magnesium chloride 

(MgCl2), MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], N,N –

dimethylformamide (DMF) and paraformaldehyde were all purchased from Sigma 

Chemical Co (USA). Methanol and acetic acid were purchased from Lab-Scan. RNeasy 

kit was bought from Qiagen (Germany) while the GeneChip Eukaryotic Target Labeling 

and Control Reagents and arrays were bought from Affymetrix (USA). 
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3.2 Cell isolation 

 

3.2.1 Keloid keratinocyte and fibroblast database 

Keratinocytes and fibroblasts were randomly selected from a specimen bank of 

keratinocyte/fibroblast strains derived from excised keloid specimens. All patients had 

received no previous treatment for the keloids before surgical excision. A full history was 

taken and an examination was performed, complete with coloured slide photographic 

documentation, before taking informed consent prior to excision. Approval by the 

National University of Singapore (NUS) Institutional Review Board (NUS-IRB) was 

sought before excision of human tissue and collection of cells. 

 

3.2.2 Keratinocyte culture from keloid scar and normal skin 

Excised keloid scar and normal skin specimens were repetitively washed in PBS 

containing 150 μg/ml gentamicin and 7.5 μg fungizone, until the washing solution 

became clear. The tissue was then divided into pieces of approximately 5mm × 10mm 

and the epidermis was scored. Dispase 5mg/ml in HBSS was added and skin was 

incubated overnight at 4ºC. The epidermis was carefully scraped off with a scalpel the 

next day and placed in trypsin 0.25%/Glucose 0.1%/EDTA 0.02% for 10 min in the 

incubator. Trypsin action was quenched by DMEM/10% FCS. The suspended cells were 

transferred into tubes and centrifuged at 1000 rpm for 8 min. The cells were seeded in 

Keratinocyte Culture Medium (80 ml DMEM supplemented with 20 ml FCS, EGF 10 

ng/ml, cholera toxin 1 × 10
-9

 M and hydrocortisone 0.4 μg/ml) at 1 × 10
5 

cells/cm
2 

for 24 

hrs before changing to Keratinocyte Growth
 
Medium (KGM). The cell strains were 



 40 

maintained and stored at -150ºC. Only cells from second and third passages were used for 

the experiments. 

 

3.2.3 Fibroblast culture from keloid scar and normal skin  

Remnant dermis from the keloid scar and normal skin were either minced or incubated in 

a solution of collagenase type 1 (0.5 mg/ml) and trypsin (0.2 mg/ml) at 37ºC for 6 hrs. 

Cells were pelleted and grown in tissue culture flasks. Alternatively the skin tissue 

samples were chopped into pieces of 1-2 mm
2
. The pieces were then transferred to a 

100mm tissue culture dish previously coated with a thin layer of DMEM/10%FCS. 

Culture medium enough to cover the explants were then added and topped up after 2-3 

days. After 4-7 days the fibroblasts outgrew from the tissue. Fibroblast cell strains were 

maintained and stored at -150ºC until use. Only cells from the second and third passages 

were used for the experiments. 

 

3.2.4 Cell counting 

Before cells were seeded into culture flasks for experiments, aliquots of the cell 

suspension were mixed with trypan blue in a ratio of 1:4 and counted in a Neubauer‟s 

haemocytometer. Non-viable cells will be stained blue while viable cells remain opaque. 

Viable cells in the four corner squares of the heamocytometer were counted. Since the 

volume of each square is 10
-4

 cm
3
 the following formula can be used to calculate the 

number of cells in the cell suspension: 

Cells per ml   = the average count per square x 4 (dilution factor) x 10
4
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Total cell number  = cells per ml x the original volume of fluid from which cell 

sample was removed 

 

 

3.3 HDGF experiments 

 

3.3.1 Immunohistochemistry 

Paraffin sections of keloid and normal tissue were dewaxed or deparaffinized in two 

changes of xylene followed by re-hyderation in 100%, 95% and 70% ethanol gradient. 

Antigens were then retrieved by immersing the slides in 0.01 M citrate buffer, pH 6.0, 

heating in a microwave oven (high for 2.5 min., low for 5 min.), cooling at 4°C for 20 

min. and washing in water for 5 min. Endogenous peroxidase was blocked in 3% H2O2 

and non-specific binding was blocked for 1 hr (CAS block; Zymed Laboratories, South 

San Francisco, CA, USA). The sections were incubated with antibodies specific for 

HDGF, diluted 1:1000 for 1 hr. After washing, the slides were incubated in anti-mouse 

IgG-peroxidase (Zymed) or anti-rabbit IgG-peroxidase (Zymed), diluted 1:500 for 2 hrs, 

for HDGF primary antibodies, respectively. The slides were washed in Tris-buffered 

NaCl (TBS) or 0.05% Tween-20, pH 7.5, and then with MilliQ H2O (Millipore Corp, 

Billerica, MA, USA). The reaction product was developed with 3,3‟-diaminobenzidine 

tetrahydrochloride substrate kit (Zymed), and the sections were counterstained with 

hematoxylin. All wash steps were carried out in TBS/0.05% Tween-20. The antibodies 

were diluted in 1% bovine serum albumin (BSA)/TBS. Non-immune mouse/rabbit 

antibody of the appropriate immunoglobulin isotype was used for negative controls. 
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3.3.2 Serum stimulation of fibroblasts 

Fibroblasts were seeded in six-well plates at a density of 1 x 10
4
 cells/ml in 10% FCS for 

24 hrs and subsequently starved in a serum-free medium for another 48 hrs. After 48 hrs, 

the fibroblasts were stimulated by exposure to either 10% FCS or DMEM for 5 days 

before being harvested.  

 

3.3.3 Keratinocyte-fibroblast co-culture 

Keloid keratinocytes (KK) and normal keratinocytes (NK) obtained from randomly 

selected keloid and normal strains were seeded at a density of 1 x 10
5
 cells/cm

2
 on 

Transwell clear polyester membrane inserts with 0.4-µm pore size and 4.5 cm
2
 (Corning 

Incorporated Life Sciences, Acton, MA, USA) area. The cells were maintained for 4 days 

in EpiLife medium (Cascade Biologics, OR, USA) until 100% confluent. The medium 

was then changed to EpiLife supplemented with increased calcium concentration and the 

cells were exposed to the air–liquid interface for another 3 days, allowing the 

keratinocytes to stratify and reach terminal differentiation. Keloid fibroblasts (KF) and 

normal fibroblasts (NF) were seeded in six well plates at a density of 1 x 10
5
 cells/well in 

DMEM/10% FCS for 48 hrs to 80% confluency. Keratinocytes on membrane inserts and 

plated fibroblasts were washed twice with PBS before the inserts were placed into the 

six-well plates containing fibroblast cultures to initiate KK/KF or NK/NF co-cultures in 

fresh serum-free DMEM. Whole-cell extracts and conditioned media were harvested and 

analysed separately. 
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Figure 3.1: Co-culture of epidermal keratinocytes and dermal fibroblasts as an in vitro model to 

study epithelial-mesenchymal interactions. Figure courtesy of Dr Anandaroop Mukhopadhyay.  

 

3.3.4 Treatment of fibroblasts with HDGF  

KF and NF cells were seeded in 6-well plates at a density of 1 × 10
4
 cells/ml in 

DMEM/10% FCS for 24 hrs and then in serum-free medium for another 48 hrs.. The cells 

were subsequently treated with 250 ng/ml of recombinant HDGF. Cells without treatment 

were used as controls. Whole-cell extracts and conditioned media were harvested at 

different time points and subjected to Western blot analysis for different molecular 

targets. 

 

3.3.5 Treatment of keloid co-cultures with inhibitors 

Keloid co-cultures were established as previously mentioned. The cells were 

subsequently treated with varying concentrations of various inhibitors: Rapamycin (0.01 

and 2 µM; Calbiochem, CA), WP631 (0.05, 0.1, and 0.2 µM; Calbiochem) and 

KKeerraattiinnooccyyttee  ssuubbccuullttuurree  

KKeerraattiinnooccyyttee--  FFiibbrroobbllaasstt  ccoo--ccuullttuurree    

FFiibbrroobbllaasstt  ssuubbccuullttuurree  
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Mitoxantrone (0.05, 0.1 and 0.2 µM; Calbiochem) to investigate their effects on HDGF 

expression. Cells without inhibitor treatment were used as controls. After 24 h and 72 h, 

conditioned media from the co-cultures was collected and subjected to Western blot 

analysis for HDGF expression. 

 

3.3.6 Smad-null and Smad-overexpression cell assay 

This assay was used to study the effect of Smad1, 2 and 3 on HDGF expression. Mouse 

embryo fibroblasts of wild-type (MEF-wt), Smad 1
-/-

 (S1
-/-

), Smad 1
+/+

 (S1
+/+

), Smad 2
−/−

 

(S2
−/−

) and Smad 3
−/−

 (S3
−/−

) were kindly provided by Dr Rik Derynck, UCSF. Cells were 

seeded in six-well plates for 24 h, followed by serum-free DMEM starvation for 48 h 

before co-culture with keloid keratinocytes. Whole cell extracts and conditioned media 

were assayed for HDGF by Western blot. 

 

3.3.7 MTT assay 

The MTT assay is a commonly used colorimetric assay to quantify cell numbers. It is 

widely used in studies involving cell proliferation or cell toxicity. MTT [3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium] is cleaved by an active succinate-

tetrazolium reductase system present in the mitochondrial respiratory chain of a living 

and metabolizing cell into blue formazon crystals which can be solubilized and their 

absorbance measured. The relationship between cell number and absorbance is linear. In 

our experimental set up, normal and keloid fibroblasts were seeded in 96 well plates. The 

cells were divided into control and treatment groups and were incubated with 10 ul of 

MTT (5mg/ml) in 100ul of DMEM to give a final concentration of 0.5mg/ml in each well 
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for about 2hrs. The medium was removed and the blue crystals were solubilized by 

Hansen‟s method (Hansen, Nielsen & Berg 1989) using 20% w/v SDS in a solution of 

DMF: water (1:1 v/v) and shaking in an orbital shaker. The absorbance of the solution 

was then measured directly by using a plate reader at 570nm. 

 

3.3.8 Western blotting 

Frozen tissue specimens or cultured fibroblasts under different experimental conditions 

were lysed in cell lysis buffer containing 20 mM Tris-HCl (pH 7.5), 1% Triton X-100, 

100 mM NaCl, 0.5% Nonidet P-40 and 1 mg/ml protease inhibitor cocktail (Boehringer 

Mannheim, Mannheim, Germany). This was followed by centrifugation at 13000 x g for 

10
 
min. Supernatant was collected while the pellet was discarded. Protein concentration 

of the tissue extracts were determined by Bradford method. Proteins were then subjected 

to Western blot analysis. In total, 50 µg of whole-cell extract was separated by 14% or 

8% SDS-PAGE under reducing conditions and electroblotted onto a nitrocellulose 

membrane. Blots were incubated with numerous antibodies including mouse and rabbit 

anti-HDGF (a gift from Dr Ren Henning, MD Anderson Cancer Centre and Dr H 

Nakamura, Hyogo College of Medicine, Japan), mouse anti-PCNA (Santa Cruz, CA, 

USA), mouse anti-VEGF, anti-connective tissue growth factor (CTGF), rabbit anti-

p44/p42 mitogen-activated protein kinase (MAPK), mouse anti-phospho p44/p42 MAPK, 

rabbit anti-Akt, rabbit anti-phospho Akt (Ser473) (Cell Signaling Technology Inc, USA), 

mouse anti-collagen I (Monosan), mouse anti-α-smooth muscle actin (SMA) (Sigma) and 

mouse anti-fibronectin (BD Transduction Laboratories). The blots were visualized with a 

chemiluminescence-based photoblot system (Amersham Biosciences, Buckinghamshire, 
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UK). For the analysis involving conditioned media, 4 ml of the conditioned media was 

concentrated using a Centricon centrifuge (Millipore Corp., MA, USA) and then 

subjected to Western blotting. 

 

3.3.9 Quantification of Western blot and statistical analysis 

A Bio-Rad gel scanner and densitometer program (Gel-Pro Analyzer ver. 4.5; 

MediaCybernetics, Bethesda, MD, USA) was utilized to assess concentrations of the 

bands obtained by Western blots. These were measured as total density units. The paired 

Student‟s t-test or the Welch‟s t-test was used for all analyses where appropriate. A value 

of P < 0.05 was considered to be statistically significant. The error bars denote the 

standard error of the mean (SEM). All statistical analyses were done using Microsoft 

Excel 2003 (Redmond, WA, USA). 

 

 

3.4 Microarray experiments 

 

3.4.1 Cell culture 

Three different keloid fibroblast samples and three different normal fibroblast samples 

that were previously maintained and stored at -150ºC were thawed and used for the 

experiments. Fibroblasts were seeded in 15cm dishes at a density of 1 x 10
4
 cells/ml in 

10% FCS until confluency and subsequently starved in a serum-free medium for 48 hrs. 

After 48 hrs, the serum free medium was replaced and fibroblasts were harvested after 

another 24 hrs (day 1), 72 hrs (day 3) and 120 hrs (day 5). Cells were grown and 
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processed in three batches. Each batch consisted of one keloid and one normal sample 

harvested at the three different time points. KF1, NF1, KF2 and NF2 were samples from 

different patients while KF3 and NF3 were samples from the same patient. 

 

3.4.2 RNA extraction 

RNA was extracted using the RNeasy-kit (Qiagen, Hilden, Germany) according to the 

manufacturer‟s protocol. Cell culture medium was completely aspirated and 1 ml of 

Buffer RLT was added directly to each plate. Plates were scraped and the cell lysate 

collected with a cell scraper. Lysate was collected into a microcentrifuge tube and 

vortexed for 10 seconds. Lysate was then passed 5 times through a blunt 20-gauge needle 

fitted to an RNAse free syringe. 70% ethanol was added to the homogenized lysate in a 

1:1 ratio and mixed by pipetting. 700 µl of the sample, including any precipitate that may 

have formed, was transferred to an RNeasy spin column placed in a collection tube and 

centrifuged for 15 s at  ≥ 8000 x g. Successive aliquots of any excess of the sample were 

centrifuged in the same RNeasy spin column. Flow-through was discarded after each 

centrifugation. After all the sample has been loaded, 700 µl of Buffer RW1 was added to 

the RNeasy spin column and centrifuged for 15 s at ≥ 8000 x g to wash the spin column 

membrane. Flow-through was discarded and 500 µl of Buffer RPE was added to the 

RNeasy spin column and centrifuged for 15 s at ≥ 8000 x g. Flow-through was discarded 

and this step was repeated for a longer centrifugation time of 2 min. RNeasy spin column 

was then placed in a new 1.5 ml collection tube and 50 µl of RNase free water was added 

directly to the membrane. The column was centrifuged for 1 min at ≥ 8000 x g to elute 

the RNA. This step was repeated using another 50 µl of RNase free water. All steps were 
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performed at room temperature. Purified RNA was quantified by UV absorbance at 260 

and 280 nm on a ND1000 spectrophotometer (Nanodrop
TM

, ThermoScientific). 

 

3.4.3 cRNA preparation and labeling 

Labeled complementary RNA (cRNA) was produced from 15 µg of total RNA using the 

GeneChip One-Cycle Eukaryotic Target Labeling and Control Reagents (Affymetrix, 

Santa Clara, USA) according to the manufacturer‟s protocol. Briefly, 15 μg of total RNA 

was first reverse transcribed using a T7-Oligo(dT) Promoter Primer in the first-strand 

cDNA synthesis reaction. Following RNase H-mediated second-strand cDNA synthesis, 

the double-stranded cDNA was purified using the cDNA Cleanup Spin Column and 

served as a template in the subsequent in vitro transcription (IVT) reaction. The IVT 

reaction was carried out in the presence of T7 RNA Polymerase and a biotinylated 

nucleotide analog/ribonucleotide mix for cRNA amplification and biotin labeling. Biotin 

labeled cRNA was then purified using the IVT cRNA Cleanup Spin Column, quantified 

by UV absorbance at 260 nm on the ND1000 spectrophotometer and fragmented using 

the Affymetrix Fragmentation Buffer. All reagents were obtained from Affymetrix. 

 

3.4.4 Affymetrix chip hybridization and scanning 

Fragmented cRNA was then hybridized to preequilibrated Affymetrix GeneChip U133A 

arrays at 45 °C for 15 hours. The cocktails were removed after hybridization and the 

chips were washed and stained using Affymetrix wash buffers and stain cocktails in an 

automated fluidic station. The chips were then scanned in a Hewlett-Packard 

ChipScanner (Affymetrix, Santa Clara, USA) to detect hybridization signals. 
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3.4.5 Data analysis 

Following data collection, preliminary analysis and visualization was done using the 

Affymetrix GeneChip Operating Software for an assessment of the quality of the data. 

Further statistical analysis was done using Version 10.0.2 of the Genespring GX software 

(Agilent, Palo Alto, CA). Normalization and summarization of arrays was done using 

both the Microarray Suite (MAS) 5.0 algorithm (default Affymetrix approach; 

Affymetrix Users Guide, www.affymetrix.com) and the Robust Multichip Analysis 

(RMA) (Bolstad et al. 2003) approach. The MAS 5.0 algorithm is the most widely used 

analysis method for GeneChips. The RMA algorithm is an alternative analysis procedure 

that is more robust than MAS 5.0 for data with normal errors or long-tailed symmetric 

errors. The data was first analyzed by Two-Way Analysis of Variance (ANOVA) to 

assess the individual influence of time point (day 1, day 3 or day 5) and cell type (NF or 

KF) on gene expression, as well as their net interactive effect. The Welch‟s t-test was 

then used to identify genes that were significantly different in keloid compared to normal 

fibroblasts. All statistical tests utilized the Benjamini Hochberg method to correct for 

multiple testing. Genes that were significantly different (P < 0.05) under both MAS 5.0 

summarization and RMA summarization were used for further analysis. Hierarchical 

clustering and principal components analysis (PCA) were used to visually verify the 

ability of the genes selected to distinguish between keloid and normal cells. Finally, the 

list of genes that were significantly different was processed using the Database for 

Annotation, Visualization and Integrated Discovery (DAVID) Gene Functional 

Classification Tool (Dennis et al. 2003; Huang, Sherman & Lempicki 2009) to identify 

biological function associated with these genes.  

https://wizfolio.com/?citation=1&ver=3&ItemID=394&UserID=4486&AccessCode=9863C9B1ED5043DC8FE7371578CD54AF&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=397&UserID=4486&AccessCode=86D3FA70E901445381BE450C639FD44C&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=397&UserID=4486&AccessCode=86D3FA70E901445381BE450C639FD44C&CitationSuffix=
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3.5 Reverse engineering 

 

3.5.1 Preparation of additional microarray samples 

Two different keloid and two different normal fibroblast samples (all from different 

patients) were grown, serum-starved and harvested for RNA after day 1, day 3 and day 5 

as in the previous study. In addition, one keloid fibroblast sample was grown, treated 

with HDGF and harvested for RNA after 6 hours, day 1 and day 2. All RNA were reverse 

transcribed, amplified and labeled using the GeneChip Two-Cycle Eukaryotic Target 

Labeling and Control Reagants (Affymetrix, Santa Clara, USA) according to the 

manufacturer‟s protocol. Unlike in the previous study where the One-Cycle protocol was 

used, the Two-Cycle protocol allowed for smaller amounts of starting RNA at the 

expense of longer running time in the form of a second reverse transcription step. As we 

had also run out of Affymetrix Genechip U133A arrays, the cheaper and newer 

Affymetrix Genechip U133 Plus 2.0 arrays were used to hybridize to the labeled cRNA. 

The chips were scanned in a Hewlett-Packard ChipScanner (Affymetrix, Santa Clara, 

USA) to detect hybridization signals. Raw microarray data in the form of .CELS files 

from Smith et al‟s experiments were also downloaded from the GEO database (Smith et 

al. 2008). 

 

3.5.2 Data preprocessing 

Following data collection, RMA and MAS 5.0 normalization and summarization were 

done using the R Bioconductor package. The four different datasets (original dataset 

using U133A arrays, new dataset using U133 Plus 2.0 arrays, HDGF dataset using U133 

https://wizfolio.com/?citation=1&ver=3&ItemID=389&UserID=4486&AccessCode=29D950ABB16E48ADA816003A94263554&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=389&UserID=4486&AccessCode=29D950ABB16E48ADA816003A94263554&CitationSuffix=
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Plus 2.0 arrays and Smith‟s dataset using U133 Plus 2.0 arrays) were normalized and 

summarized independently. Two different custom Chip Definition Files (CDF) were used 

(Dai et al. 2005). The first CDF was based on the Ensembl Gene database for analysis 

with fREDUCE as it is easy to obtain the upstream sequence which is required by 

fREDUCE from the Ensembl database. The second was based on the Entrez Gene 

database for influence based reverse engineering methods such as BANJO and ARACNE 

as these probe mappings allow one to ignore any differential signal due to multiple 

probesets and gives a single value for a given gene. In addition, two lists were produced. 

In the first list, no filtering was done while in the second list, 25% of the lowly expressed 

genes were filtered.   

 

3.5.3 Application of the fREDUCE algorithm 

Human genomic sequences 1000 base pairs upstream from the transcriptional start site if 

known, or from the initiation codon, were extracted from the Ensembl database (Curwen 

et al. 2004). As fREDUCE requires only a single expression dataset and makes use of the 

entire genomic dataset (both signal and background), the datasets were compared as 

follows: A: Keloid versus normal fibroblasts under serum starvation conditions (only 

KF1, KF2, NF1 and NF2 were used to keep the number of samples close to the other 

conditions), B: Keloid versus normal fibroblasts under serum conditions, C: Keloid 

treated with steroid versus serum induced keloid fibroblasts, D: Normal treated with 

steroid versus serum induced normal fibroblasts, E: Keloid versus normal fibroblasts both 

treated with steroid and F: Keloid treated with HDGF versus untreated keloid fibroblasts. 

The expression value for each gene is represented as the following t-statistic: 

https://wizfolio.com/?citation=1&ver=3&ItemID=505&UserID=4486&AccessCode=6390504018474231A389FB6A462AB92B&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=506&UserID=4486&AccessCode=40030B7072624D1CAEB230F1B58614D1&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=506&UserID=4486&AccessCode=40030B7072624D1CAEB230F1B58614D1&CitationSuffix=
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where g is the index over genes, µe
g
 is the mean value of gene g under our condition of 

interest, µc
g 

os the mean value of gene g under control conditions, Vare
g
 is the variance of 

gene g under our condition of interest, Varc
g
 is the variance of gene g under control 

conditions, and ne and nc are the number of samples under our condition of interest and 

under control conditions respectively. This statisitic is similar to the z-statistic used by 

the fREDUCE creators (Wu et al. 2007). We then ran fREDUCE on the t-statistic for 

RMA normalized and MAS 5.0 normalized as well as unfiltered and filtered gene lists on 

the basis that a higher t-statistic translates to higher expression. Four different sets of 

parameters were run on each replicate: length 6 with 0 IUPAC substitutions, length 6 

with 1 IUPAC substitution, length 7 with 0 IUPAC substitutions and length 7 with 1 

IUPAC substitution. Top and consistent binding sequences obtained from fREDUCE 

above were then searched through the TRANSFAC database (Matys et al. 2003) for 

possible gene targets and their corresponding transcription factors. Only gene targets 

identified from Homo sapiens were collected, and binding sites for all these targets were 

reconfirmed to be located within the 1000 base pair upstream sequences collected from 

the Ensemble database previously.  

 

3.5.4 Pathways selected for influence approach 

KEGG pathways that were enriched from the previous study were used for the influence 

approach. These were the antigen presentation and processing pathway, cytokine-

cytokine receptor interaction and toll-like receptor signaling pathway. The ribosome 

https://wizfolio.com/?citation=1&ver=3&ItemID=495&UserID=4486&AccessCode=95B1F6D0E59E4259BC790255455C4BB0&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=507&UserID=4486&AccessCode=D1909CBC444D4EEB8A27A5B6ACF56534&CitationSuffix=
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pathway was not used as it would be a fully connected graph. Genes that were used as 

nodes for modeling were chosen on the basis that there is only one gene representing that 

particular node, all other genes will be assumed to be hidden nodes. The following 5 

pathways in Figure 3.2 were eventually selected for the influence approach. 
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Figure 3.2: KEGG pathways used for the influence approach. (A and B) Pathways taken from the 

cytokine-cytokine receptor interaction map. (C) Transcriptional pathway taken from antigen 

processing and presentation map. (D, E, F and G) Pathways taken from the toll-like receptor 

signaling map. Pathways were also chosen such that A and B represent cytokine receptor 

interactions, C, E and G represent transcriptional networks and D and F represent intracellular 

signaling. 

 

3.5.5 Application of the ARACNE and BANJO algorithms 

The full set of data was used for the influence approach. To enable comparison between 

the different data sets, gene expression for all the relevant nodes were normalized using 

the average of GAPDH and B-actin expression. GAPDH and B-actin were first plotted to 

determine their correlation and outliers were removed from the dataset. Three keloid 

experiments from the serum starvation U133A dataset did not meet these criteria and was 

removed giving a total of 28 keloid experiments and 24 normal experiments.  We ran 

ARACNE and BANJO on the keloid and normal inputs separately, and also on the MAS 

5 and RMA normalized expression values separately. All parameters were left at their 

default values. For ARACNE, kernel width and number of bins were automatically 

detected by the software while DPI tolerance to remove false positives was set at 0.15. 

For BANJO, the Proposer/Searcher strategies were chosen as random local move and 

simulated annealing, respectively, and the amount of time BANJO uses to explore the 

Bayesian Network space was set to one minute. All the other parameters such as 

reannealingTemperature, coolingFactor, and so on, were left with their default values. 
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Parameter values were selected as best values (in terms of network inference accuracy) as 

shown by Bansal et al (Bansal et al. 2007). In order to estimate the joint probability 

distribution of all variables in the network, BANJO requires discrete data. The data was 

therefore discretized into 7 discrete states using the quantile discretization procedure in 

the software. Furthermore, as the simulated annealing algorithm in BANJO does not 

guarantee a global maximum, the runs were repeated three times and the result with the 

highest maximum score was taken. 

 

3.5.6 Estimation of the performance of the algorithms 

In order to assess the inference performances we computed the Positive Predicted Value 

(PPV) and the Sensitivity scores as described by Bansal et al (Bansal et al. 2007). The 

following definitions were used: 

TP = Number of True Positives = number of edges in the real network that are 

       correctly inferred; 

FP = Number of False Positives = number of inferred edges that are not in the 

       real network; 

FN = Number of False Negatives = number of edges in the real network that are 

          not inferred. 

The following were then computed: 

FPTP

TP
PPV


  

 
FNTP

TP
ySensitivit


  

In order to compute the random PPV we considered the expected value of a 

https://wizfolio.com/?citation=1&ver=3&ItemID=499&UserID=4486&AccessCode=49B7EEEE677E4E59A87BAD51C7C69294&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=499&UserID=4486&AccessCode=49B7EEEE677E4E59A87BAD51C7C69294&CitationSuffix=


 56 

hypergeometrically distributed random variable whose distribution function and expected 

value are, respectively: 
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where N = number of possible edges in the network, M = number of true edges and n = 

number of predicted edges. Then,  
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All statistical tests are done using the one tailed paired t-test. 
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CHAPTER FOUR 

THE ROLE OF HEPATOMA-DERIVED GROWTH FACTOR IN KELOID 

PATHOGENESIS 

 

 

4.1 Introduction 

Hepatoma-derived growth factor (HDGF) is a novel heparin-binding protein that was 

originally purified from the conditioned media of HuH-7 hepatoma cells (Nakamura et al. 

1989). This growth factor was found to have mitogenic activity for a wide variety of 

cells, including fibroblasts (Abouzied et al. 2005), endothelial cells (Everett et al. 2004), 

renal (Kishima et al. 2002) and lung epithelial cells (Mori et al. 2004), vascular smooth 

muscle cells (Everett, Stoops & McNamara 2001) and fetal hepatocytes (Enomoto et al. 

2002). A growing number of studies report a possible role of HDGF in the development 

of different types of cancers. In particular, it has been implicated in esophageal cancer 

(Matsuyama et al. 2001; Yamamoto et al. 2007), pancreatic cancer (Uyama et al. 2006), 

hepatocellular carcinoma (Yoshida et al. 2003), melanoma (Bernard et al. 2003), lung 

cancer (Ren et al. 2004) and gastric carcinoma (Chang et al. 2007).  

  HDGF is the first member of the HDGF family of proteins that was discovered to 

contain a well conserved N-terminal amino acid sequence, which is called the  

homologous to amino terminus of HDGF (HATH) region (Izumoto et al. 1997). 

Subsequently, five related proteins have been identified, four of which are named HDGF-

related protein (HRP) -1 to HRP-4 and the fifth of which is named lens epithelium-
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derived growth factor (LEDGF). Except for their growth factor activity, the functions of 

these proteins are largely unknown (Abouzied et al. 2004). 

Although the mitogenic effect of HDGF has been proven, the pathway by which it 

exerts this proliferative activity is still unclear. Two different pathways have been 

proposed. Despite lacking the secretory sequence present in most secretory proteins 

(Nakamura et al. 1994), it has been shown that exogenous HDGF could possibly act by 

binding to an as yet unknown cell surface receptor, triggering signaling events 

downstream that result in increased proliferation (Abouzied et al. 2005). Others have 

shown that nuclear localization is required for the mitogenic activity of HDGF (Everett, 

Stoops & McNamara 2001; Kishima et al. 2002). 

 In terms of wound repair, HDGF has been found to be involved in lung 

remodeling after injury by promoting the growth of lung epithelial cells (Mori et al. 

2004). Among the growth factors responding to vascular wall injury, HDGF is unique, in 

that it is not expressed in the vascular wall until injury occurs (Everett et al. 2000). 

HDGF gene expression was also increased during retinal pigment epithelial wound repair 

(Singh et al. 2001). Furthermore, HDGF has been found to be up-regulated in human 

dermal fibroblasts subjected to mechanical stimulation from stressed collagen lattices 

(Kessler et al. 2001). Abnormal scarring has been correlated to regions of the body with 

higher mechanical force than others (Wang et al. 2006; Aarabi et al. 2007). Therefore, 

these results, combined with the fact that HDGF has been implicated in the aberrant 

growth of tumours, lead us to speculate that it could also play some role in the formation 

of keloids. In unpublished data from microarray experiments done by my supervisor, Prof 
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Phan at Stanford University, HDGF was one of the genes found to be up-regulated in 

keloid tissue.  

In this study, we investigated the expression and localization of HDGF in vivo by 

performing immunohistochemical staining (IHC) and Western blot analysis on keloid and 

normal skin tissue. We further studied the expression of HDGF using in vitro models of 

normal and keloid fibroblasts subjected to serum stimulation. To examine the effect of 

epithelial-mesenchymal interactions on the expression of HDGF, we employed a two 

chamber serum free system where keratinocytes on membrane inserts were co-cultured 

with the fibroblasts.  

In a second set of experiments, we examined the effect of exogenous recombinant 

HDGF on the keloid and normal fibroblasts. Cells treated with recombinant HDGF were 

assessed for increased proliferation by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide] assay and by quantifying proliferating cell nuclear antigen 

(PCNA) expression. Western blotting was also performed to identify some of the 

downstream signaling targets of exogenously applied HDGF. 

Finally, to identify some of the upstream signals regulating the expression of 

HDGF, we investigated the effect of Sp1 and mammalian target of rapamycin (mTOR) 

inhibitors on the secretion of HDGF from fibroblast keratinocyte co-cultures. The effect 

of TGF-β signaling on HDGF expression was also examined by assaying Smad-null and 

Smad-overexpressing mouse embryo fibroblasts. 
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4.2 Results 

 

4.2.1 HDGF expression is increased in keloid scar dermis 

Immunohistochemical labelling showed that HDGF was present in both the epidermis 

(Fig. 4.1A) and the dermis (Fig. 4.1B) of normal and keloid tissue. Epidermal staining 

intensity was irregular and sample-dependent, with some keloid samples exhibiting 

stronger staining, while others exhibiting equal or weaker staining when compared with 

their normal counterparts. However, HDGF expression in the dermis was found to be 

higher in all keloid samples. This can be more clearly seen at a lower magnification (Fig. 

4.1C). In the keloid tissues, almost the whole dermis was stained brown compared with a 

significantly smaller area in normal skin. Western blot results from the keloid and normal 

whole-tissue extracts reconfirmed these observations. The keloid tissue samples had a 

significantly higher expression of HDGF compared with the normal tissue samples (P < 

0.05; Fig. 4.2). 
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Figure 4.1: Immunohistochemical staining of keloid and normal tissue for HDGF. Paraffin 

sections of normal and keloid tissue were prepared and stained with antibodies against HDGF. 

Pictures were taken with magnification at 40X (A, B) and 10X (C). The dermis and the epidermis 

are represented by (D) and (E), respectively. In each panel, the inset shows the same tissue 

labelled with a non-immune mouse antibody of the appropriate immunoglobulin isotype as a 

negative control. HDGF was detected in both the epidermis (A) and the dermis (B) of normal and 

keloid tissue. Increased expression was observed in the dermis of keloid tissue compared with the 

dermis of normal tissue (B, C). 
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Figure 4.2: Western blot of keloid and normal whole tissue extract. In total, 50 µg of tissue 

extracts from nine keloid tissue specimens and four normal skin specimens was subjected to 

Western blot analysis with antibodies against HDGF. The whole-tissue extracts include both the 

epidermis and the dermis. The blots were probed with anti-β-actin antibody to confirm equal 

loading. The bar graph represents the mean ± SEM of HDGF levels in the normal and keloid 

samples, as quantified by gel densitometry. *indicates statistical significance as assessed by 

Welch‟s t-test. 

 

4.2.2 Serum stimulation and epithelial-mesenchymal interactions had no effect on 

intracellular HDGF expression 

Western blot results indicated that treatment with serum had no significant effect on 

intracellular HDGF expression in both normal fibroblasts (NF) and keloid fibroblasts 

(KF) (Fig. 4.3). In addition, NFs co-cultured with normal keratinocytes (NK) and KFs co-

cultured with keloid keratinocytes (KK) did not show any significant difference in HDGF 

expression levels when compared with the monocultured controls or when compared with 

each other. 
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Figure 4.3: Effect of serum and epithelial–mesenchymal interactions on intracellular HDGF 

expression. Six different strains of keloid/normal fibroblasts were cultured with DMEM, 10% 

FCS or co-cultured with keloid/normal keratinocytes for 5 days. In total, 50 µg of total protein 

extracts was subjected to Western blot analysis with HDGF antibodies. Two representative strains 

are shown. The bar graphs represent the normalized mean ± S.E.M. of HDGF levels in the 

different conditions. All blots were probed and normalized with β-actin. 
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compared with normal skin cell co-cultures. Monocultured keratinocytes show a 

moderately high secretion of HDGF but no significant difference was seen between NKs 

and KKs harvested at day 5 (Fig. 4.4C). 
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Figure 4.4: Expression of HDGF in conditioned media of monocultured and co-cultured cells. 

(A) Conditioned media of keloid fibroblasts monoculture (KF) and keloid fibroblasts cocultured 

with keloid keratinocytes (KK/KF) were collected at days 1, 3 and 5. (B) Conditioned media of 

normal fibroblast monoculture (NF) and normal fibroblast co-cultured with normal keratinocytes 

(NK/NF) were collected at days 1, 3 and 5. Experiments were performed in duplicates. (C) 

Conditioned media of seven samples of singly cultured keloid keratinocytes (KK) and normal 

keratinocytes (NK) were collected at day 5. Four millilitres of the conditioned media from (A), 

(B) and (C) was then concentrated and subjected to Western blot analysis with anti-HDGF 

antibody. Representative figures are shown. The bar graphs represent the mean ± S.E.M. of 

HDGF levels. * indicates statistical significance as determined by the paired t-test. 
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4.2.4 Increased keloid fibroblast proliferation upon stimulation with HDGF 

There was no significant difference in NF proliferation when treated for 72 hrs with 

various doses of HDGF (Fig. 4.5A). However, there was a significant dose-dependent 

increase of up to ~13% in the proliferation of KFs (P < 0.05 for asterisks; Fig. 4.5B). In 

addition, Western blot analysis after 48 hrs showed a significant increase of proliferating 

cell nuclear antigen (PCNA) expression in treated KFs compared with untreated keloid 

controls, but this effect was not seen in treated NFs compared with untreated normal 

controls (P < 0.05; Fig. 4.6A). In total, 250 ng/ml of recombinant HDGF was used for 

treatment of both KFs and NFs. 

 

 

 

 

   

 

 

 

 

 

 

 

 
Figure 4.5: Increased proliferation of keloid fibroblasts treated with recombinant HDGF. 

Cultures of keloid or normal fibroblasts were grown until 50% confluence and then serum starved 

for 48 hrs. The fibroblasts were then treated with HDGF (10, 50, 100 and 300 ng/ml) for 72 hrs 

and then subjected to the MTT proliferation assay. Untreated samples were used as control. The 

bar graph in (A) represents the mean proliferative response of treated normal fibroblasts as a 

percentage of the control. The bar graph in (B) represents the mean proliferative response of 

treated keloid fibroblasts as a percentage of the control. * indicates statistical significance 

compared with DMEM control as assessed by Student‟s t-test. 

 

 

 

* 

B 
* 

A 
0 

0.04 0.3 
-2.1 -2.5 

-8 
-6 
-4 
-2 
0 
2 
4 
6 

dmem 10ng/ml  50ng/ml  100ng/ml  300ng/ml  
HDGF concentration 

%
 c

h
a
n

g
e

 c
o

m
p

a
re

d
 t

o
 c

o
n

tr
o

l * 

0 

4.4 6.5 8 

12.8 

-4 
-2 
0 
2 
4 
6 
8 

10 
12 
14 
16 

dmem 10ng/ml  50ng/ml  100ng/ml  300ng/ml  %
 c

h
a
n

g
e

 c
o

m
p

a
re

d
 t

o
 c

o
n

tr
o

l 

HDGF concentration 



 66 

4.2.5 Treatment of fibroblasts with HDGF activated the ERK pathway, increased 

the secretion of VEGF, and decreased the secretion of collagen I  

KFs treated with HDGF after 48 hrs showed a significant increase in the expression of 

intracellular phospho-extracellular signal regulated kinase (ERK) 1/2 compared with 

untreated keloid controls, but this increase was not seen in treated NFs compared with 

untreated normal controls (P < 0.05; Fig. 4.6B). Intracellular expression (P < 0.05, Fig. 

4.6D) and extracellular secretion (P < 0.05, Fig. 4.7A) of VEGF from both keloid and 

normal fibroblasts were significantly increased upon treatment with HDGF. Secretion of 

collagen I was downregulated in the conditioned media of treated keloid and normal 

fibroblasts compared to untreated controls (p<0.05, Fig. 4.7B). Treatment with HDGF 

did not produce any significant difference in the expression of intracellular α-SMA (Fig. 

4.6E), extracellular fibronectin (Fig. 4.7C) and extracellular CTGF (Fig. 4.7D). 

Furthermore, expression of p-Akt was undetectable in all samples (Fig. 4.6C). At earlier 

time points, no significant increase in phospho-ERK was detected (Fig. 4.6F). In total, 

250 ng/ml of recombinant HDGF was used for treatment of both KFs and NFs. 
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Figure 4.6: Effect of HDGF on the expression of downstream intracellular targets. Normal 

fibroblasts and keloid fibroblasts were treated with either DMEM or 250 ng/ml of recombinant 

HDGF, harvested after 48 hrs and lysed for Western blot analysis, as described under 

experimental procedures. Blots were incubated with anti-PCNA (A), anti-phospho-ERK 1/2 and 

total ERK 1/2 (B), anti-phospho-Akt and total Akt (C), anti-VEGF (D) and anti-α-SMA (E) 

antibodies The blots were also incubated with anti-β-actin antibody to confirm equal loading. In 

another set of experiments, normal fibroblasts and keloid fibroblasts were treated with either 

DMEM or HDGF and harvested after 1 hr, 6 hrs and 24 hrs for Western blot analysis. Blots were 

incubated with anti-phospho-ERK 1/2 and total ERK 1/2 (F) antibodies. All experiments were 

performed in duplicates. Representative figures are shown. The bar graphs represent the mean ± 

S.E.M. of protein levels. Phospho-ERK 1/2 was normalized against total ERK 1/2 expression and 

phosphor-Akt was normalized against total Akt expression. * indicates statistical significance as 

determined by the paired t-test. 
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Figure 4.7: Effect of HDGF on the expression of downstream extracellular targets. Normal 

fibroblasts and keloid fibroblasts were treated with either DMEM or 250 ng/ml of recombinant 

HDGF. After 48 h, four millilitres of conditioned media was concentrated and subjected to 

Western blot analysis. Blots were then incubated with anti-VEGF (A), anti-collagen I (B), anti-

fibronectin (C) and anti-CTGF (D) antibodies. All experiments were performed in duplicates. 

Representative figures are shown. The bar graphs represent the mean ± S.E.M. of protein levels. * 

indicates statistical significance as determined by the paired t-test. 
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4.2.6 Treatment with mTOR and Sp1 inhibitors did not significantly affect the 

production of HDGF 

Treatment with the mTOR inhibitor, Rapamycin and Sp1 inhibitors, Wp631 and 

Mitoxantrone, for 72 hours did significantly affect the production of intracellular (Fig. 

4.8A) as well as extracellular (Fig 4.8B) HDGF. Extracellular levels of HDGF appear to 

decrease slightly upon treatment with both the mTOR and Sp1 inhibitors but the decrease 

was not significant. Intracellular levels of HDGF appear to decrease slightly upon 

treatment with Sp1 inhibitors, but again this decrease was not significant. 
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Figure 4.8: Effect of mTOR and Sp1 inhibitors on the expression of HDGF. mTOR inhibitor 

(rapamycin) and Sp1 inhibitors (WP631 and mitoxanthrone) were added to the keloid coculture 

for 72 h with indicated concentrations as described in Material and Methods. Untreated co-

cultures served as controls. (A) For analysis of intracellular HDGF production, KFs were 

harvested and lysed for Western blot analysis, as described under experimental procedures. The 

blots were also incubated with anti-β-actin antibody to confirm equal loading. (B) For analysis of 

secreted HDGF levels, 4 ml of conditioned media was concentrated and subjected to Western blot 

analysis with anti-HDGF antibody. All experiments were performed in duplicates. Representative 

figures are shown. The bar graphs represent the mean ± S.E.M. of HDGF levels. 
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4.2.7 Knockout of Smad 2/3 signaling increases intracellular HDGF expression 

while knockout of Smad 1 signaling increases extracellular HDGF expression 

Smad 2
-/-

 (P<0.05, Fig. 4.9C) and Smad 3
-/-

 (P<0.05, Fig. 4.9D) mouse embryo fibroblast 

cells had a significantly higher expression of intracellular HDGF compared to their 

respective wild type cells. However, intracellular HDGF expression in Smad 1
-/-

 (Fig. 

4.9A) and Smad 1
+/+

 (Fig. 4.9B) cells was not significantly different from the wild type. 

Conditioned media from monocultured Smad 1
-/-

 cells had a significantly higher 

expression of HDGF compared to the wild type cells and conversely, conditioned media 

from monocultured Smad 1
+/+

 cells had a significantly lower expression of HDGF 

compared to the wild type control (P<0.05 for asterisks, Fig. 4.10A). Secretion from 

monocultured Smad 2
-/-

 and Smad 3
-/-

 cells does not appear to be significantly different 

from wild type controls. Upon co-culturing with keloid keratinocytes, this effect was 

abrogated and there was no significant difference in secretion from the Smad co-cultures 

compared to the keloid co-culture control (Fig. 4.10B). 
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Figure 4.9: Effect of Smad signaling on intracellular HDGF expression. (A) S1

-/-
, (B) S1

+/+
, (C) 

S2
-/-

 and (D) S3
-/-

 cells were seeded in six-well plates for 24 h in 10% FCS. Medium was replaced 

by serum-free DMEM for another 48 h before co-culturing with keloid keratinocytes. Cells were 

harvested for Western blot analysis of HDGF. The bar graphs represent the mean ± S.E.M of 

HDGF levels. All blots were probed with β-actin antibody to confirm equal loading. * indicates 

statistical significance as assessed by the paired t-test. 
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Figure 4.10: Effect of Smad signaling on extracellular HDGF expression. 4 ml of conditioned 

media from S1
-/-

, S1
+/+

, S2
-/-

 and S3
-/-

 mouse embryo fibroblasts monoculture (A) and co-cultured 

with keloid keratinocytes (B) was collected after 48 h. The samples were then concentrated and 

subjected to Western blot analysis with anti-HDGF antibody. Experiments were performed in 

duplicates. Representative figures are shown. The bar graphs represent the mean ± S.E.M. of 

HDGF levels. * indicates statistical significance as determined by the paired t-test. 
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healing leading to keloid formation. Our data suggest that this growth factor is likely to 

be only one of a myriad number of players involved in keloid pathogenesis  

Immunohistochemical results from this study indicate that HDGF is quite highly 

expressed in the epidermis of both keloid and normal skin tissue. However, in the dermal 

layer, there is a higher expression of HDGF in keloid tissue compared with normal skin. 

This result led us to focus our efforts on the fibroblasts, which are the major cell type in 

the dermis. Preliminary in vitro results demonstrated a significant expression of both 

intracellular and extracellular HDGF in monocultured epidermal keratinocytes. We were 

unable to detect any significant difference in HDGF expression between KK and NK 

samples grown in vitro. However, the very presence of HDGF in these cells suggested 

that this growth factor played some as yet unknown role in epidermal biology that is 

worth investigating. 

The process of cutaneous wound healing can be arbitrarily divided into four 

phases - hemostasis, inflammation, proliferation and remodeling. The serum stimulation 

model is an in vitro model that can be used to determine the involvement of growth 

factors or cytokines in the early stages of the wound healing phase. Fibroblasts interpret 

the presence of serum as a physiological wounding signal and would respond to it as if it 

had occurred in vivo (Iyer et al. 1999). Our data show no difference in HDGF expression 

levels between serum-stimulated and non-serum-stimulated fibroblasts, suggesting the 

lack of involvement of HDGF in the early phases of wound healing. 

 Recent studies from our group and others have shown the importance of paracrine 

signalling via epithelial–mesenchymal interactions in keloid pathogenesis (Lim et al. 

2001; Funayama et al. 2003). The co-culture experiments were used to assess the effect 
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of this paracrine signaling on HDGF expression. We found no significant difference in 

intracellular HDGF expression in whole-cell extracts of co-cultured fibroblasts compared 

with the singly cultured fibroblasts. However, conditioned media collected from the 

keloid co-culture configuration had significantly higher levels of HDGF compared with 

those collected from the singly cultured KFs. Furthermore, secretion of HDGF from the 

keloid co-culture configuration was also higher than from normal skin cell co-culture 

configuration. When singly cultured, the keratinocytes secreted fairly high amounts of 

HDGF but there was no significant difference between KKs and NKs. This suggests that 

the secretion of HDGF is somehow modulated by epithelial–mesenchymal interactions. 

 Taken together, our in vitro results suggest that intracellular HDGF may have 

some role to play in the normal process of wound healing, as evident by its high basal 

expression in both normal and keloid fibroblasts. However, intracellular HDGF levels 

alone cannot account for the higher expression of HDGF that was observed in in vivo 

samples of keloid tissue. It appears that the contribution of HDGF to keloid pathogenesis 

lies mainly in its secreted form and this secretion is modulated by epithelial-

mesenchymal interactions. To date, two different pathways have been proposed to 

account for the activity of HDGF, either by binding to a cell surface receptor and acting 

as a secreted growth factor (Abouzied et al. 2005), or by translocating to the nucleus 

where it acts as a nuclear transcription factor (Everett, Stoops & McNamara 2001; 

Kishima et al. 2002). Our data suggests that in the formation of keloids, the secretory 

pathway of HDGF is of greater importance. However, we are not able to completely rule 

out nuclear translocation as it is possible that the increase in intracellular HDGF is too 

slight to be detected by Western analysis.  
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 HDGF has been reported to act as a potent exogenous mitogen for a wide variety 

of cells, including 3T3 fibroblasts (Nakamura et al. 1989; Abouzied et al. 2005) and mice 

dermal fibroblasts (Gallitzendoerfer et al. 2008). The susceptibility of KFs to other 

mitogenic stimuli has also been previously established (Lim et al. 2001; Phan et al. 2003; 

Xia et al. 2004). Therefore, it was not surprising that both our MTT and PCNA results 

showed KFs having a better proliferative response to HDGF stimuli compared with their 

normal skin counterparts. 

 Downstream molecular targets of HDGF that were found to be up-regulated after 

48 hrs include ERK and VEGF, while those found to be unaffected include alpha-smooth 

muscle actin (α-SMA), fibronectin and connective tissue growth factor (CTGF). We were 

however unable to detect any increase in ERK phosphorylation at the earlier time points 

of 1 hr, 6 hrs and 24 hrs. HDGF has previously been found to induce the phosphorylation 

of ERK in human pulmonary endothelial cells (Everett et al. 2004) and gastric epithelial 

cells (Mao et al. 2008). However, in 3T3 fibroblasts, it has been reported that 

extracellular HDGF does not enter the cell but instead binds to the cell membrane. 

Furthermore, it stimulates proliferation but does not activate the ERK signalling pathway 

(Abouzied et al. 2005). Our findings that there is no increase in intracellular HDGF and 

that extracellular HDGF has mitogenic activity without activating ERK at early time 

points suggest that this may also be the case in KFs. However, while the ERK pathway 

may not be directly activated by HDGF, it does seem to be somehow involved 

downstream of HDGF stimulation. In addition to the ERK pathway, we also tested the 

Akt pathway but were unable to detect any phosphorylation of Akt. This is consistent 

with the finding in human pulmonary endothelial cells, where no phosphorylation of Akt 
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was detected as well (Everett et al. 2004). Thus, the pathway by which HDGF exerts its 

proliferative activity remains as elusive as ever. 

 The induction of VEGF by HDGF has also been shown previously in the process 

of tumourigenesis (Okuda et al. 2003). In the study conducted by Okuda et al., NIH3T3 

fibroblasts overexpressing HDGF were found to induce sarcomatous tumours after 

injection into nude mice, and the tumour formation was induced mainly by angiogenesis 

due to induction of VEGF. We report a similar induction of VEGF by HDGF in both 

keloid and normal primary skin fibroblasts, suggesting that HDGF could play some role 

in the normal angiogenic process during wound healing. However, in our in vitro co-

culture models, we observed very little secretion of HDGF in the normal co-culture 

experiments. Therefore, while HDGF might induce production of VEGF in both NFs and 

KFs, the absence of HDGF in the normal condition limits the production of VEGF 

through this mechanism. This result tallies with previous findings from our group. In the 

study conducted by Ong et al., keloid tissue was shown to have a higher expression of 

VEGF compared with normal tissue, and there was also a significant increase in VEGF 

from keloid co-culture compared with normal co-culture conditions (Ong et al. 2007). 

These results suggest that the production of VEGF could be tied to the presence or 

absence of HDGF. 

Interestingly, secretion of collagen I was observed to be downregulated when 

HDGF was exogenously applied to the fibroblast cells. Furthermore, there was no 

significant difference in α-SMA, fibronectin or CTGF expression between the HDGF 

induced cells and the controls. Our results suggest that HDGF induces only a mitogenic 

response in the fibroblasts and does not participate in their differentiation into 
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myofibroblasts (of which α-SMA is a marker) or in ECM (collagen I and fibronectin) 

production. Inhibition of CTGF has been found to cause a significant reduction in the 

number of myofibroblasts in scars and also decreased transcription of types I and III 

collagen (Sisco et al. 2008). Therefore, the lack of effect of HDGF on CTGF is consonant 

with this hypothesis. Furthermore, Grotendorst et al. have previously reported that 

fibroblast cells treated with TGF-β that are proliferating do not express α-SMA or 

elevated levels of collagen synthesis (Grotendorst, Rahmanie & Duncan 2004). 

Conversely, cells expressing α-SMA do not exhibit DNA synthesis but coexpress higher 

levels of types I and III collagen mRNA. The authors concluded that these responses to 

TGF-β are mutually exclusive and are controlled by combinatorial signaling pathways 

involving not only components of the TGF-β pathway, but also signaling events induced 

by other growth factors. HDGF appears to be one of the growth factors involved in 

eliciting a mitogenic response from the fibroblasts, but on its own, it may also cause the 

downregulation of certain ECM components. It should be noted that these features of 

HDGF show some similarity to the insulin-like growth factor I, a potent mitogen that 

requires the synergistic effect of TGF-β for ECM protein production (Daian et al. 2003; 

Phan et al. 2003).  

The Sp1 transcription factor is known to regulate several ECM promoters, and our 

group has found that the Sp1 inhibitors Wp631 and mitoxanthrone were able to reduce 

the expression of ECM components in KF as well as to inhibit its proliferation 

(Mukhopadhyay et al. 2007). mTOR, on the other hand, is a serine/theronine kinase 

which has been shown to regulate collagen type I expression via a phosphatidylinositol 3-

kinase (PI3-K)-independent pathway in human dermal fibroblasts (Shegogue & 
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Trojanowska 2004). The mTOR pathway inhibitor rapamycin is a naturally occurring 

antibiotic that has been shown to downregulates the expression of cytoplasmic PCNA, 

fibronectin, collagen and a-SMA (Ong et al. 2007). However, we found no significant 

effect of both the Sp1 inhibitors as well as the mTOR inhibitor on the production of 

HDGF. 

Smad proteins are downstream signaling targets of the TGF-β family of growth 

factors (Massagué 1998; Derynck & Zhang 2003). Once activated by TGF-β receptors, 

Smad 2/3 oligomerizes with Smad 4, and the hetero-oligomeric Smad 2/3-Smad4 

complex subsequently translocates from the cytoplasm into the nucleus where it activates 

collagen gene transcription (Ghosh et al. 2000). Increased Smad 3 signaling has been 

observed in different fibrotic disorders, including keloids (Chin et al. 2001; Phan et al. 

2005). Our results show that the suppression of pro-fibrotic TGF-β mediated Smad 2/3 

signaling results in an increased basal expression of cytoplasmic HDGF. This is 

consistent with our finding that HDGF reduces ECM protein production. We also found a 

significant increase in secreted HDGF from monocultured Smad 1-null cells, and a 

corresponding decrease in secreted HDGF from Smad 1-overexpressing cells. Very little 

is known about the role of Smad 1 in the biology of dermal fibroblasts. However, in lung 

fibroblasts, BMP4 mediated Smad 1 signaling has been found to inhibit proliferation and 

promote differentiation of the lung fibroblasts (Jeffery et al. 2005). This anti-proliferative 

effect of Smad 1 signaling could result in the downregulation of HDGF secretion. Further 

investigation into the role of Smad 1 signaling in dermal fibroblasts has to be done to 

validate this hypothesis. 
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 Figure 4.11 summarizes the main findings of our study. First, we have shown that 

in the keloid condition, HDGF acts mainly as a secreted growth factor that is modulated 

by epithelial–mesenchymal interactions. Second, exogenous HDGF exerts a proliferative 

effect on KFs and is likely to be indirectly involved in ERK signalling. Finally, the 

presence of HDGF increases the production of VEGF and indirectly contributes to the 

process of angiogenesis. However, it has to be noted that on its own, HDGF appears to 

downregulate collagen production and has no effect on fibronectin, α-SMA and CTGF. 

Therefore, it is the combination of and interplay between various molecular factors that 

ultimately decides the fate of the wound healing process. 

 

 

Figure 4.11: Schematic representation of the role of HDGF in keloid pathogenesis. Epithelial–

mesenchymal interactions result in an increased secretion of HDGF in keloids. Overproduction of 

extracellular HDGF leads to the phosphorylation of ERK 1/2 and increased proliferation of keloid 

fibroblasts, most likely through a receptor-mediated pathway. HDGF also stimulates the 

fibroblasts to produce VEGF. 
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CHAPTER FIVE 

GENOME WIDE TRANSCRIPTIONAL PROFILING OF SERUM 

STARVED KELOID AND NORMAL FIBROBLASTS 

 

 

5.1 Introduction 

Since their first reported use in the mid-1990s, microarray technology has been adopted 

rapidly within the research community and it is now a standard technique in a molecular 

biologist‟s toolbox. The appeal of this technology can be easily understood; with 

microarray technology, thousands of genes can be measured simultaneously, giving 

researchers a peek into the transcriptional profile of a cell. It has to be noted however, 

that unlike in the previous section where protein expression was measured, microarrays 

typically measure gene expression levels, specifically messenger RNA (mRNA) levels. 

mRNA has to be translated into protein before they become functional, hence requiring a 

further processing step that cannot be elucidated using this techonology. 

 The principle of a microarray experiment is that mRNA from a given cell line or 

tissue is used to generate a labelled sample, sometimes termed as the „target‟, which is 

hybridized in parallel to a large number of DNA sequences immobilized on a solid 

surface in an ordered array (Schena et al. 1995). Although many different microarray 

systems have been developed by academic groups and commercial suppliers, the most 

commonly used systems today can be divided into two groups, according to the arrayed 

material: complementary DNA (cDNA) and oligonucleotide microarrays. The arrayed 

material has generally been termed the probe since it is equivalent to the probe used in a 
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northern blot analysis. Probes for cDNA arrays are usually products of the polymerase 

chain reaction (PCR) generated from cDNA libraries or clone collections, using either 

vector-specific or gene-specific primers, and are printed onto glass slides or nylon 

membranes as spots at defined locations. For oligonucleotide arrays, short 20–25mers are 

synthesized in situ, either by photolithography onto silicon wafers (high-density-

oligonucleotide arrays from Affymetrix) or by ink-jet technology (licensed to Agilent 

Technologies) (Schulze & Downward 2001).  

Methods based on synthetic oligonucleotides offer the advantage that because 

sequence information alone is sufficient to generate the DNA to be arrayed, no time-

consuming handling of cDNA resources is required. Another important difference 

between high-density oligonucleotide arrays and spotted arrays lies in the fact that the 

high reproducibility of in situ synthesis of oligonucleotide chips allows accurate 

comparison of signals generated by samples hybridized to separate arrays. In the case of 

spotted arrays, the process of gridding is not accurate enough to allow comparison 

between different arrays (Schulze & Downward 2001). However, oligonucleotide chips 

are also more expensive compared to their cDNA counterparts. 

Comparing between the different oligonucelotide chips, Agilent arrays typically 

have a single spot per gene (single probe measurement), whereas Affymetrix arrays 

provide multiple measurements: a series of independent or semi-independent 

oligonucleotides (the probe set) query each RNA in solution. Affymetrix probe sets are 

constructed from a series of perfect-match and paired-mismatch oligonucleotides, 

allowing some assessment of non-specific binding and performance of the probes. 

Overall, the Affymetrix probe sets provide a variety of measurements that allow robust 
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measures of gene expression. The use of multiple perfect-match and mismatch probes for 

each gene enables the development of different methods of interpreting the hybridization 

patterns across the probe set and calculating a single „expression level‟ or „signal‟ that 

reflect the gene‟s relative expression level (Tumor Analysis Best Practices Working 

Group 2004). Due to these reasons, we have decided to use the Affymetrix platform for 

our experiments.  

 

Figure 5.1: Affymetrix GeneChip Expression Array design. Each probe pair consists of one 

perfect match probe and one mismatch probe. 

 

 Other groups have conducted microarray experiments on keloid fibroblasts in an 

attempt to identify some of the transcriptional level differences underlying this condition. 

The most recent study examined the differential gene expression between keloid and 

normal fibroblasts grown in the absence and presence of the steroid hydrocortisone 

(Smith et al. 2008). When the fibroblasts were grown only in serum supplemented 

medium in the absence of hydrocortisone, 511 genes were found to be expressed at 
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significantly different levels in keloid and normal cells. In the presence of 

hydrocortisone, 515 genes were found to be differentially expressed. The study showed 

increased expression of several IGF-binding and IGF-binding-related proteins and 

decreased expression of a subset of Wnt-pathway inhibitors and multiple IL-1-inducible 

genes. Most genes are up- or down-regulated by hydrocortisone to a similar extent in 

normal and keloid cells. However, increased expression of CTGF and insulin-like growth 

factor binding protein (IGFBP)-3 was observed in keloid fibroblasts only in the presence 

of hydrocortisone, suggesting a role for glucocorticoid resistance in the pathogenesis of 

keloids. These findings support a role for multiple fibrosis-related pathways in the 

pathogenesis of keloids. 

 Seifert et al. performed a study comparing the gene expression profiles between 

different lesional sites of keloids (Seifert et al. 2008). The Affymetrix microarray chip 

used in this study covered 38,500 genes. Gene expression patterns in the central part of 

keloids involve up-regulation of apoptosis inducing genes such as a disintegrin and 

metalloprotease 12 (ADAM12) and ECM degrading genes as matrix metalloproteinase 

(MMP) - 19. Overexpression of apoptosis inhibitors such as apoptosis caspase activation 

inhibitor (AVEN) and down-regulation of angiogenesis inhibiting genes as pentraxin-

related gene (PTX3) at the active margin of keloids may be responsible for the invasive 

character of the keloid margin. The results of the study support the important role of the 

biopsy site for research in keloids as these results show that different genes are regulated 

in different sites of keloids. 

 Another study analyzed 22,000 genes in keloid fibroblasts compared with normal 

skin fibroblasts using a different Affymetrix chip and revealed 43 up- and 6 down-
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regulated genes (Satish et al. 2006). The authors described up-regulation of annexin A2, 

transgelin, and RPS18 in keloids and they reported for the first time that a few tumor-

related genes were overexpressed in keloid fibroblasts. In this study, the age of the 

participating patients were different. Of the three patients, the first was an 8-year-old 

male, the second was a 57-year-old and the third was of unknown age. Furthermore, the 

site of the biopsy within the keloid was not presented and the race of the individuals and 

the reason for keloid development was not recorded. 

 Chen et al. performed microarray analysis of three keloids after burn injury and 

three normal skin samples in Chinese patients using cDNA microarray technology (Chen 

et al. 2003). In this study 250 genes were up and 152 genes were down-regulated. The 

authors describe differential expression of collagen, fibronectin, proteoglycan, growth 

factors, and apoptosis-related genes consistent with the published biochemical and 

clinical observations of keloids and found higher expression of TGF-β1 and nerve growth 

factor (NGF) in keloids versus normal skin. 

 A comparison of results from all four of these independent microarray studies was 

done by Seifert et al. and interestingly, no overlapping gene expression pattern was found 

(Seifert & Mrowietz 2009). Table 5.1 gives an overview of some of the regulated genes. 
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Table 5.1: Comparison of different microarray studies (Seifert & Mrowietz 2009) 

 

 

 For our study, we wanted to examine the transcriptional differences in keloid and 

normal fibroblasts in the absence of external signals from serum. It is a well known fact 

that keloid fibroblasts have a reduced dependence on serum growth factors as compared 

to normal fibroblasts (Russell et al. 1988). One of the aims of this study is to elucidate 

some possible reasons for this phenomenon. In addition, we also wanted to examine if 

there were any systematic transcriptional level differences between fibroblasts that were 

harvested at different time points. 
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5.2 Results 

 

5.2.1 The time factor did not result in any systematic differences in the 

transcriptional profile of the fibroblast cells  

The Affymetrix GeneChip U133A array is capable of measuring expression levels of 

22283 probe sets which represent approximately 18400 gene transcripts and variants. Our 

Two-Way ANOVA results indicate that only the type of cell (keloid or normal) resulted 

in significant systematic differences in gene expression levels. Both the time factor and 

the interactive effect between time and type of cell did not result in any significant 

differences in the transcriptional profile of the cells, both when MAS 5.0 was used (Table 

5.2) and when RMA was used (Table 5.3) 

Table 5.2: Two-way ANOVA results for determining the contribution of the time and type of cell 

on gene expression with probe summarization by MAS 5.0 

 

 

 

Table 5.3: Two-way ANOVA results for determining the contribution of the time and type of cell 

on gene expression with probe summarization by RMA  
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5.2.2 Genes significantly upregulated in keloid compared to normal fibroblasts 

ECM and glycoproteins such as collagen type I alpha 1 (COL1A1), collagen type XV 

alpha I (COL15A1), extracellular matrix protein 1 (ECM1), thrombospondin-1 (THBS1) 

and laminin alpha 2 (LAMA2), signaling molecules such as insulin-like growth factor 

binding protein 3 (IGFBP3), platelet-derived growth factor receptor beta (PDGFRB), 

wingless-type MMTV integration site family member 5A (WNT5A) and ras-related C3 

botulinum toxin substrate 2 (RAC2), as well as transcriptional regulators such as 

homeobox D10 (HOXD10) and A11 (HOXA11) were found to be significantly 

upregulated in keloid fibroblasts compared to normal fibroblasts in at least one of the top 

25 lists (Welch‟s t-test P<0.05, Tables 5.4 and 5.5). Genes found to be upregulated in 

both of the top 25 lists include the osteoblast specific factor periostin (POSTN), 

cytoskeletal protein keratin 19 (KRT19), cell adhesion molecule 1 (CADM1), 

neurodegenerative disorder protein ataxin-1 (ATXN1) and the axonal protein 

semophorin-5A (SEM5A) (Welch‟s t-test P<0.05, Tables 5.4 and 5.5). Other notable 

genes that were not in the top 25 list include collagen type V alpha 1 (COL5A1), collagen 

type V alpha 3 (COL5A3), collagen type XVII alpha 1 (COL17A1), myosins 1D 

(MYO1D) and 19 (MYO19), mediator of cell motility 1 (MEMO1), G-protein-coupled 

receptors 137B (GPR137B) and 153 (GPR153), G-protein signaling modulator 2 

(GPSM2), son of sevenless homolog 2 (SOS2), growth factor receptor-bound protein 10 

(GRB10) and Ephrin type-B receptor 4 (EPHB4) (Welch‟s t-test P < 0.05). The full list of 

genes that were upregulated with p-value < 0.05 can be found in Appendix A.1 and A.3.  
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Table 5.4: Top 25 upregulated genes in keloid compared to normal fibroblasts using the MAS 5.0 

summarization algorithm ranked by fold change 

 
Fold 
change 

Gene 
Symbol 

Gene Title Corrected 
p-value 

26.2568 POSTN periostin, osteoblast specific factor 2.51E-04 

19.88896 ZIC1 Zic family member 1 (odd-paired homolog, 
Drosophila) 

0.046789 

14.57531 HOXD10 homeobox D10 0.004014 

10.38634 COL15A1 collagen, type XV, alpha 1 4.25E-04 

8.887936 EGR2 early growth response 2 (Krox-20 homolog, 
Drosophila) 

0.006852 

7.998279 HOXA11 homeobox A11 0.033229 

7.9743 CCDC102B coiled-coil domain containing 102B 0.021884 

6.770347 KCNJ6 potassium inwardly-rectifying channel, subfamily J, 
member 6 

0.014057 

6.420784 JUP /// 
KRT19 

junction plakoglobin /// keratin 19 0.014453 

5.80834 MAP7 microtubule-associated protein 7 0.00785 

5.553577 IGFBP3 insulin-like growth factor binding protein 3 0.021725 

5.515989 ADRA2A adrenergic, alpha-2A-, receptor 0.011306 

5.489978 RAC2 ras-related C3 botulinum toxin substrate 2 (rho family, 
small GTP binding protein Rac2) 

0.049297 

5.301598 CDYL chromodomain protein, Y-like 0.039061 

5.168533 NPTX1 neuronal pentraxin I 0.015499 

4.974008 PMEPA1 prostate transmembrane protein, androgen induced 1 0.037054 

4.940097 EFNB2 ephrin-B2 0.022704 

4.889467 ATXN1 ataxin 1 0.003232 

4.783432 CADM1 cell adhesion molecule 1 0.033839 

4.513727 SEMA5A sema domain, seven thrombospondin repeats (type 1 
and type 1-like), transmembrane domain (TM) and 
short cytoplasmic domain, (semaphorin) 5A 

0.008288 

4.476735 WNT5A wingless-type MMTV integration site family, member 
5A 

0.0251 

4.305683 AK5 adenylate kinase 5 0.032527 

4.167339 EVI2A /// 
EVI2B 

ecotropic viral integration site 2A /// ecotropic viral 
integration site 2B 

0.003941 

4.105316 THBS1 thrombospondin 1 0.003338 

4.064728 HMGCS2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 
(mitochondrial) 

0.038054 

 

 

Table 5.5: Top 25 upregulated genes in keloid compared to normal fibroblasts using the RMA 

summarization algorithm ranked by fold change 

 

Fold 
change 

Gene 
Symbol 

Gene Title Corrected 
p-value 

18.0305 POSTN periostin, osteoblast specific factor 0.006498 

5.40679 IGFBP3 insulin-like growth factor binding protein 3 0.024325 

3.959037 COL15A1 collagen, type XV, alpha 1 0.028774 

3.21548 SEMA5A sema domain, seven thrombospondin repeats (type 1 0.013197 
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and type 1-like), transmembrane domain (TM) and 
short cytoplasmic domain, (semaphorin) 5A 

3.042947 SEMA5A sema domain, seven thrombospondin repeats (type 1 
and type 1-like), transmembrane domain (TM) and 
short cytoplasmic domain, (semaphorin) 5A 

0.035137 

2.726196 CADM1 cell adhesion molecule 1 0.001646 

2.631936 ATXN1 ataxin 1 0.020822 

2.531559 FARP1 FERM, RhoGEF (ARHGEF) and pleckstrin domain 
protein 1 (chondrocyte-derived) 

0.045664 

2.375326 MICAL2 microtubule associated monoxygenase, calponin and 
LIM domain containing 2 

0.037055 

2.176466 ECM1 extracellular matrix protein 1 0.047073 

2.129065 SLC25A6 solute carrier family 25 (mitochondrial carrier; adenine 
nucleotide translocator), member 6 

0.019936 

2.053115 KCNJ6 potassium inwardly-rectifying channel, subfamily J, 
member 6 

0.021022 

1.990826 TBC1D2 TBC1 domain family, member 2 0.048158 

1.985587 CADM1 cell adhesion molecule 1 0.046985 

1.959726 NXN nucleoredoxin 0.002448 

1.906954 MICAL2 microtubule associated monoxygenase, calponin and 
LIM domain containing 2 

0.017212 

1.897066 COL1A1 collagen, type I, alpha 1 0.008827 

1.878355 PDGFRB platelet-derived growth factor receptor, beta 
polypeptide 

0.002791 

1.869649 SLC25A6 solute carrier family 25 (mitochondrial carrier; adenine 
nucleotide translocator), member 6 

0.046273 

1.865537 GPSM2 G-protein signaling modulator 2 (AGS3-like, C. 
elegans) 

0.04761 

1.852414 LOC644191 
/// 
LOC728937 
/// RPS26 

similar to hCG15685 /// similar to 40S ribosomal 
protein S26 /// ribosomal protein S26 

0.038141 

1.84265 CTSB cathepsin B 0.018933 

1.836179 ODZ3 odz, odd Oz/ten-m homolog 3 (Drosophila) 6.59E-04 

1.835598 JUP /// 
KRT19 

junction plakoglobin /// keratin 19 0.02721 

1.807992 LAMA2 laminin, alpha 2 0.006566 

1.796024 FHOD1 formin homology 2 domain containing 1 0.014803 

1.764263 CTDSPL CTD (carboxy-terminal domain, RNA polymerase II, 
polypeptide A) small phosphatase-like 

0.018992 

1.749725 SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 0.038598 

1.747925 HDLBP high density lipoprotein binding protein 0.037741 

 

 

5.2.3 Genes significantly downregulated in keloid compared to normal fibroblasts 

A host of chemokine factors including chemokine ligands 6 (CXCL6), 1 (CXCL1), and 2 

(CXCL2) as well as interleukin 8 (IL8) were among the genes found to be significantly 
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downregulated in keloid compared to normal fibroblasts in both the top 25 lists (Welch‟s 

t-test P<0.05, Tables 5.6 and 5.7). In addition, cytokines such as interleukins 6 (IL6) and 

32 (IL32) as well as tumor necrosis factor alpha-induced protein 6 (TNFAIP6), 3 

(TNFAIP3) and tumor necrosis factor superfamily member 10 (TNFSF10) were also 

found to be downregulated in at least one of the top 25 lists (Welch‟s t-test P<0.05, 

Tables 5.6 and 5.7). Other interesting genes that were downregulated include matrix 

metalloproteinase 2 (MMP2), hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1), 

complement factor B (CFB), complement component 3 (C3), radical S-adenosyl 

methionine domain containing 2 (RSAD2), 2',5'-oligoadenylate synthetase 1 (OAS1), 

solute carrier family 39 member 8 (SLC39A8), G0/G1switch 2 (G0S2), interferon-

induced protein with tetratricopeptide repeats 1 (IFIT1) and 3 (IFIT3), prostaglandin E 

synthase (PTGES) as well as secreted frizzled-related protein 1 (SFRP1) (Welch‟s t-test P 

< 0.05) . The full list of genes that were downregulated with p-value < 0.05 can be found 

in Appendix A.2 and A.4.  

 
Table 5.6: Top 25 downregulated genes in keloid compared to normal fibroblasts using the MAS 

5.0 summarization algorithm ranked by fold change 
 
Fold 
change 

Gene 
Symbol 

Gene Title Corrected 
p-value 

77.61498 CXCL6 chemokine (C-X-C motif) ligand 6 (granulocyte 
chemotactic protein 2) 

1.48E-05 

73.48209 CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth 
stimulating activity, alpha) 

7.93E-05 

67.89986 IL8 interleukin 8 0.006303 

64.39615 CXCL11 chemokine (C-X-C motif) ligand 11 0.006303 

49.49322 HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1 1.98E-06 

41.41703 CCL5 chemokine (C-C motif) ligand 5 0.005142 

39.93947 CXCL2 chemokine (C-X-C motif) ligand 2 0.002401 

32.48277 RARRES1 retinoic acid receptor responder (tazarotene induced) 
1 

0.004841 

29.77878 RSAD2 radical S-adenosyl methionine domain containing 2 0.019981 

27.68656 PLA2G2A phospholipase A2, group IIA (platelets, synovial fluid) 0.001149 

27.15919 C2 /// CFB complement component 2 /// complement factor B 2.15E-05 
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27.04305 CXCL5 chemokine (C-X-C motif) ligand 5 2.44E-04 

26.4216 TNFAIP6 tumor necrosis factor, alpha-induced protein 6 0.008288 

26.13762 CXCL3 chemokine (C-X-C motif) ligand 3 0.005384 

23.80846 IL32 interleukin 32 0.001636 

23.43326 CP ceruloplasmin (ferroxidase) 0.003941 

23.40176 CXCL10 chemokine (C-X-C motif) ligand 10 0.032337 

21.83553 CHI3L2 chitinase 3-like 2 5.70E-04 

21.53614 IDO1 indoleamine 2,3-dioxygenase 1 0.004053 

19.30517 NTRK2 neurotrophic tyrosine kinase, receptor, type 2 0.011306 

15.52373 C3 complement component 3 2.51E-04 

15.49821 SLC39A8 solute carrier family 39 (zinc transporter), member 8 3.85E-07 

14.28212 G0S2 G0/G1switch 2 0.003903 

14.04543 OAS1 2',5'-oligoadenylate synthetase 1, 40/46kDa 0.039061 

13.35598 TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 0.016414 

 

 
Table 5.7: Top 25 downregulated genes in keloid compared to normal fibroblasts using the RMA 

summarization algorithm ranked by fold change 

 

Fold 
change 

Gene 
Symbol 

Gene Title Corrected 
p-value 

44.34992 CXCL6 chemokine (C-X-C motif) ligand 6 (granulocyte 
chemotactic protein 2) 

9.29E-10 

41.64695 CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth 
stimulating activity, alpha) 

1.89E-05 

37.03845 C2 /// CFB complement component 2 /// complement factor B 1.75E-08 

33.61232 HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1 1.50E-06 

29.71772 TNFAIP6 tumor necrosis factor, alpha-induced protein 6 0.008827 

21.50683 CXCL2 chemokine (C-X-C motif) ligand 2 5.89E-05 

20.34249 TNFAIP6 tumor necrosis factor, alpha-induced protein 6 0.011388 

19.02187 IL8 interleukin 8 0.003057 

18.80414 SLC39A8 solute carrier family 39 (zinc transporter), member 8 1.22E-05 

16.76682 SLC39A8 solute carrier family 39 (zinc transporter), member 8 7.69E-04 

14.08095 C3 complement component 3 2.94E-04 

13.78165 RSAD2 radical S-adenosyl methionine domain containing 2 0.013835 

12.01816 SOD2 superoxide dismutase 2, mitochondrial 0.002706 

11.75815 IL8 interleukin 8 0.001761 

11.65778 CCL2 chemokine (C-C motif) ligand 2 9.46E-07 

10.88791 SFRP1 secreted frizzled-related protein 1 0.026217 

9.990352 G0S2 G0/G1switch 2 0.001019 

9.679501 IFI44L interferon-induced protein 44-like 0.04903 

8.604651 CHI3L2 chitinase 3-like 2 0.019936 

8.378408 IL6 interleukin 6 (interferon, beta 2) 4.59E-04 

8.213031 CA12 carbonic anhydrase XII 2.40E-04 

8.204023 OAS1 2',5'-oligoadenylate synthetase 1, 40/46kDa 0.015085 

8.195308 GCH1 GTP cyclohydrolase 1 2.29E-04 

8.068323 CA12 carbonic anhydrase XII 0.00631 

7.890376 SOD2 superoxide dismutase 2, mitochondrial 0.001861 
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7.244113 IFIT1 interferon-induced protein with tetratricopeptide 
repeats 1 

0.035976 

7.188362 TNFAIP3 tumor necrosis factor, alpha-induced protein 3 8.07E-05 

6.98734 IFIT3 interferon-induced protein with tetratricopeptide 
repeats 3 

0.014427 

6.850272 TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 0.03935 

 

 

5.2.4 Hierarchical clustering and principal components analysis revealed that genes 

chosen were capable of distinguishing between keloid and normal samples 

When samples were grouped by principal components analysis using all ~23 000 probe 

sets in the GeneChip U133A arrays, keloid samples were fairly well separated from 

normal samples (Fig. 5.2A), although there was a slight overlap when genes were 

summarized using the RMA algorithm (Fig. 5.3A). When samples were grouped using 

only probe sets that were found to be significantly different, there was a clear separation 

between keloid and normal samples (Figs. 5.2B and 5.3B). The same outcome was also 

observed when hierarchical clustering was used. When using the full list of genes, keloid 

samples were generally clustered together and normal samples were also generally 

clustered together, but again there were some samples that were not clustered accordingly 

(Figs. 5.2C and 5.3C). When samples were clustered using only probe sets that were 

found to be significantly different, two major clusters were formed with keloid samples in 

one cluster and normal samples in the other (Figs. 5.2D and 5.3D). 
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Figure 5.2: Principal components analysis and hierarchical clustering using the MAS 5.0 

algorithm. (A) PCA of all samples using the full list of genes (B) PCA of all samples using 

differentially expressed genes (P<0.05) (C) Hierarchical clustering of all samples using the full 

list of genes (D) Hierarchical clustering of all samples using differentially expressed genes 

(P<0.05). Red balls and lines denote keloid samples while blue balls and lines denote normal 

samples. 
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Figure 5.3: Principal components analysis and hierarchical clustering using the RMA algorithm. 

(A) PCA of all samples using the full list of genes (B) PCA of all samples using differentially 

expressed genes (P<0.05) (C) Hierarchical clustering of all samples using the full list of genes 

(D) Hierarchical clustering of all samples using differentially expressed genes (P<0.05). Red balls 

and lines denote keloid samples while blue balls and lines denote normal samples. 
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upregulated genes in keloid as inputs (Table 5.8). When the list of significantly 

downregulated genes in keloid was used, a total of 35 GO terms were found to be 

statistically enriched (P<0.05) (Table 5.9). These terms include biological processes such 

as immune response, response to wounding and locomotory behaviour, molecular 

functions such as chemokine and cytokine activity and cellular components such as 

extracellular matrix and cytosolic ribosome. Two Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways were also found to be significantly enriched (P<0.05) when 

the full set of differentially expressed genes were used. These were the antigen 

processing and presentation pathway (Fig. 5.4, Table 5.10) and the ribosome pathway 

(Fig. 5.5, Table 5.11). Most of the significantly different genes that were involved in the 

antigen processing and presentation pathway were downregulated in keloid while all the 

significantly different genes that were involved in the ribosome pathway were 

upregulated in keloids. 

 

Table 5.8: List of Gene Ontology terms that were found to be statistically enriched using the 

DAVID Gene Functional Classification Tool with the list of significantly upregulated genes in 

keloid as input 

 

Category Term Corrected 
p-value 

GOTERM_CC_ALL GO:0005830~cytosolic ribosome (sensu Eukaryota) 5.10E-07 

GOTERM_CC_ALL GO:0005840~ribosome 2.10E-06 

GOTERM_CC_ALL GO:0044445~cytosolic part 7.54E-06 

GOTERM_CC_ALL GO:0033279~ribosomal subunit 8.89E-06 

GOTERM_MF_ALL GO:0003735~structural constituent of ribosome 1.52E-05 

GOTERM_MF_ALL GO:0005198~structural molecule activity 3.88E-05 

GOTERM_CC_ALL GO:0030529~ribonucleoprotein complex 8.31E-05 

GOTERM_BP_ALL GO:0006412~translation 0.00109 

GOTERM_CC_ALL GO:0015935~small ribosomal subunit 0.001301 

GOTERM_CC_ALL GO:0005843~cytosolic small ribosomal subunit (sensu 
Eukaryota) 

0.00132 

GOTERM_CC_ALL GO:0043232~intracellular non-membrane-bound 
organelle 

0.001642 

GOTERM_CC_ALL GO:0043228~non-membrane-bound organelle 0.001642 

GOTERM_MF_ALL GO:0003723~RNA binding 0.029371 
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GOTERM_CC_ALL GO:0031012~extracellular matrix 0.030531 

GOTERM_CC_ALL GO:0005737~cytoplasm 0.0307 

GOTERM_CC_ALL GO:0005578~proteinaceous extracellular matrix 0.031002 

GOTERM_BP_ALL GO:0009059~macromolecule biosynthetic process 0.042621 

GOTERM_BP_ALL GO:0044249~cellular biosynthetic process 0.04839 

 

 
Table 5.9: List of Gene Ontology terms that were found to be statistically enriched using the 

DAVID Gene Functional Classification Tool with the list of significantly downregulated genes in 

keloid as input 

 

Category Term Corrected 
p-value 

GOTERM_BP_ALL GO:0006955~immune response 2.22E-21 

GOTERM_BP_ALL GO:0002376~immune system process 3.44E-19 

GOTERM_BP_ALL GO:0050896~response to stimulus 9.19E-14 

GOTERM_BP_ALL GO:0019882~antigen processing and presentation 2.09E-09 

GOTERM_BP_ALL GO:0006952~defense response 2.10E-09 

GOTERM_MF_ALL GO:0005125~cytokine activity 2.35E-08 

GOTERM_MF_ALL GO:0042379~chemokine receptor binding 2.42E-08 

GOTERM_MF_ALL GO:0008009~chemokine activity 3.61E-08 

GOTERM_BP_ALL GO:0006954~inflammatory response 5.17E-08 

GOTERM_MF_ALL GO:0001664~G-protein-coupled receptor binding 1.23E-06 

GOTERM_BP_ALL GO:0048002~antigen processing and presentation of 
peptide antigen 

2.09E-06 

GOTERM_BP_ALL GO:0009611~response to wounding 2.93E-06 

GOTERM_CC_ALL GO:0005615~extracellular space 5.60E-06 

GOTERM_BP_ALL GO:0002474~antigen processing and presentation of 
peptide antigen via MHC class I 

7.17E-06 

GOTERM_BP_ALL GO:0009607~response to biotic stimulus 2.44E-05 

GOTERM_BP_ALL GO:0042221~response to chemical stimulus 5.25E-05 

GOTERM_CC_ALL GO:0042611~MHC protein complex 6.93E-05 

GOTERM_BP_ALL GO:0007626~locomotory behavior 7.96E-05 

GOTERM_CC_ALL GO:0005576~extracellular region 1.16E-04 

GOTERM_CC_ALL GO:0044421~extracellular region part 2.63E-04 

GOTERM_BP_ALL GO:0006950~response to stress 3.39E-04 

GOTERM_BP_ALL GO:0009605~response to external stimulus 3.81E-04 

GOTERM_BP_ALL GO:0042330~taxis 3.93E-04 

GOTERM_BP_ALL GO:0006935~chemotaxis 3.93E-04 

GOTERM_BP_ALL GO:0051707~response to other organism 3.97E-04 

GOTERM_BP_ALL GO:0051704~multi-organism process 5.05E-04 

GOTERM_CC_ALL GO:0042612~MHC class I protein complex 6.51E-04 

GOTERM_BP_ALL GO:0009615~response to virus 0.001549 

GOTERM_BP_ALL GO:0000041~transition metal ion transport 0.00606 

GOTERM_MF_ALL GO:0005507~copper ion binding 0.008833 

GOTERM_MF_ALL GO:0005102~receptor binding 0.010917 

GOTERM_BP_ALL GO:0007610~behavior 0.011518 

GOTERM_MF_ALL GO:0046870~cadmium ion binding 0.023054 
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GOTERM_BP_ALL GO:0042127~regulation of cell proliferation 0.037833 

 
 

Table 5.10: List of downregulated genes in keloid compared to normal fibroblasts involved in 

GO term Antigen Processing and Presentation 

  

Fold change Gene Symbol Gene Title 

2.737904 HLA-F major histocompatibility complex, class I, F 

2.702095 HLA-C major histocompatibility complex, class I, C 

2.648943 HLA-DMA major histocompatibility complex, class II, DM alpha 

2.638515 TAPBPL TAP binding protein-like 

2.566287 TAPBPL TAP binding protein-like 

2.421571 HLA-F major histocompatibility complex, class I, F 

2.231546 HLA-G major histocompatibility complex, class I, G 

2.21116 HLA-G major histocompatibility complex, class I, G 

2.182933 HLA-B major histocompatibility complex, class I, B 

2.131292 HLA-G major histocompatibility complex, class I, G 

2.117058 TAPBP TAP binding protein (tapasin) 

2.042615 HLA-B major histocompatibility complex, class I, B 

1.798085 HLA-C major histocompatibility complex, class I, C 

1.795796 HLA-A /// HLA-
A29.1 /// HLA-B 
/// HLA-G /// 
HLA-H /// HLA-
J 

major histocompatibility complex, class I, A /// major 
histocompatibility complex class I HLA-A29.1 /// major 
histocompatibility complex, class I, B /// major 
histocompatibility complex, class I, G /// major 
histocompatibility complex, class I, H (pseudogene) /// major 
histocompatibility complex, class I, J (pseudogene) 

1.773213 HLA-C major histocompatibility complex, class I, C 

1.691625 HLA-C major histocompatibility complex, class I, C 

1.678448 HLA-B /// MICA major histocompatibility complex, class I, B /// MHC class I 
polypeptide-related sequence A 

1.520112 HLA-A major histocompatibility complex, class I, A 

1.229484 B2M beta-2-microglobulin 

 
 

Table 5.11: List of upregulated genes in keloid compared to normal fibroblasts involved in GO 

term Ribosome 

 
Fold change Gene Symbol Gene Title 

2.662594 MGC87895 /// 
RPS14 

similar to ribosomal protein S14 /// ribosomal protein S14 

1.877402 LOC285053 /// 
LOC390354 /// 
RPL18A 

similar to ribosomal protein L18a /// ribosomal protein L18a 
pseudogene /// ribosomal protein L18a 

1.865347 LOC644191 /// 
LOC728937 /// 
RPS26 

similar to hCG15685 /// similar to 40S ribosomal protein S26 
/// ribosomal protein S26 

1.780408 RPL10 ribosomal protein L10 

1.764005 RPS16 ribosomal protein S16 

1.696983 EIF3A eukaryotic translation initiation factor 3, subunit A 

1.645023 RPS9 ribosomal protein S9 
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1.636263 RPL13 ribosomal protein L13 

1.602853 RPS2 ribosomal protein S2 

1.597647 RPL4 ribosomal protein L4 

1.59623 RPS8 ribosomal protein S8 

1.531203 SERP1 stress-associated endoplasmic reticulum protein 1 

1.523152 RPL13 ribosomal protein L13 

1.474366 RPS6 ribosomal protein S6 

1.415472 RPL8 ribosomal protein L8 

1.371258 SERP1 stress-associated endoplasmic reticulum protein 1 

1.360637 RPL13 ribosomal protein L13 

 

 

Figure 5.4: Antigen processing and presentation pathway from the KEGG database. List of 

differentially expressed genes were submitted to the DAVID Gene Functional Classification Tool 

using the full list of Affymetrix U133A genes as background for statistical analysis. The antigen 

processing and presentation pathway had a Benjamini corrected P-value of 0.0029. Genes that 

were significantly upregulated in the pathway are denoted with a red cross while genes that were 

significantly downregulated in the pathway are denoted with a blue cross. 

 

β- Actin 
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Figure 5.5: Ribosome pathway from the KEGG database. List of differentially expressed genes 

were submitted to the DAVID Gene Functional Classification Tool using the full list of 

Affymetrix U133A genes as background for statistical analysis. The ribosome pathway had a 

Benjamini corrected P-value of 0.029. Genes that were significantly upregulated in the pathway 

are denoted with a red cross while genes that were significantly downregulated in the pathway are 

denoted with a blue cross. 

 

 

 

5.3 Discussion 

A number of different groups have performed microarray studies on keloid fibroblasts 

previously (Chen et al. 2003; Satish et al. 2006; Seifert et al. 2008; Smith et al. 2008) but 

none have examined the transcriptional level and time dependent effects of serum 

starvation on these cells. In this study, we report that the time factor did not have any 

β- Actin 
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significant and systematic effect on gene expression levels of keloid and normal 

fibroblasts. This result is consistent with the common assumption that cells left in 

minimal media show no major transcriptional level differences. However, it is also 

possible that our time points and number of samples are too small to detect any 

systematic differences due to the time factor. Under serum starvation conditions, it was 

found that there was a greater number of genes downregulated and fewer genes 

upregulated in the keloid compared to the normal fibroblasts. Interestingly, this same 

observation has also been made when the fibroblasts were left in serum supplemented 

media (175 genes upregulated, 559 genes downregulated) or when hydrocortisone 

supplemented media was used (221 genes upregulated, 547 genes downregulated) (Smith 

et al. 2008). Research in keloid has focused mainly on the upregulation of candidate 

genes such as TGF-β and PDGF, but these results suggest that gene downregulation 

could also be a very important aspect of keloid formation. 

 The microarray platform allows for the measurement of thousands of gene 

transcripts simultaneously, but its strength could also be its weakness. It is not feasible, 

for example, to independently validate all the hundreds of abnormally expressed genes 

using other molecular techniques. Furthermore, the vast amounts of data combined with 

the limited number of samples make for a profoundly under-determined problem; there is 

not enough data to distinguish between many of the different hypothesis that could be 

consistent with the data set. Finally, the different methods that can be used for 

background correction, normalization and summarization of the arrays can lead to 

different results. Some of the more widely used algorithms include the default Affymetrix 

MAS 5.0 algorithm (default Affymetrix approach; Affymetrix Users Guide, 
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www.affymetrix.com), the RMA algorithm (Bolstad et al. 2003) and the dChip algorithm 

(Li & Wong 2001). At present, there is no consensus as to which method is best, with   

different studies giving conflicting results (Bolstad et al. 2003; Shedden et al. 2005; Harr 

& Schlötterer 2006; Lim et al. 2007).  

In our experiments, we have used the MAS 5.0 algorithm and the RMA algorithm 

for normalization and summarization. We found that using the MAS 5.0 algorithm gives 

a larger number of differentially expressed genes (471 genes, P < 0.05) compared to the 

RMA algorithm (344 genes, P < 0.05). Furthermore, the list of genes that were most 

highly upregulated or downregulated were also different when a different algorithm was 

used. In total, the intersection between the RMA summarized data and the MAS 5.0 

summarized data showed 217 genes to be differentially expressed (Appendix A.5). It 

remains unclear which method produces the more accurate and reliable results, but we 

have chosen to use the MAS 5.0 summarization algorithm for DAVID analysis by virtue 

it producing a larger number of differentially expressed genes. For enrichment analysis, a 

larger gene list has higher statistical power resulting in a higher sensitivity to slightly 

enriched terms, as well as to more specific terms (Huang, Sherman & Lempicki 2009).  

Many of the genes that were found to be significantly different in this study were 

similar to those that have been found in other studies previously. ECM proteins such as 

COL1A1 and COL5A1 were found to be significantly upregulated in keloids. 

Upregulation of collagen is a well known characteristic of keloid fibroblasts and 

upregulation of these two collagen types in particular has also been reported in previous 

microarray studies (Table 5.1). PDGFRB (Messadi et al. 1998), THBS1 (Chipev et al. 

2000) and RAC2 (Witt et al. 2008) were also found to be significantly upregulated in 
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keloids consistent with previous findings. In a microarray array study done by Seifert et 

al., it was reported that keratin 18 (KRT18) was upregulated in keloid compared to 

normal samples, and that there was upregulation of POSTN and ECM1 in fibroblasts 

derived from the deeper part of the keloid compared to the superficial part of the keloid 

(Seifert et al. 2008). While we did not see any difference in KRT18 expression levels, we 

found a higher expression of KRT19, POSTN and ECM1 in keloid compared to normal 

fibroblasts. 

IGFBP3 is another important upregulated factor that was found in our study. 

Higher expression of IGFBP3 in dermal fibroblasts from patients with systemic sclerosis 

(Feghali & Wright 1999), idiopathic pulmonary fibrosis (Yasuoka et al. 2006), and 

leiomyomas (Tsibris et al. 2002) indicate that this protein has some role to play in 

fibrosis. Furthermore, IGFBP3 is capable of inducing production of ECM components 

such as collagen type I and fibronectin in normal primary adult lung fibroblasts (Pilewski 

et al. 2005). A known function of IGFBP3 is to bind to IGF-1 (Collett-Solberg & Cohen 

1996) but it has also been found to bind to extracellular matrix components, have nuclear 

localization signals, and bind to putative receptors on the cell surface (Mohan & Baylink 

2002). It is possible that these other functions of IGFBP3 contribute to its role in fibrosis 

and could be an interesting future area of study. Increased expression of IGFBP3 has also 

been found in other studies of keloids (Satish et al. 2006; Smith et al. 2008). 

Our results also show a reduction in the Wnt signaling antagonist SFRP1 as well 

as an increase in the WNT5A gene expression levels in keloid compared to normal 

fibroblasts. Low levels of SFRP1 in keloid fibroblasts have been reported previously 

(Smith et al. 2008) indicating a role for the Wnt pathway in keloid pathogenesis. SFRP1 
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suppresion has also been found in numerous different carcinomas including breast 

(Shulewitz et al. 2006), bladder (Marsit et al. 2005), ovarian (Takada et al. 2004), colon 

(Caldwell et al. 2004) and prostrate (Lodygin et al. 2005) cancers. Furthermore, it has 

also been shown to have an antiproliferative effect on vascular cells (Ezan et al. 2004), 

making it a very attractive candidate for further study. SFRP1 suppresses both the 

canonical Wnt/β-catenin pathway, as well as the non canonical β-catenin independent 

pathway (Yang et al. 2009). WNT5A, on the other hand, is only associated with the non-

canonical Wnt signaling pathway (Slusarski, Corces & Moon 1997; Kilian et al. 2003). 

The role of WNT5A in cancer remains unclear with some cancers showing an 

upregulation of this factor while others show a decrease in expression (McDonald & 

Silver 2009). However, it has been found to promote angiogenesis by inducing 

endothelial cell proliferation and enhanced cell survival under serum-deprived conditions 

(Masckauchán et al. 2006). While the canonical Wnt signaling has been shown to be 

upregulated in keloids (Sato 2006), not much is known of the non-canonical pathway. 

Expression of some IL-1 responsive genes such as CXCL-1, CXCL-6, MMP-2 

and TNFAIP6 were found to be downregulated in keloids and again, this result is 

consonant with that obtained in previous studies (Smith et al. 2008; Yeh, Shen & Tai 

2009). Lower levels of MMP-2 could be one of the reasons for the accumulation of ECM 

components as the MMPs are responsible for ECM degradation. Other inflammatory 

cytokines such as IL8 and IL32 were also found to be downregulated, suggesting a role 

for inflammation in keloid pathogenesis.  

Other interesting genes that were upregulated include those involved in G protein 

coupled receptor signaling (GPR137B, GPR153, SOS2), cell motility proteins (MYO1D, 
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MYO19, MEMO1) and tyrosine kinase signaling molecules (EPHB4, SOS2) while those 

that were downregulated were involved in apoptosis (PTGES, TNFSF10), production of 

cortisol (HSD11B1), activation of the complement pathway of the immune system (CFB, 

C3), antiviral defense (RSAD2, OAS1) and interferon induced proteins (IFIT1 and 

IFIT3). These genes, as well as a host of other genes in the top 25 list of differentially 

expressed genes could be important targets for further study and may be important in 

shedding light on the keloid condition. Of particular interest are the proapoptotic genes 

TNFSF10 and PTGES which were found to be decreased in keloids. This finding has 

never been reported before and could be a result of the serum starvation condition. 

Unfortunately, there were some discrepancies in our results compared to previous 

studies as well. Smith et al. reported a reduction in multiple homeotic (HOX) genes such 

as HOXA11, among others (Smith et al. 2008). However, we found an increased 

expression of HOXA11 and HOXD10 in keloid compared to normal fibroblasts. HOX 

genes are highly conserved master control genes that play major roles in anterior-

posterior development in the embryo but they have also been found to regulate gene 

expression in adult differentiated cells, including human dermal fibroblasts (Chang et al. 

2002). The differential expression of HOX genes may account for the tumorigenic 

phenotype of keloids, but as suggested by Smith et al., it is also possible that these 

differences may just be due to the different anatomic sites from which cultures were 

isolated (Smith et al. 2008). This could possibly account for the discrepancy in our 

results. In addition, these differences could also be due to the different culture conditions 

(serum/hydrocortisone instead of serum starvation), different microarray chips (U133A 

2.0 instead of U133A), different normalization methods (RMA instead of MAS 5.0), 
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sample to sample variation or false positive results. Our results also showed a 

downregulation of IL6, contrary to previous reports where higher expression of IL6 was 

found in keloids (Tosa et al. 2005; Ghazizadeh et al. 2007). Overexpression of IL6 

related genes in keloid fibroblasts was also not seen in the microarray study done by 

Smith et al. and they attributed this to the differences in origin of cultures, culture 

conditions, or the microarray platform (Smith et al. 2008). The very same factors could 

also be the reasons for our discrepancy. 

In general, there are two ways in which microarrays can be used to investigate 

problems in cell biology (Schulze & Downward 2001). The first method can be thought 

of as a local approach to understanding gene expression changes, where the investigator 

is interested only in finding the single change in gene expression that might be the key to 

a given alteration in phenotype. This is the method that we have utilized so far, and in 

doing so we have come up with a list of potential genes that could be important in 

understanding keloid pathophysiology. However, we are never really certain about the 

importance of this list; microarray experiments are highly capable of generating long lists 

of genes with altered expression, but they provide few clues as to which of these changes 

are important in establishing a given phenotype. This deduction is left to the ingenuity of 

the experimenter, and the temptation is to stick to familiar genes, or genes that conform 

to existing ideas about how the system works, thus resulting in a certain level of 

biasedness. In our case, we have tried to eliminate this bias by giving the top 25 lists of 

genes that were differentially expressed with p-values less than 0.05, but even so, the list 

differs significantly depending on the normalization method used. 
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Another way of working with microarray data is to look at the global picture of 

gene expression patterns. Unsupervised methods such as k-means clustering, principal-

component analysis and self-organizing maps can be used to group closely related genes 

or samples together. Using hierarchical clustering and principal-component analysis on 

the full set of genes, we found that in general, keloid samples were more similar to each 

other compared to normal samples, regardless of the sample type or the time point when 

they were harvested. This was despite the fact that the samples were processed in batches, 

that is, RNA extraction and hybridization of KF1 and NF1 were done together, KF2 was 

paired with NF2 and KF3 was paired with NF3. Batch effects are a very common 

problem faced by researchers in the area of microarray studies, particularly when 

combining multiple batches of data from different experiments or if an experiment cannot 

be conducted all at once (Johnson, Li & Rabinovic 2007). Our results indicate that for our 

case, there are minimal systematic batch effects. There was a small degree of overlap 

between the keloid and normal samples when the full set of genes was used, but this 

could also be due to the fact that KF3 and NF3 were from the same patient. This overlap 

was eliminated when the subset containing only genes found to be differentially 

expressed was used for the unsupervised methods. This result reconfirms the ability of 

the list of genes found to discriminate between keloid and normal fibroblasts. 

 We were also interested in looking at clusters of related genes that were 

differentially expressed to give some biological meaning to the data. Hierarchical 

clustering can be used to cluster similarly expressed genes together, but here we have 

opted for an enrichment analysis based method instead. The strategy employed here is to 

systematically map a large number of interesting genes in a list to the associated 
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biological annotation (e.g., gene ontology terms), and then statistically highlight the most 

overrepresented (enriched) biological annotation out of thousands of linked terms and 

contents. The DAVID Gene Functional Classification Tool is one of a number of tools 

that is capable of performing enrichment analysis, and compared with similar services, it 

has some unique features and capabilities, such as an integrated and expanded back-end 

annotation database, advanced modular enrichment algorithms and powerful exploratory 

ability in an integrated data-mining environment (Huang, Sherman & Lempicki 2009).  

 For DAVID analysis, we have decided to use the MAS 5.0 algorithm for 

summarization and normalization as this produced a larger set of differentially expressed 

genes as compared to the RMA algorithm. In general, when it comes to enrichment 

analysis, a larger gene list can have higher statistical power resulting in a higher 

sensitivity to slightly enriched terms, as well as to more specific terms. Otherwise, the 

sensitivity is decreased toward largely enriched terms and broader/general terms (Huang, 

Sherman & Lempicki 2009). Huang et al. also gives a checklist of characteristics of a 

„good‟ gene list for analysis, and this includes the presence of important marker genes, a 

reasonable number of genes ranging from hundreds to thousands and the passing of 

important statistical thresholds such as t-tests and fold changes. However, he also states 

that important statistical thresholds do not have to be sacrificed (e.g., fold changes>1.1 

and P-value < 0.2) to reach a comfortable gene size. For our gene list, we have chosen a 

stringent P-value of 0.05 but have not placed any restriction on the fold change as we 

believe the stringent P-value would be sufficient in identifying the differentially 

expressed genes. 
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 One deficiency of the DAVID system is that it does not say in what way the 

enriched terms differ when comparing between keloid and normal fibroblast cells, that is 

to say, whether for example, immune response is heightened or suppressed in keloid 

compared to normal cells. All the system does is to take in a list of genes and determine 

which terms are enriched from the list that was received. One way of dealing with this 

limitation is to input genes that are upregulated and genes that are downregulated 

separately. Since this approach reduces the size of the gene list, this may result in 

decreased sensitivity and specificity in the enrichment analysis. However, we have found 

that in our case, breaking up the list into upregulated and downregulated genes results in 

about the same number and type of terms enriched compared to when the full set of 

differentially expressed genes was used as input. Furthermore, this approach has the 

added advantage of giving us a rough gauge as to how the enriched terms differ when 

comparing keloid and normal cells. However, bearing in mind the multiple and complex 

roles that a gene could play in a biological system, and also the antagonistic roles of some 

genes, this approach would at best give us a very rough idea about the roles that the 

enriched terms play in the keloid condition. For a more accurate treatment, detailed 

literature review and further experiments have to be done on each of the enriched terms 

found. 

 When comparing keloid to normal fibroblasts, our results indicate an increased 

expression of genes involved in ribosomal activity and extracellular matrix and a 

decreased expression of genes involved in immune response, locomotory behaviour and 

chemokine and cytokine activity, among others. This is an interesting finding that could 

be explored in detail in future studies. We also found two KEGG pathways that were 
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significantly enriched when the full list of differentially expressed genes was used. These 

pathways are the antigen processing and presentation pathway and the ribosome pathway.  

 Although fibroblasts are frequently considered just as structural elements of a 

tissue, they represent in fact a dynamic cell population that is actively involved not only 

in tissue remodeling, but also in autoimmune and inflammatory processes (Smith 2005). 

Human leukocyte antigen (HLA) class I molecules are expressed on the surface of all 

nucleated human cells including fibroblasts and their role is to present peptides derived 

from endogenous proteins to cytotoxic CD8
+
 T cells(York & Rock 1996; Grommé & 

Neefjes 2002; Cresswell et al. 2005). The reduced levels of these class I molecules 

implies that keloid fibroblasts are unable to deal with infections, and this result appears to 

be consistent with other findings from this study about the lower levels of immunological 

factors in keloids. Interferon gamma has been used in the treatment of keloids, and its 

efficacy has been attributed to its ability to downregulate collagen synthesis (Larrabee et 

al. 1990). Interferon gamma has been known to also increase HLA class I expression in 

dermal fibroblasts (Hengel et al. 1995; Zimmer et al. 2006) and this could possibly be 

another reason for its success in treating keloids. 

It has been previously reported that ribosomal protein (RPS) L23A, RPS10 and 

RPS 18 were upregulated in keloids (Satish et al. 2006). Here we find further support for 

the upregulation of ribosomal proteins in keloids. Overexpression of several ribosomal 

proteins has been reported in carcinomas of the colon (Pogue-Geile et al. 1991) and 

breast (Henry, Coggin & King 1993). There is also evidence suggesting that ribosomal 

proteins, in addition to participating in protein synthesis, are likely to be involved in other 

extraribosomal functions such as DNA replication, transcription and repair, RNA splicing 
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and modification, cell growth and proliferation, regulation of apoptosis and development, 

and cellular transformation (Wool 1996; Lai & Xu 2007). All these make the ribosomal 

proteins interesting candidates for study as they may shed further light on the keloid 

condition. 

 In conclusion, this study has shown that many of the genes found to be 

differentially expressed in keloid fibroblasts when left in serum starvation media are 

similar to what has been reported in previous studies, despite the different conditions 

used in the other studies. Furthermore, we found no systematic difference when the cells 

were harvested at different time points. This study has also revealed a list of novel 

differentially expressed genes that could be utilized for further research, out of which the 

antigen presentation pathway and ribosomal proteins appear to be interesting candidates. 
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CHAPTER SIX 

REVERSE ENGINEERING GENE NETWORKS IN KELOID AND 

NORMAL FIBROBLASTS 

 

 

6.1 Introduction 

The genome plays a central role in the control of cellular processes, such as in the 

response of cells to environmental signals, the differentiation of cells during 

development, and the replication of the genome preceding cell division. A protein 

synthesized from the information contained in a coding region of DNA may function as a 

transcription factor binding to regulatory sites elsewhere on the DNA, as an enzyme 

catalyzing a metabolic reaction, or as a component of a signal transduction pathway. 

With few exceptions, all cells in an organism contain the same genetic material. This 

implies that in order to understand how genes are implicated in the control of intracellular 

and intercellular processes, the scope should be broadened from sequences of nucleotides 

encoding proteins to regulatory systems determining which genes are expressed, when 

and where in the organism, and to what extent. The goal of reverse engineering methods 

is to infer gene networks from observational data, thus providing insight into the inner 

workings of a cell (Hartwell et al. 1999; Schadt, Sachs & Friend 2005). 

Reverse engineering strategies generally fall within two broad categories -

“physical” approaches and “influence” approaches (Gardner & Faith 2010). The 

modeling of the physical interactions between transcription factors and their promoters is 

what is known as the physical approach to reverse engineering. Gene expression is 
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predominantly controlled by auxiliary proteins called transcription factors (TF). A TF 

binds directly to a specific upstream region of the target gene known as the promoter 

region, which triggers the enzyme, RNA polymerase, to transcribe DNA to RNA. TFs 

can therefore be viewed as a class of specialized proteins that govern the on-off switch of 

gene expression through either repressing (down-regulation) or inducing (up-regulation) 

its output.  An advantage of this strategy is that it enables the use of genome sequence 

data, in combination with RNA expression data, to enhance the sensitivity and specificity 

of predicted interactions but its limitation is that it cannot describe regulatory control by 

mechanisms other than transcription factors.  

On the other hand, the influence approach abstracts out this mechanistic process 

and instead can be viewed just as an input-output device. In other words, it looks for 

transcripts that act as “inputs” whose concentration changes can explain the changes in 

“output” transcripts. Such a model does not generally describe physical interactions since 

transcription is rarely controlled directly by RNA. Nevertheless, in some cases, the input 

transcripts may encode the transcription factors that directly regulate transcription. In 

such cases, the influence model may accurately reflect a physical interaction. An 

advantage of the influence strategy is that the model can implicitly capture regulatory 

mechanisms at the protein and metabolite level that are not physically measured but the 

limitation of this approach is that the model can be difficult to interpret in terms of the 

physical structure of the cell, and therefore difficult to integrate or extend with further 

research. Moreover, the implicit description of hidden regulatory factors may lead to 

prediction errors.  
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In addition to these two modeling approaches, reverse engineering methods also 

differ in terms of the mathematical formalisms used and can be static or dynamic, 

continuous or discrete, linear or nonlinear and deterministic or stochastic (Hache, 

Lehrach & Herwig 2009). For the purposes of this study, we have chosen to use both the 

physical as well as the influence approach for reconstructing the networks. For the 

physical approach, we will use the regression method fREDUCE (fast-Regulatory 

Element Detection Using Correlation with Expression) (Wu et al. 2007) with the 

objective of identifying important cis-binding motifs and their targets in keloid 

fibroblasts. For the influence approach, we will compare the performance of the 

information theoretic method ARACNE (Algorithm for the Reconstruction of Accurate 

Cellular Networks) (Basso et al. 2005) and the Bayesian package BANJO (Bayesian 

Network Inference with Java Objects) (Yu et al. 2004) in uncovering regulatory 

interactions in keloid and normal fibroblasts. The effect of different 

normalization/summarization methods and lowly expressed probes on gene network 

inference is also not clear and will be examined in this system.  

Generally, the process of modeling gene regulatory networks consists of a few 

main steps: designing experiments that produce maximally informative observations, 

developing methodologies for choosing a candidate model that „best‟ fits the 

observations, analyzing and validating the model, and using the model to formulate and 

test new hypotheses (Goutsias & Lee 2007). Microarray data from the previous study will 

be used to learn the networks. However, learning the structure of a gene network using 

the influence approach is difficult as the number of possibilities scale exponentially with 

the number of variables. Therefore, modeling and testing such large structures would 
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require large amounts of data for accuracy. Due to our limited data, we have decided to 

focus on small networks of genes that have been found to be differentially expressed 

from the second part of this dissertation. Furthermore, to increase the number of samples, 

we will use data from other independent microarray experiments performed in our lab 

and also data from Smith et al (2008), which is the only keloid fibroblast data publicly 

available at the Gene Expression Omnibus (GEO) database. For the physical approach, 

since the binding motif repeats are regressed against the expression levels of each gene, it 

is the number of genes that constitute the sample size. Therefore, the full range of genes 

is used for this approach instead of the smaller transcriptional networks that have found 

to be differentially expressed.  

 

Figure 6.1: The general strategy for reverse-engineering transcription control systems (Gardner 

& Faith 2010). (1) The experimenter perturbs cells with various treatments to elicit distinct 

responses. (2) After each perturbation, the experimenter measures the expression (concentration) 

of many or all RNA transcripts in the cells. (3) A learning algorithm calculates the parameters of 

a model that describes the transcription control system underlying the observed responses. The 

resulting model may then be used in the analysis and prediction of the control system function. 

 

In total, we have four different treatment conditions (serum-treated, serum-free, 

hydrocortisone-treated and HDGF-treated) and two different cell derivations (keloid and 

normal) from multiple patients. Although our datasets consist of some time-series, the 

gap between each time point is very large (in the order of days) and may lead to 
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inaccurate results if used to infer time-series regulatory networks. Therefore, we have 

limited our study to steady state conditions with the assumption that each time point is 

statistically independent from others. This is a possibly valid assumption as the sampling 

time is very long. Furthermore, the genes were not directly perturbed by knockdown or 

overexpression in our experiments and it is very likely that the different conditions used 

will result in multiple unknown perturbations. As such, inference algorithms such as 

dynamic Bayesian networks (which require numerous closely spaced time points) and 

differential equation approaches (which require either time series data or knowledge of 

perturbations) cannot be applied in our case.  

 

 

6.2 Algorithms 

 

6.2.1 fREDUCE 

This method is an extension to the REDUCE (Regulatory Element Detection Using 

Correlation with Expression) algorithm (Bussemaker, Li & Siggia 2001). REDUCE is a 

deterministic method that first enumerates oligonucleotides and then identifies words 

whose occurrence in promoter sequences correlate most strongly with expression data. 

This procedure is applied iteratively to produce a set of oligonucleotides that produce the 

best simultaneous fit to the data.  

One weakness of REDUCE is that it can miss weak but biologically significant 

variants of the regulator site. Highly degenerate motifs whose individual variants fall 

below the detection threshold will be missed altogether. This is particularly the case for 
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regulators in higher mammalian genomes, which can exhibit strong site to site variation 

in specificity. However, a straightforward extension of REDUCE using exhaustive 

enumeration of degenerate motifs becomes impractical when the motif length or number 

of degenerate positions increases as the computation of the Pearson correlation 

coefficient which is required for identifying the motifs is computationally laborious. 

 fREDUCE uses the following strategy to efficiently compute the Pearson 

coefficients of the most significant degenerate motifs: 1) A list of degenerate motifs that 

can be derived from the sequence data is generated. 2) For each degenerate motif, a 

“pseudo-Pearson" coefficient, an estimate of the actual Pearson coefficient can be 

calculated. The pseudo-Pearson coefficient is guaranteed to be an upper-bound on the 

actual Pearson coefficient and is used as a filter to eliminate most (typically >99.9%) of 

the motif list. 3) Actual Pearson coefficients are computed and the top motif is found and 

4) The contribution from the top motif is subtracted from the expression data to form a 

residual, which is used for subsequent rounds of motif searching. This algorithm has been 

shown to outperform many of the other motif finding algorithms, including its 

predecessor REDUCE (Wu et al. 2007). 

 

6.2.2 ARACNE  

Information-theoretic approaches use a pseudo-distance between probability distributions 

called Mutual Information (MI), to compare expression profiles from a set of 

microarrays. For each pair of genes (i, j), their MIij is computed and the edge aij = aji is set 

to 0 or 1 depending on a significance threshold to which MIij is compared. MI can be 
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used to measure the degree of independence between two genes. Mutual information MIij 

between gene i and gene j is computed as: 

ijjiij HHHM   

where H, the entropy, is defined as: 
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The entropy Hk has many interesting properties, specifically it reaches a maximum for 

uniformly distributed variables, i.e. the higher the entropy, the more randomly distributed 

are gene expression levels across the experiments. From the definition, it follows that MI 

becomes zero if the two variable xi and xj are statistically independent (p(xixj) = p(xi)p(xj), 

since their joint entropy Hij = Hi + Hj. A higher MI indicates that the two genes are non-

randomly associated to each other. It can be easily shown that MI is symmetric, Mij = Mji, 

therefore the network is described by an undirected graph G. The definition of MI 

requires each data point, i.e. each experiment, to be statistically independent from the 

others, thus information-theoretic approaches, as described here, can deal with steady-

state gene expression data set, or with time-series data as long as the sampling time is 

long enough to assume that each point is independent from the previous ones. Edges in 

networks derived by information-theoretic approaches represent statistical dependences 

among gene expression profiles. 

ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) 

belongs to the family of information-theoretic approaches to gene network inference by 

implementing the relevance network algorithm (Basso et al. 2005). ARACNE computes 

Mij for all pairs of genes i and j in the data set. Mij is estimated using the method of 

Gaussian kernel density (Steuer et al. 2002). Once Mij for all gene pairs has been 
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computed, ARACNE excludes all the pairs for which the null hypothesis of mutually 

independent genes cannot be ruled out (H0 : MIij = 0). A p-value for the null hypothesis, 

computed using Monte Carlo simulations, is associated to each value of the mutual 

information. The final step of this algorithm is a pruning step based on the Data 

Processing Inequality (DPI) principle that tries to reduce the number of false positives. 

This principle asserts that if both (i,j) and (j,k) are directly interacting, and (i,k) is 

indirectly interacting through j, then ),min(, jkijki MMM  . This condition is necessary 

but not sufficient, i.e. the inequality can be satisfied even if (i,k) are directly interacting, 

therefore the authors acknowledge that by applying this pruning step using DPI they may 

be discarding some direct interactions as well.  

 

6.2.3 BANJO 

A Bayesian network is a graphical model for probabilistic relationships among a set of 

random variables Xi, with i = 1…n. These relationships are encoded in the structure of a 

directed acyclic graph G whose vertices (or nodes) are the random variables Xi. The 

relationships between variables are described by a joint probability distribution 

P(X1,…,Xn) that is consistent with the independence assertions embedded in the graph G 

and has the form:  

),...,||(),...,(
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where the p+1 genes on which the probability is conditioned are called the parents of 

gene i and represent its regulators, and the joint probability density is expressed as a 

product of conditional probabilities by applying the chain rule of probabilities and 

independence. This rule is based on Bayes theorem: P(A,B) = P(B||A) * P(A) = P(A||B) * 
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P(B). We observe that the joint probabilty distribution can be decomposed as the product 

of conditional probabilities only if the Markov assumption holds, i.e. each variable Xi is 

independent of its non-descendants, given its parent in the directed acyclic graph G. In 

order to reverse-engineer a Bayesian network model of a gene network we must find the 

directed acyclic graph G (i.e. the regulators of each transcript) that best describes the 

gene expression data D. This is done by choosing a scoring function that evaluates each 

graph G (i.e. a possible network topology) with respect to the gene expression data D, 

and then searching for the graph G that maximizes the score. 

BANJO is a gene network inference software that has been developed by the 

group of Hartemink (Yu et al. 2004). In BANJO, heuristic approaches are used to search 

the network space to find the network graph G (Proposer/Searcher module in BANJO). 

For each network structure explored, the parameters of the conditional probability density 

distribution are inferred and an overall network‟s score is computed using the Bayesian 

metric with Dirichlet priors and equivalence (BDe) metric in BANJO‟s Evaluator 

module. The output network will be the one with the best score (BANJO‟s Decider 

module). BANJO outputs a signed directed graph indicating regulation among genes. 

BANJO can analyse both steady-state and time-series data. In the case of steady-state 

data, BANJO, as well as the other Bayesian networks algorithms, is not able to infer 

networks involving cycles (e.g. feedback or feed-forward loops). 
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6.3 Results 

 

6.3.1 Binding motifs found from fREDUCE for keloid versus normal fibroblasts 

under serum starvation condition 

Binding motifs found using the gene expression values from set A (keloid versus normal 

fibroblasts under serum starvation conditions) are shown in Table 6.1. Highlighted motifs 

indicate motifs found in at least two variations of the conditions/parameters. Both MAS5 

and RMA normalization as well as filtered and unfiltered gene lists provided hits for the 

binding motifs. Of particular note are the binding motifs CGCCGA (found in 5 of the 

conditions), GCCGAC (found in 3 of the conditions), CTTCTT (found in 3 of the 

conditions) and CACATAT (found in 3 of the conditions). A search through the 

TRANSFAC database did not produce any results for the binding motif CACATAT, but 

found possible gene targets for CGCCGA (MYB), GCCGAC (ATF2) and CTTCTT 

(ADH1) (Table 6.2).  

 
Table 6.1: Binding motifs found from fREDUCE for keloid versus normal fibroblasts under 

serum starvation condition 

 
Normalization Parameters Binding Motif 

 
p-value 

MAS 5 
(unfiltered) 

Length 7 
(0 IUPAC) 

CCGGCC  5.31 

GCCGAC 1.99 

CGTAGC 1.22 

Length 7 
(1 IUPAC) 

CGCBGA 5.30 

MCGGAA 1.42 

RMA 
(unfiltered) 

Length 7 
(0 IUPAC) 

GCCGAC 3.35 

CACATAT 2.56 

CCGGCC 1.12 

Length 7 
(1 IUPAC) 

GBCGAC 3.56 

CACATAT 2.02 

MAS 5 
(filtered) 

Length 7 
(0 IUPAC) 

CGCCGA 2.86 

CTTCTT 1.25 

CGTAGC 1.11 
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Length 7 
(1 IUPAC) 

CGCCBA 
(3.65) 

3.65 

CCTTCYT 
(0.27) 

0.27 

RMA 
(filtered) 

Length 7 
(0 IUPAC) 

CGCCGA 2.58 

TATACAC 1.95 

Length 7 
(1 IUPAC) 

CACAKAT 2.33 

CGCCGA 2.03 

CTTCTTV 0.18 

Note: P-values are shown as -log10 values. 
         IUPAC characters M = C/A; Y = C/T; K = T/G; B = C/T/G, V = A/C/G 

 
 

Table 6.2: Possible gene targets and TFs found from the TRANSFAC database for top binding 

motifs from Table 6.1 

 

Binding Motif Possible gene targets Possible TFs 

CCGGCC MC2R (melanocortin 2 receptor) SF-1 

MT1G (metallothionein 1G)  

EPO (erythropoietin) Tf-LF1 and Tf-LF2 

SURF1 and SURF2 (surfeit 1 and 2) YY1 

GCCGAC ATF2 (activating transcription factor 2) SP1 

CGTAGC - - 

CGCCGA c-myb MZF-1 

CTTCTT ADH1 (alcohol dehydrogenase) - 

CACATAT - - 

 

 

6.3.2 Binding motifs found from fREDUCE for keloid versus normal fibroblasts 

under serum induced condition 

No binding motifs were found for unfiltered RMA normalized set B (keloid versus 

normal fibroblasts under serum conditions), but binding motifs were found for the other 

conditions (Table 6.3). Of particular note is the binding motif GGGGCTC which was 

found to be consistent in 4 of the conditions, although all these 4 conditions were using 

the MAS 5 normalization. A search through the TRANSFAC database found ADA as a 

possible gene with this binding motif (Table 6.4). 



 123 

Table 6.3: Binding motifs found from fREDUCE for keloid versus normal fibroblasts under 

serum induced condition 

 
Normalization Parameters Binding Motif p-value 

MAS 5 
(unfiltered) 

Length 7 
(0 IUPAC) 

CCACACA  2.44 

GGGGCTC 2.19 

Length 7 
(1 IUPAC) 

CCACACA 2.14 

GGVCTC 1.91 

AGGCAH 1.30 

MAS 5 
(filtered) 

Length 7 
(0 IUPAC) 

GGGGCTC 2.28 

Length 7 
(1 IUPAC) 

GGGGHTC 2.56 

CGAGRA 0.11 

RMA 
(filtered) 

Length 7 
(0 IUPAC) 

GCGCCA 2.52 

GTCCCG 1.46 

Length 7 
(1 IUPAC) 

GTCVCG 4.29 

CAACGW 0.95 

Note: P-values are shown as -log10 values. 
         IUPAC characters R = A/G; W = T/A; H = A/T/C, V = A/C/G 
 

 

Table 6.4: Possible gene targets and TFs found from the TRANSFAC database for top binding 

motifs from Table 6.3 

 

Binding Motif Possible gene targets Possible TFs 

CCACACA - - 

GGGGCTC ADA (adenosine deaminase) SP1 

GTCCCG EGFR (EGF receptor) - 

ATF2 (activating transcription factor 2) SP1 

CCNE1 (cyclin E1) E2F-1 

MET (hepatocyte growth factor receptor) PAX-3 

 

 

 

6.3.3 Binding motifs found from fREDUCE for sets C and D suggest consistent 

effects from steroid induction for both keloid and normal fibroblasts 

Binding motifs were found for set C (keloid treated with steroid versus serum induced 

keloid fibroblasts) and D (normal treated with steroid versus serum induced normal 

fibroblasts) when fREDUCE was run using parameters length 6 with 0 IUPAC 
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substitutions. Other parameters did not produce any results. Furthermore, results were 

only obtained when MAS 5 normalization was used. The effect of hydrocortisone appears 

to be realized through the binding motifs GGAGGG and GCCCCC and this was 

consistent for both keloid (Table 6.5) and normal (Table 6.6) fibroblasts. A search 

through the TRANSFAC database using these binding motifs found a large list of genes 

containing these binding motifs, including COL1A2, FN, TGFB1, PDGF1 and IGF2 

(Table 6.7). Of particular note is the fact that most of the genes found in this list have SP1 

as its transcription factor (Table 6.7). 

 
Table 6.5: Binding motifs found from fREDUCE for steroid treated versus control keloid 

fibroblasts  

 
Normalization Parameters Binding Motif p-value 

MAS 5 
(filtered) 

Length 6 
(0 IUPAC) 

GGAGGG 24.62 

GCCCCC 11 

CCTGGG 7.33 

TGTGTG 3.93 

GGCTGG 3.45 

CTGTGC 1.73 

AAACAC 1.32 

Length 6 
(1 IUPAC) 

GGWGGG 30.68 

CCDGGG 12.92 

CTCCCH 6.23 

TGTGDG 4.52 

HACGAA 3.63 

ACCGCD 2.03 

CVGTAA 0.91 

Note: P-values are shown as -log10 values. 
         IUPAC characters W = T/A; H = A/T/C; V = A/C/G; D = A/T/G 

 

 

Table 6.6: Binding motifs found from fREDUCE for steroid treated versus control normal 

fibroblasts  

 

Normalization Parameters Binding Motif p-value 

MAS 5 
(filtered) 

Length 6 
(0 IUPAC) 

GCCCCC 30.08 

GGAGGG 19.87 

CTGGGG 10.31 
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TGGGCC 5 

CCCAGA 2.67 

AGAACG 2.44 

TGGGTG 2.25 

GCGAAA 1.53 

CCTGAG 1.19 

Note: P-values are shown as -log10 values. 

 

 

Table 6.7: Possible gene targets and TFs found from the TRANSFAC database for top binding 

motifs from Tables 6.5 and 6.6 

 

Binding Motif Possible gene targets Possible TFs 

GGAGGG EPO (erythropoietin) Tf-LF1 and Tf-LF2 

ATF2 (activating transcription factor 2) SP1 

RARG (retinoic acid receptor, gamma) SP1 

ACTC1 (actin, alpha, cardiac muscle 1) SP1 

FN (fibronectin) - 

c-myc Pur factor 

CEACAM5 (carcinoembryonic antigen-related cell 
adhesion molecule 5 

SP1 

CYP17 (cytochrome P450, subfamily XVII) PBX1B 

SFTPB (surfactant protein B) NKX2-1 

PDGFA (platelet derived growth factor A chain) SP1, WT1 

ADA (adenosine deaminase) SP1 

SA-ACT (skeletal alpha actin) COUP-TF2 

MIP (major intrinsic protein of lens fiber) SP1 

c-myb MZF-1 

COL1A2 (collagen I alpha 2) SP1 

ALDC (aldolase C) - 

GCCCCC TGFB1 (transforming growth factor beta 1) SP1 and AP1 

apoE (apolipoprotein E) - 

c-jun SP1 

ACTC1 (actin, alpha, cardiac muscle 1) SP1 

ATF2 (activating transcription factor 2) SP1 

apoB (apolipoprotein B) - 

GFAP (glial fibrillary acidic protein) NF1, SP1 

Cyclin D1 c-Ets-2 

Insulin - 

ALDC (aldolase C) - 

HRAS (transforming protein p21) SP1 

PFKM (muscle phosphofructokinase) SP1 

DRD1 (dopamine receptor D1) - 

IGF2 (insulin-like growth factor 2) WT1 
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6.3.4 Not many binding motifs found from fREDUCE for sets E and F 

fREDUCE found few binding motifs for set E (keloid versus normal fibroblasts both 

treated with steroid) and no binding motifs for set F (keloid treated with HDGF versus 

untreated keloid fibroblasts). Binding motifs for set E were found only when the MAS 5 

unfiltered condition and the RMA filtered condition were used (Table 6.8). Furthermore, 

binding motifs found in these conditions were not very consistent. A search through the 

TRANSFAC database using the top binding motifs from Table 6.8 found EGFR, ADM 

and CGA as possible gene targets (Table 6.9). 

 

Table 6.8: Binding motifs found from fREDUCE for keloid versus normal fibroblasts under 

steroid treated condition 

 

Normalization Parameters Binding Motif 
 

p-value 

MAS 5 
(unfiltered) 

Length 6 
(0 IUPAC) 

CGCCGC  1.53 

Length 6 
(1 IUPAC) 

CGCCGC 1.23 

GCGYTT 1.42 

RMA 
(filtered) 

Length 7 
(0 IUPAC) 

GGGTTG 2.75 

CGTTTT 1.80 

AGCGAC 1.73 

Note: P-values are shown as -log10 values 
         IUPAC character Y = C/T 

 

 

Table 6.9: Possible gene targets and TFs found from the TRANSFAC database for top binding 

motifs from Table 6.8 

 
Binding Motif Possible gene targets Possible TFs 

CGCCGC EGFR (EGF receptor) SP1  

ADM (adrenomedullin) TFAP2A 

GGGTTG CGA (glycoprotein hormone alpha subunit) - 
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6.3.5 Mean sensitivity performance of BANJO in recovering influence networks was 

significantly better than that of ARACNE  

On average, BANJO was significantly more sensitive compared to ARACNE in 

recovering influence networks (Fig. 6.2C). However, there was no significant difference 

in average accuracy (PPV) between BANJO and ARACNE (Fig. 6.2A). Furthermore, 

there was no significant difference between RMA and MAS 5 normalization both in 

terms of mean accuracy (PPV) (Fig. 6.2B) as well as mean sensitivity (Fig. 6.2D) 

although p-values were fairly close to 0.05, with RMA being the better choice for both 

measures.  

 
 
Figure 6.2: Comparison between ARACNE, BANJO, RMA and MAS 5 based on PPV and 

sensitivity values. (A) ARACNE (ppv) compared with BANJO (ppv). (B) RMA (ppv) compared 

with MAS 5 (ppv) (C) ARACNE (sensitivity) compared with BANJO (sensitivity) (D) RMA 

(sensitivity) compared with MAS 5 (sensitivity). Bar graphs represent mean ± S.E.M values. * 

indicates statistical significance as assessed by the paired t-test. 
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6.3.6 Transcriptional networks were better suited for network inference compared 

to cytokine receptor interactions and intracellular signaling networks  

Transcriptional networks (Fig. 3.2C, E and G) were better suited for network inference 

compared to cytokine receptor interactions (Fig. 3.2A and B) and intracellular signaling 

networks (Fig. 3.2D and F). The full list of results for all data sets is given in Table 6.10, 

with bold typeface indicating performance better than random. In particular, RMA 

normalization for transcriptional networks (Networks C, E and G) had consistently better 

accuracy (PPV) compared to random, and also had sensitivity values higher than 0.5, 

regardless of the algorithm used (Table 6.10). BANJO appears to perform particularly 

well for intracellular signaling network F, but did not do so well for network D.  For the 

NFKB transcriptional network (network E), performance using keloid sets were 

consistently lower than performance using normal sets, but there was very little 

difference in performance between the keloid and normal datasets for the other networks 

(Table 6.10). 

 

Table 6.10: PPV and sensitivity results for all data sets run using BANJO and ARACNE  

 

 
Data sets 

A B 

ARACNE BANJO ARACNE BANJO 

PPV Se PPV Se PPV Se PPV Se 

Keloid RMA 0.238 0.556 0.3 0.667 0.6 1 0.4 0.667 

Normal RMA 0.1875 0.333 0.3125 0.556 0.5 0.667 0.4 0.667 

Keloid MAS5 0.214 0.333 0.286 0.667 0.5 0.667 0.75 1 

Normal MAS5 0.25 0.667 0.304 0.778 0.75 1 0.6 1 

Random 0.389 0.5 

 

 
Data sets 

C D 

ARACNE BANJO ARACNE BANJO 

PPV Se PPV Se PPV Se PPV Se 

Keloid RMA 0.8 1 0.75 0.75 0.5 0.6 0.5 0.8 

Normal RMA 1 0.75 0.8 1 0.5 0.6 0.2 0.2 
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Keloid MAS5 0.5 0.25 0.6 0.75 0.5 0.6 0.625 1 

Normal MAS5 0.667 0.5 0.5 0.5 0.333 0.4 0.5 0.8 

Random 0.667 0.5 

 

 
Data sets 

E F 

ARACNE BANJO ARACNE BANJO 

PPV Se PPV Se PPV Se PPV Se 

Keloid RMA 0.375 0.6 0.364 0.8 0.375 0.75 0.5 1 

Normal RMA 0.444 0.8 0.444 0.8 0.5 0.75 0.5 1 

Keloid MAS5 0.286 0.4 0.273 0.6 0.286 0.5 0.429 0.75 

Normal MAS5 0.333 0.6 0.364 0.8 0.2 0.25 0.429 0.75 

Random 0.333 0.4 

 

 
 

Data sets 
G 

ARACNE BANJO 

PPV Se PPV Se 

Keloid RMA 0.5 0.5 0.714 0.833 

Normal RMA 0.667 0.667 0.625 0.833 

Keloid MAS5 0.4 0.333 0.429 0.5 

Normal MAS5 0.833 0.833 0.5 0.5 

Random 0.6 

 

 

 

6.4 Discussion 

Reverse engineering gene networks from expression data is a considerably difficult 

problem, with challenges arising from the nature of the data which is typically noisy, high 

dimensional, and significantly undersampled. Most evaluations of reverse engineering 

techniques are done on simulated data (Camacho et al. 2007; Hache, Lehrach & Herwig 

2009) although some have extended this to small sets of experimental data (Bansal et al. 

2007; Cantone et al. 2009). While simulated data can model the high dimensionality as 

well as the indeterminacy of the problem accurately, the nature of noise as well as the 

underlying function governing the regulatory interactions has to be assumed a priori. A 

major problem of working with experimental data, however, is that not enough is known 

https://wizfolio.com/?citation=1&ver=3&ItemID=501&UserID=4486&AccessCode=68D14F432CD946D8BC041199A05B7A52&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=501&UserID=4486&AccessCode=68D14F432CD946D8BC041199A05B7A52&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=498&UserID=4486&AccessCode=89497447C41F4C5F93B87933A835CD04&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=499&UserID=4486&AccessCode=49B7EEEE677E4E59A87BAD51C7C69294&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=499&UserID=4486&AccessCode=49B7EEEE677E4E59A87BAD51C7C69294&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=500&UserID=4486&AccessCode=85C448F5A7E846CC96BBF5918B591C4C&CitationSuffix=
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about the real networks and this could lead to difficulties in validating the inferred 

networks. 

 Our results from the physical approach show that MAS 5 normalization was better 

suited for the recovery of significant binding motifs as more binding motifs were 

obtained when the fREDUCE method was used. However, the results from influence 

methods show that RMA is better for the inference of gene networks especially for the 

case of transcriptional networks. The performance of different normalization approaches 

have been assessed in a previous study by Lim et al. In the study, the Spearman rank 

correlation was used to compare between gene expression profile pairs from replicate 

samples as well as from samples with randomly permuted probe values (Lim et al. 2007). 

The authors found that the GCRMA procedure produced significant correlation artefacts 

(false positives), and that the MAS 5 procedure was best suited for the reverse 

engineering process. However, for most of their tests, RMA performs similarly, albeit at 

a lower level, compared to MAS 5. Here, we report that the performance of RMA or 

MAS 5 normalization appears to be dependent on the type of inference done. 

 The physical approach using the fREDUCE algorithm found binding motifs that 

were active in keloid fibroblasts compared to normal fibroblasts under various conditions. 

fREDUCE also found binding motifs that were responsive to steroid treatment. One 

limitation of the fREDUCE algorithm is that it cannot determine which TFs bind to the 

discovered motifs. By manually searching through the TRANSFAC database, we are able 

to get some idea about target genes containing these motifs, as well as possible 

transcription factors that bind to these motifs. The TRANSFAC database is not complete 

https://wizfolio.com/?citation=1&ver=3&ItemID=399&UserID=4486&AccessCode=8DC5FDAD9C2E46A18F82C5ADC0C22B82&CitationSuffix=
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however, as it is based on published data, therefore undiscovered interactions will not be 

reflected in the database.  

Our results suggest that steroid treatment affected both keloid and normal 

fibroblasts in a similar fashion as the top binding motifs found when these two cell types 

were treated with hydrocortisone were the same. Many of the possible gene targets 

containing these binding motifs are involved in wound healing, for example fibronectin, 

erythropoietin, PDGF, COL1A1 and TGFB. This is consistent with the fact that steroids 

are known to have a depressive effect on wound healing (Wicke et al. 2000). 

Furthermore, SP1 was the most common TF found for these gene targets. This result 

suggests that hydrocortisone exerts its depressive effect on fibroblasts by affecting the 

activity of SP1, and could be a future area of research. There were fewer gene targets 

found for binding motifs that were active when comparing keloid to normal fibroblasts. 

Furthermore, the TFs found for these conditions were also less consistent. This could be 

due to the fact that the keloid condition is a result of the effect of multiple TFs, and 

unlike the effect of hydrocortisone, no single TF is most responsible.  

The success of fREDUCE depends on a number of assumptions regarding the 

dynamics of transcription. Most notably, it relates the influence of combinations of TFs 

as a log-linear function of RNA levels. Such a highly constrained model may lead to 

errors in predictions. Furthermore, it assumes that the 1000 base pairs upstream of the 

transcription start site play some role in the regulation of the gene. Despite these 

limitations, fREDUCE has been used successfully to discover binding motifs in human 

liver tissue (Wu et al. 2007). 

https://wizfolio.com/?citation=1&ver=3&ItemID=514&UserID=4486&AccessCode=2FD3125F410C4C2580879A1BF7B7F831&CitationSuffix=
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We used fairly naïve methods in the preprocessing of data for our influence based 

inference methods. To enable comparison between multiple datasets, we normalized the 

expression values with the average of GAPDH and B-actin expression values for each 

individual chip whereas for discretization, we used the 7 bin quantile discretization that is 

available in BANJO. More sophisticated discretization techniques (Friedman et al. 2000; 

Pe'er et al. 2001; Becquet et al. 2002) might potentially produce better results. 

 Due to our limited data, it would be unwise to run the influence algorithms on the 

full list of genes. The subsets of genes that we selected were based on KEGG pathways 

that were found to be significantly enriched by the differentially expressed genes found in 

the previous section. We further subdivided the pathways found into three major groups – 

cytokine receptor interactions, transcriptional networks and intracellular signaling. These 

lists are by no means complete, and there is bound to be many hidden factors and 

feedback interactions that were not explicitly modeled or taken into account. However, in 

the absence of further biological knowledge to guide us in our selection, this seemed to 

be the most logical step to take. Futhermore, it is hoped that the influence methods, being 

of the „black box‟ variety, would be able to cope with these deficiencies. 

 Our results show that both ARACNE and BANJO seem to perform better for 

transcriptional networks compared to cytokine receptor interations or intracellular 

signaling networks. This makes some intuitive sense as there is a causal link between 

transcription factors and their target genes, whereas in cytokine receptor interactions and 

in intracellular signaling, there is at most only a correlation (in most cases, there may not 

even be a correlation). However, a cellular signaling network has been successfully 

reconstructed previously using a Bayesian approach (Sachs et al. 2005). It should be 
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noted however that Sach‟s study measured phosphorylation levels in addition to 

expression levels and used the flow cytometry platform instead of microarray expression 

data. On a related note, it is worth pointing out that influence methods using microarray 

data do not take the actual binding affinities of transcription factors into consideration as 

only expression values are used. This could be a source of inaccuracies in the networks 

inferred.  

Between the two influence methods tested, BANJO produced significantly better 

results compared to ARACNE. The superior performance of BANJO for small data sets 

with „global‟ perturbations can also be seen in the results of the in silico study done by 

Bansal et al. (Bansal et al. 2007). The lower performance of ARACNE could be due to 

the small number of data sets used; ARACNE has been recommended to be used on data 

sets containing a minimum of 100 microarray expression profiles as this represents an 

empirical lower bound on the amount of data needed to estimate the MI reliably 

(Margolin et al. 2006). Having said that, none of the PPV values obtained either through 

BANJO or ARACNE was able to beat the random score significantly as assessed by the 

chi-squared test, although the absolute PPV values were higher in some of the cases. 

Achieving statistical significance with a small number of genes requires the difference in 

data distributions to be very large and may be too demanding for our small networks. 

The fact that performance for the transcriptional network involving NFKB 

(nuclear factor kappa-light-chain-enhancer of activated B cells, Set E) using influence 

methods was better for normal fibroblasts compared to keloid fibroblasts suggests that the 

influence between NFKB and its targets was weaker in keloid fibroblasts, or that there 

were more links in the keloid network that were not captured by our simplified diagram. 
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This would imply that targeting of NFKB alone may not be sufficient in reducing the 

expression of its targets in keloids. However, more work needs to be done to verify this 

hypothesis. 

The ability to infer molecular interactions in cellular systems is one of the most 

exciting promises of systems biology. As the most widely available high throughput 

technology, gene expression microarrays provide a good test set for the application of 

inference algorithms that infer dynamic models from static, genome-scale data. However, 

the critical assumption underlying this methodology is that mRNA measurements are 

predictive of molecular activity. This assumption has been thrown into question as new 

studies reveal the substantial role of alternate regulatory mechanisms, such as translation, 

post-translational modifications, genetic and epigenetic factors, as well as the 

increasingly appreciated regulatory role of non-coding RNAs. Furthermore, data from the 

microarray platform is typically noisy, and is also hidden in multiple probes that can be 

combined in multiple ways to produce different expression values. Yet in spite of all 

these difficulties, the topic of reverse engineering gene networks is surely worth 

pursuing, as it provides us with a means of understanding biology not only in terms of the 

genes themselves, but also through their interactions. 
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CHAPTER SEVEN 

CONCLUSION 

 

“Now they [genes] are trapped in huge colonies, locked inside highly intelligent beings, 

moulded by the outside world, communicating with it by complex processes, through 

which, blindly, as if by magic, function emerges." 

 – Denis Noble, Emeritus Professor, University of Oxford 

 

The reductionist approach to biological problems has had tremendous success in the past, 

culminating in the discovery of complete genomes of several organisms, including 

humans. Thanks to molecular biology, we now understand how linear arrangement of 

nucleotides encodes linear arrangement of amino acids and how proteins interact to form 

functional groups such as signal transduction and metabolic pathways. In recent years 

however, there has been a greater realization about the limitations of reductionist 

approaches. Having reduced the biological universe to a myriad of minute parts, we are 

now unable to assemble them back together again in manner that increases our biological 

understanding. This has led to the development of the nascent field of systems biology, 

where methods adapted from math and engineering disciplines are employed to shed light 

on the complex cellular networks present in living organisms. 

 We have utilized both reductionist as well as top down approaches in this 

dissertation in an attempt to better understand keloid scarring. We first investigated the 

novel growth factor HDGF and its role in the keloid system using cell and molecular 

techniques. Our results suggest that this growth factor is upregulated in the keloid 
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condition and has angiogenic and proliferative potential. However, it does not seem to 

increase extracellular matrix production and thus HDGF appears to be just one of a 

myriad number of players underlying the keloid condition. Targeting HDGF alone would 

probably not be sufficient in ameliorating this condition. 

 In the second part of this dissertation, we decided to take a top down approach in 

an attempt to identify groups of genes that can be implicated in the formation of keloids. 

Surveying the global transcriptional landscape is now possible with the advent of 

microarray technology, although this platform is still far from perfect as it is inherently 

noisy. Furthermore, there is still no single standard for the processing of raw data for the 

Affymetrix Genechips, and different algorithms result in different expression values for 

the same raw data. Despite all these shortcomings, the microarray platform has been 

widely used to profile mRNA expression values, and our results indicate consistency with 

previous studies done on keloid fibroblasts. We have also uncovered differentially 

expressed genes that have not been reported previously, and enrichment analysis indicate 

that processes such as immune response, antigen processing and presentation, chemokine 

and cytokine activity, extracellular matrix and ribosomal proteins are among those that 

are affected in the keloid condition.  

In the third part of this dissertation, we have attempted to reverse engineer gene 

networks from the collection of microarray expression data that we have collected. Using 

the physical approach of correlating expression values to binding motifs, we found some 

consensus sequences that were active in the keloid condition, as well as some sequences 

that were responsive to steroid treatment. Using influence approaches on experimental 

data, we found that the combination of the Bayesian algorithm, RMA normalization and 
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transcriptional networks gave the best results. Furthermore, our results show that the 

NFKB transcriptional network inferred from normal fibroblast data was more accurate 

than that inferred from keloid data, suggesting a more robust network in the keloid 

condition. 

We are still far from a solution to the keloid condition, but it is hoped that the 

work done here is a small step towards finding this solution. In this thesis, we have 

mainly focused on fibroblasts, which is only one of the possible cell types involved in 

wound healing. Future work could involve microarray profiling of keratinocytes, as well 

as profiling of cells in the co-culture condition to examine the effect of epithelial 

mesenchymal interactions on transcriptional networks. Furthermore, novel genes 

obtained from our microarray experiments, or those containing the binding motifs that 

were active in the various conditions, could be studied in depth through reductionist 

approaches. Pathways such as the antigen processing and presentation pathway and the 

toll-like receptor signaling pathway keloid and normal fibroblasts could also be examined 

in further detail. Finally, improved methods that model alternate regulatory mechanisms 

such as post translational modifications and binding affinities could be developed to 

improve the accuracy of the reverse engineering process. 
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APPENDICES 

 

A.1 Full list of 181 genes upregulated in keloid compared to normal 

fibroblasts using the MAS 5.0 summarization algorithm (P< 0.05) 

Fold 
change 

Gene Symbol Gene Title Corrected 
p-value 

26.2568 POSTN periostin, osteoblast specific factor 2.51E-04 

19.88896 ZIC1 Zic family member 1 (odd-paired homolog, 
Drosophila) 

0.046789 

14.57531 HOXD10 homeobox D10 0.004014 

10.38634 COL15A1 collagen, type XV, alpha 1 4.25E-04 

8.887936 EGR2 early growth response 2 (Krox-20 homolog, 
Drosophila) 

0.006852 

7.998279 HOXA11 homeobox A11 0.033229 

7.9743 CCDC102B coiled-coil domain containing 102B 0.021884 

6.770347 KCNJ6 potassium inwardly-rectifying channel, subfamily J, 
member 6 

0.014057 

6.420784 JUP /// KRT19 junction plakoglobin /// keratin 19 0.014453 

5.80834 MAP7 microtubule-associated protein 7 0.00785 

5.553577 IGFBP3 insulin-like growth factor binding protein 3 0.021725 

5.515989 ADRA2A adrenergic, alpha-2A-, receptor 0.011306 

5.489978 RAC2 ras-related C3 botulinum toxin substrate 2 (rho 
family, small GTP binding protein Rac2) 

0.049297 

5.301598 CDYL chromodomain protein, Y-like 0.039061 

5.168533 NPTX1 neuronal pentraxin I 0.015499 

4.974008 PMEPA1 prostate transmembrane protein, androgen 
induced 1 

0.037054 

4.940097 EFNB2 ephrin-B2 0.022704 

4.889467 ATXN1 ataxin 1 0.003232 

4.783432 CADM1 cell adhesion molecule 1 0.033839 

4.513727 SEMA5A sema domain, seven thrombospondin repeats 
(type 1 and type 1-like), transmembrane domain 
(TM) and short cytoplasmic domain, (semaphorin) 
5A 

0.008288 

4.476735 WNT5A wingless-type MMTV integration site family, 
member 5A 

0.0251 

4.305683 AK5 adenylate kinase 5 0.032527 

4.167339 EVI2A /// EVI2B ecotropic viral integration site 2A /// ecotropic viral 
integration site 2B 

0.003941 

4.105316 THBS1 thrombospondin 1 0.003338 

4.064728 HMGCS2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 
2 (mitochondrial) 

0.038054 

4.031227 UNC5B Unc-5 homolog B (C. elegans) (UNC5B), mRNA 0.015673 

4.003236 GPSM2 G-protein signaling modulator 2 (AGS3-like, C. 
elegans) 

0.014816 

3.983835 FAM155A family with sequence similarity 155, member A 0.025904 
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3.896551 DYSF dysferlin, limb girdle muscular dystrophy 2B 
(autosomal recessive) 

0.006904 

3.846086 TRIB2 tribbles homolog 2 (Drosophila) 0.049297 

3.807187 TOX thymocyte selection-associated high mobility 
group box 

5.70E-05 

3.80115 MICAL2 microtubule associated monoxygenase, calponin 
and LIM domain containing 2 

0.031156 

3.658315 THBS1 thrombospondin 1 0.019972 

3.650868 CADM1 cell adhesion molecule 1 0.004192 

3.569428 WNT5A wingless-type MMTV integration site family, 
member 5A 

0.006868 

3.54556 THBS1 thrombospondin 1 0.026742 

3.420288 SEMA5A sema domain, seven thrombospondin repeats 
(type 1 and type 1-like), transmembrane domain 
(TM) and short cytoplasmic domain, (semaphorin) 
5A 

0.012037 

3.40271 NR2F2 nuclear receptor subfamily 2, group F, member 2 0.029412 

3.210168 OXTR oxytocin receptor 0.028325 

3.02816 ARMC9 armadillo repeat containing 9 0.033839 

3.028158 SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 0.011685 

3.005537 MICAL2 microtubule associated monoxygenase, calponin 
and LIM domain containing 2 

0.014608 

2.982032 FARP1 FERM, RhoGEF (ARHGEF) and pleckstrin domain 
protein 1 (chondrocyte-derived) 

0.004134 

2.942675 HCLS1 hematopoietic cell-specific Lyn substrate 1 0.012601 

2.895509 GPSM2 G-protein signaling modulator 2 (AGS3-like, C. 
elegans) 

0.022704 

2.879644 FRZB frizzled-related protein 0.015673 

2.782385 MYO1D myosin ID 0.006852 

2.772433 SEPT11 CDNA FLJ37154 fis, clone BRACE2026054, 
highly similar to SEPTIN 2 

0.002621 

2.743658 COL1A1 collagen, type I, alpha 1 0.035314 

2.694598 BGN biglycan 0.045835 

2.690918 SYNGR1 synaptogyrin 1 0.025029 

2.662594 MGC87895 /// 
RPS14 

similar to ribosomal protein S14 /// ribosomal 
protein S14 

0.024206 

2.658657 SYT1 synaptotagmin I 0.035314 

2.586957 SEPT11 septin 11 0.025805 

2.515018 TBC1D2 TBC1 domain family, member 2 0.006247 

2.506182 UBL3 ubiquitin-like 3 0.019401 

2.43455 SLC1A4 solute carrier family 1 (glutamate/neutral amino 
acid transporter), member 4 

0.04681 

2.39163 COL5A1 collagen, type V, alpha 1 9.92E-04 

2.37384 ECM1 extracellular matrix protein 1 0.039152 

2.348127 MBD3 methyl-CpG binding domain protein 3 0.022235 

2.344866 IPO5 importin 5 0.010591 

2.331204 SLC25A6 solute carrier family 25 (mitochondrial carrier; 
adenine nucleotide translocator), member 6 

0.021725 

2.273416 BMP6 bone morphogenetic protein 6 0.03454 

2.271414 COL5A1 collagen, type V, alpha 1 0.046681 

2.257667 PDGFRB platelet-derived growth factor receptor, beta 0.001677 
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polypeptide 

2.251143 CTSB cathepsin B 0.012336 

2.250428 MYO19 myosin XIX 0.039896 

2.231361 LAMA2 laminin, alpha 2 0.005205 

2.228339 IPO5 importin 5 0.010816 

2.222405 FASN fatty acid synthase 0.031733 

2.21538 NAP1L1 nucleosome assembly protein 1-like 1 0.007082 

2.202431 FKBP9 FK506 binding protein 9, 63 kDa 0.049297 

2.189176 FHOD1 formin homology 2 domain containing 1 0.021585 

2.17394 LAMA2 laminin, alpha 2 0.008295 

2.168009 SLC25A6 solute carrier family 25 (mitochondrial carrier; 
adenine nucleotide translocator), member 6 

0.023943 

2.160458 MLPH melanophilin 0.032937 

2.159276 GLS glutaminase 0.044103 

2.15634 KLF5 Kruppel-like factor 5 (intestinal) 0.008645 

2.119878 PABPC4 poly(A) binding protein, cytoplasmic 4 (inducible 
form) 

0.025147 

2.107291 NXN nucleoredoxin 0.004134 

2.098882 LOC652607 /// 
PABPC1 /// 
PABPC3 /// 
PABPCP5 

similar to Polyadenylate-binding protein 1 
(Poly(A)-binding protein 1) (PABP 1) /// poly(A) 
binding protein, cytoplasmic 1 /// poly(A) binding 
protein, cytoplasmic 3 /// poly(A) binding protein, 
cytoplasmic pseudogene 5 

0.022235 

2.085628 FBLN2 fibulin 2 0.008295 

2.065369 SACS spastic ataxia of Charlevoix-Saguenay (sacsin) 0.009496 

2.056679 PTK7 PTK7 protein tyrosine kinase 7 0.01158 

2.050869 FARP1 FERM, RhoGEF (ARHGEF) and pleckstrin domain 
protein 1 (chondrocyte-derived) 

0.012556 

2.02876 SPOCK1 sparc/osteonectin, cwcv and kazal-like domains 
proteoglycan (testican) 1 

0.028002 

2.009869 DUSP7 dual specificity phosphatase 7 0.004014 

1.987354 MARCKS myristoylated alanine-rich protein kinase C 
substrate 

0.025545 

1.971692 NUAK1 NUAK family, SNF1-like kinase, 1 0.006441 

1.95389 POLR1D polymerase (RNA) I polypeptide D, 16kDa 0.041823 

1.940716 CRTAP cartilage associated protein 0.043513 

1.934144 LAMA2 laminin, alpha 2 0.002955 

1.918422 ATXN1 ataxin 1 0.028403 

1.910812 GSTM3 glutathione S-transferase mu 3 (brain) 0.006366 

1.893329 ANP32B acidic (leucine-rich) nuclear phosphoprotein 32 
family, member B 

0.002621 

1.885341 EEF1D eukaryotic translation elongation factor 1 delta 
(guanine nucleotide exchange protein) 

0.005205 

1.877402 LOC285053 /// 
LOC390354 /// 
RPL18A 

similar to ribosomal protein L18a /// ribosomal 
protein L18a pseudogene /// ribosomal protein 
L18a 

0.021725 

1.867147 CCNB1IP1 cyclin B1 interacting protein 1 0.031156 

1.865347 LOC644191 /// 
LOC728937 /// 
RPS26 

similar to hCG15685 /// similar to 40S ribosomal 
protein S26 /// ribosomal protein S26 

0.025519 

1.862667 RPL35 ribosomal protein L35 0.025168 
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1.861686 IPO5 importin 5 0.002103 

1.853484 IPO5 importin 5 0.02642 

1.825099 CTSB cathepsin B 0.018044 

1.822173 PTPRG protein tyrosine phosphatase, receptor type, G 0.027471 

1.812249 PARVB parvin, beta 0.006852 

1.811397 COL1A1 collagen, type I, alpha 1 0.020984 

1.806129 GARS glycyl-tRNA synthetase 0.03012 

1.798827 SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 0.001636 

1.790564 GPR137B G protein-coupled receptor 137B 0.034176 

1.780408 RPL10 ribosomal protein L10 0.019277 

1.765466 PTPRK protein tyrosine phosphatase, receptor type, K 0.047404 

1.764005 RPS16 ribosomal protein S16 0.048597 

1.753873 AHCYL1 S-adenosylhomocysteine hydrolase-like 1 0.031368 

1.74401 MBNL1 muscleblind-like (Drosophila) 0.040962 

1.735983 NONO non-POU domain containing, octamer-binding 0.028002 

1.729728 CALHM2 calcium homeostasis modulator 2 0.012441 

1.717712 PPP3CA protein phosphatase 3 (formerly 2B), catalytic 
subunit, alpha isoform 

0.037703 

1.717474 GPR153 G protein-coupled receptor 153 0.036174 

1.704002 TST thiosulfate sulfurtransferase (rhodanese) 0.01541 

1.702673 DLEU1 deleted in lymphocytic leukemia 1 (non-protein 
coding) 

0.009449 

1.700546 ATF4 activating transcription factor 4 (tax-responsive 
enhancer element B67) 

0.017043 

1.698355 DOCK1 dedicator of cytokinesis 1 0.006852 

1.696983 EIF3A eukaryotic translation initiation factor 3, subunit A 0.006852 

1.695664 PQBP1 polyglutamine binding protein 1 0.047404 

1.690349 OSBPL3 oxysterol binding protein-like 3 0.046651 

1.682196 EIF3D eukaryotic translation initiation factor 3, subunit D 0.044103 

1.669918 TMEM2 transmembrane protein 2 0.011306 

1.667722 C17orf81 chromosome 17 open reading frame 81 0.033839 

1.661295 C14orf139 chromosome 14 open reading frame 139 0.042746 

1.660296 SPARC secreted protein, acidic, cysteine-rich 
(osteonectin) 

0.030453 

1.660139 PNN pinin, desmosome associated protein 0.029702 

1.658402 MTFR1 mitochondrial fission regulator 1 0.016285 

1.645023 RPS9 ribosomal protein S9 0.025283 

1.643602 S100A13 S100 calcium binding protein A13 0.006868 

1.637327 C19orf2 chromosome 19 open reading frame 2 0.036054 

1.636471 SARS seryl-tRNA synthetase 0.018299 

1.636263 RPL13 ribosomal protein L13 0.010804 

1.623621 FAT1 FAT tumor suppressor homolog 1 (Drosophila) 0.039953 

1.621903 COL17A1 collagen type XVII alpha I 0.006247 

1.61924 SOS2 son of sevenless homolog 2 (Drosophila) 0.033713 

1.616134 NQO2 NAD(P)H dehydrogenase, quinone 2 0.033839 

1.602853 RPS2 ribosomal protein S2 0.040053 

1.602017 AP2A2 adaptor-related protein complex 2, alpha 2 subunit 0.012601 

1.601743 TK2 thymidine kinase 2, mitochondrial 0.040053 
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1.599825 MEMO1 mediator of cell motility 1 0.010405 

1.597647 RPL4 ribosomal protein L4 0.032078 

1.59623 RPS8 ribosomal protein S8 0.037349 

1.553895 PARVB parvin, beta 0.032078 

1.553142 HNRNPA0 heterogeneous nuclear ribonucleoprotein A0 0.033839 

1.549388 EPHB4 EPH receptor B4 0.016501 

1.538817 POLR1E polymerase (RNA) I polypeptide E, 53kDa 0.021725 

1.531203 SERP1 stress-associated endoplasmic reticulum protein 1 0.032078 

1.529446 DNAJB6 DnaJ (Hsp40) homolog, subfamily B, member 6 0.033283 

1.523152 RPL13 ribosomal protein L13 0.021854 

1.518518 SEC63 SEC63 homolog (S. cerevisiae) 0.011005 

1.509025 HNRNPA3 heterogeneous nuclear ribonucleoprotein A3 0.005384 

1.484414 BTF3 basic transcription factor 3 0.048855 

1.474366 RPS6 ribosomal protein S6 0.006198 

1.458746 GRB10 growth factor receptor-bound protein 10 0.004053 

1.457511 FBXL5 F-box and leucine-rich repeat protein 5 0.046681 

1.449214 ACAD8 acyl-Coenzyme A dehydrogenase family, member 
8 

0.021854 

1.44043 DCTD dCMP deaminase 0.024538 

1.43772 APRT adenine phosphoribosyltransferase 0.048855 

1.434125 PDS5A PDS5, regulator of cohesion maintenance, 
homolog A (S. cerevisiae) 

0.048855 

1.42483 HEBP1 heme binding protein 1 0.01989 

1.419617 SUV420H1 suppressor of variegation 4-20 homolog 1 
(Drosophila) 

0.031156 

1.415472 RPL8 ribosomal protein L8 0.024538 

1.407764 RECQL RecQ protein-like (DNA helicase Q1-like) 0.031862 

1.404108 KDELR2 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum 
protein retention receptor 2 

0.047112 

1.40236 MPRIP myosin phosphatase Rho interacting protein 0.01541 

1.392988 ATP5E ATP synthase, H+ transporting, mitochondrial F1 
complex, epsilon subunit 

0.049297 

1.375108 LUC7L LUC7-like (S. cerevisiae) 0.036591 

1.37272 ARMCX3 armadillo repeat containing, X-linked 3 0.048597 

1.371258 SERP1 stress-associated endoplasmic reticulum protein 1 0.035533 

1.365867 PPP2R3A protein phosphatase 2 (formerly 2A), regulatory 
subunit B'', alpha 

0.023437 

1.360637 RPL13 ribosomal protein L13 0.0227 

1.35391 STK24 serine/threonine kinase 24 (STE20 homolog, 
yeast) 

0.049297 

1.305478 EIF4H eukaryotic translation initiation factor 4H 0.033851 

1.275109 COX4NB COX4 neighbor 0.045835 

1.264861 FBXO34 F-box protein 34 0.026786 

1.25246 USP22 ubiquitin specific peptidase 22 0.038322 
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A.2 Full list of 290 genes downregulated in keloid compared to normal 

fibroblasts using the MAS 5.0 summarization algorithm (P < 0.05) 

Fold 
change 

Gene Symbol Gene Title Corrected 
p-value 

77.61498 CXCL6 chemokine (C-X-C motif) ligand 6 (granulocyte 
chemotactic protein 2) 

1.48E-05 

73.48209 CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma 
growth stimulating activity, alpha) 

7.93E-05 

67.89986 IL8 interleukin 8 0.006303 

64.39615 CXCL11 chemokine (C-X-C motif) ligand 11 0.006303 

49.49322 HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1 1.98E-06 

41.41703 CCL5 chemokine (C-C motif) ligand 5 0.005142 

39.93947 CXCL2 chemokine (C-X-C motif) ligand 2 0.002401 

32.48277 RARRES1 retinoic acid receptor responder (tazarotene 
induced) 1 

0.004841 

29.77878 RSAD2 radical S-adenosyl methionine domain containing 
2 

0.019981 

27.68656 PLA2G2A phospholipase A2, group IIA (platelets, synovial 
fluid) 

0.001149 

27.15919 C2 /// CFB complement component 2 /// complement factor B 2.15E-05 

27.04305 CXCL5 chemokine (C-X-C motif) ligand 5 2.44E-04 

26.4216 TNFAIP6 tumor necrosis factor, alpha-induced protein 6 0.008288 

26.13762 CXCL3 chemokine (C-X-C motif) ligand 3 0.005384 

23.80846 IL32 interleukin 32 0.001636 

23.43326 CP ceruloplasmin (ferroxidase) 0.003941 

23.40176 CXCL10 chemokine (C-X-C motif) ligand 10 0.032337 

21.83553 CHI3L2 chitinase 3-like 2 5.70E-04 

21.53614 IDO1 indoleamine 2,3-dioxygenase 1 0.004053 

19.30517 NTRK2 neurotrophic tyrosine kinase, receptor, type 2 0.011306 

15.52373 C3 complement component 3 2.51E-04 

15.49821 SLC39A8 solute carrier family 39 (zinc transporter), member 
8 

3.85E-07 

14.28212 G0S2 G0/G1switch 2 0.003903 

14.04543 OAS1 2',5'-oligoadenylate synthetase 1, 40/46kDa 0.039061 

13.35598 TNFSF10 tumor necrosis factor (ligand) superfamily, 
member 10 

0.016414 

13.23721 CCL8 chemokine (C-C motif) ligand 8 0.024538 

11.90575 SLC39A8 solute carrier family 39 (zinc transporter), member 
8 

4.73E-05 

11.36108 GCH1 GTP cyclohydrolase 1 2.44E-04 

10.95266 CCL5 chemokine (C-C motif) ligand 5 0.010804 

10.86976 SLC19A3 solute carrier family 19, member 3 0.031156 

10.20459 HERC5 hect domain and RLD 5 0.005346 

10.02452 IL6 interleukin 6 (interferon, beta 2) 5.25E-04 

9.336419 NRCAM neuronal cell adhesion molecule 1.22E-05 

9.271726 CCL2 chemokine (C-C motif) ligand 2 2.18E-05 

8.931117 ABCA8 ATP-binding cassette, sub-family A (ABC1), 0.006852 
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member 8 

8.870272 SFRP1 secreted frizzled-related protein 1 0.013944 

8.768786 TMEM100 transmembrane protein 100 0.008604 

8.582171 HLA-DPA1 major histocompatibility complex, class II, DP 
alpha 1 

9.92E-04 

8.130204 TLR2 toll-like receptor 2 0.011223 

8.070362 SOD2 superoxide dismutase 2, mitochondrial 0.001796 

7.84843 CTSS cathepsin S 2.95E-04 

7.806789 IFI30 interferon, gamma-inducible protein 30 0.004841 

7.653281 MAOB monoamine oxidase B 0.040797 

7.647369 DTNA dystrobrevin, alpha 0.005869 

7.607011 HERC6 hect domain and RLD 6 0.031862 

7.487806 TLR3 toll-like receptor 3 0.031156 

7.243977 RARRES3 retinoic acid receptor responder (tazarotene 
induced) 3 

0.004841 

7.072357 SOD2 superoxide dismutase 2, mitochondrial 0.004841 

7.021463 TNFAIP3 tumor necrosis factor, alpha-induced protein 3 1.48E-05 

6.598767 CA12 carbonic anhydrase XII 5.70E-05 

6.533486 CX3CL1 chemokine (C-X3-C motif) ligand 1 0.039558 

6.41113 FGL2 fibrinogen-like 2 0.046681 

6.335001 CTSS cathepsin S 0.023641 

6.331704 IFIT2 interferon-induced protein with tetratricopeptide 
repeats 2 

0.049297 

6.29937 LRRN3 leucine rich repeat neuronal 3 2.64E-04 

6.179313 IFIT3 interferon-induced protein with tetratricopeptide 
repeats 3 

0.018974 

6.154707 BIRC3 baculoviral IAP repeat-containing 3 0.013996 

6.106007 CA12 carbonic anhydrase XII 0.004215 

6.092712 CLGN calmegin 0.008363 

6.0468 TRPA1 transient receptor potential cation channel, 
subfamily A, member 1 

0.022447 

5.951259 GBP1 guanylate binding protein 1, interferon-inducible, 
67kDa 

0.013892 

5.838885 TNFAIP2 tumor necrosis factor, alpha-induced protein 2 1.38E-04 

5.792193 ISG20 interferon stimulated exonuclease gene 20kDa 0.048855 

5.715185 HPSE heparanase 0.036366 

5.679222 ABI3BP ABI family, member 3 (NESH) binding protein 0.036366 

5.661747 CA12 carbonic anhydrase XII 4.73E-05 

5.640415 PTGES prostaglandin E synthase 0.004841 

5.429267 GBP1 guanylate binding protein 1, interferon-inducible, 
67kDa 

0.021585 

5.347407 IGF1 insulin-like growth factor 1 (somatomedin C) 0.048855 

5.341403 HLA-DRB1 MHC class II HLA-DRB3 mRNA (HLA-
DRB3*01012 allele) 

0.021083 

5.1838 SNX10 sorting nexin 10 0.041947 

5.170646 CGREF1 cell growth regulator with EF-hand domain 1 0.024396 

5.018916 NAMPT nicotinamide phosphoribosyltransferase 0.013996 

4.897188 SLC39A8 solute carrier family 39 (zinc transporter), member 
8 

5.70E-05 

4.840101 CA12 carbonic anhydrase XII 3.62E-04 
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4.819873 STAT4 signal transducer and activator of transcription 4 0.005418 

4.81897 CA12 carbonic anhydrase XII 2.51E-04 

4.798669 LRRN3 leucine rich repeat neuronal 3 4.46E-04 

4.769258 MT1X metallothionein 1X 0.035224 

4.76155 NAMPT nicotinamide phosphoribosyltransferase 0.002078 

4.755867 MT1M metallothionein 1M 0.008363 

4.618283 WTAP Wilms tumor 1 associated protein 1.48E-05 

4.604176 MT1P2 metallothionein 1 pseudogene 2 0.02436 

4.566699 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 
(transmembrane) 

0.039061 

4.551031 ELF3 E74-like factor 3 (ets domain transcription factor, 
epithelial-specific ) 

0.004657 

4.543112 SLC16A4 solute carrier family 16, member 4 
(monocarboxylic acid transporter 5) 

0.023221 

4.360824 HLA-DRB1 /// 
HLA-DRB2 /// 
HLA-DRB3 /// 
HLA-DRB4 /// 
HLA-DRB5 /// 
LOC100133484 
/// 
LOC100133661 
/// 
LOC100133811 
/// LOC730415 
/// RNASE2 /// 
ZNF749 

major histocompatibility complex, class II, DR beta 
1 /// major histocompatibility complex, class II, DR 
beta 2 (pseudogene) /// major histocompatibility 
complex, class II, DR beta 3 /// major 
histocompatibility complex, class II, DR beta 4 /// 
major histocompatibility complex, class II, DR beta 
5 /// similar to Major histocompatibility complex, 
class II, DR beta 4 /// similar to HLA class II 
histocompatibility antigen, DR-W53 beta chain /// 
similar to hCG1992647 /// hypothetical protein 
LOC730415 /// ribonuclease, RNase A family, 2 
(liver, eosinophil-derived neurotoxin) /// zinc finger 
protein 749 

0.041418 

4.342693 TNFAIP3 tumor necrosis factor, alpha-induced protein 3 4.97E-04 

4.308981 RRAD Ras-related associated with diabetes 0.011306 

4.278844 SOD2 superoxide dismutase 2, mitochondrial 2.51E-04 

4.184589 MT1E metallothionein 1E 0.018044 

4.177286 ZC3H12A zinc finger CCCH-type containing 12A 0.02642 

4.14845 HLA-DRB1 /// 
HLA-DRB2 /// 
HLA-DRB3 /// 
HLA-DRB4 /// 
HLA-DRB5 /// 
LOC100133484 
/// 
LOC100133661 
/// 
LOC100133811 
/// LOC730415 
/// RNASE2 /// 
ZNF749 

major histocompatibility complex, class II, DR beta 
1 /// major histocompatibility complex, class II, DR 
beta 2 (pseudogene) /// major histocompatibility 
complex, class II, DR beta 3 /// major 
histocompatibility complex, class II, DR beta 4 /// 
major histocompatibility complex, class II, DR beta 
5 /// similar to Major histocompatibility complex, 
class II, DR beta 4 /// similar to HLA class II 
histocompatibility antigen, DR-W53 beta chain /// 
similar to hCG1992647 /// hypothetical protein 
LOC730415 /// ribonuclease, RNase A family, 2 
(liver, eosinophil-derived neurotoxin) /// zinc finger 
protein 749 

0.046363 

4.127018 ICAM1 intercellular adhesion molecule 1 5.70E-05 

4.100276 DENND2A DENN/MADD domain containing 2A 0.021083 

4.048781 SLC39A14 solute carrier family 39 (zinc transporter), member 
14 

0.002948 

4.039061 DENND2A DENN/MADD domain containing 2A 0.014614 

4.038336 MT1F metallothionein 1F 0.009128 

4.00928 AKR1B1 aldo-keto reductase family 1, member B1 (aldose 9.92E-04 
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reductase) 

3.957591 SNCA synuclein, alpha (non A4 component of amyloid 
precursor) 

0.019277 

3.911683 WWC1 WW and C2 domain containing 1 0.022704 

3.886122 ICAM1 intercellular adhesion molecule 1 1.48E-05 

3.853862 WTAP Wilms tumor 1 associated protein 2.18E-05 

3.810552 SLC15A3 solute carrier family 15, member 3 0.006868 

3.690421 IFI35 interferon-induced protein 35 0.033983 

3.648437 FIGF c-fos induced growth factor (vascular endothelial 
growth factor D) 

0.043452 

3.63322 MT1E /// MT1H 
/// MT1M /// 
MT1P2 

metallothionein 1E /// metallothionein 1H /// 
metallothionein 1M /// metallothionein 1 
pseudogene 2 

0.002621 

3.570853 AMPD3 adenosine monophosphate deaminase (isoform E) 0.005508 

3.568043 MT2A metallothionein 2A 0.022895 

3.567944 LAP3 leucine aminopeptidase 3 0.017355 

3.566436 SLC11A2 solute carrier family 11 (proton-coupled divalent 
metal ion transporters), member 2 

0.002401 

3.555502 MARCH3 membrane-associated ring finger (C3HC4) 3 0.003027 

3.515179 PRND prion protein 2 (dublet) 0.023981 

3.490871 HTR2A 5-hydroxytryptamine (serotonin) receptor 2A 0.006852 

3.436509 CLU clusterin 0.036591 

3.41227 STEAP1 six transmembrane epithelial antigen of the 
prostate 1 

0.002103 

3.410262 IFITM1 interferon induced transmembrane protein 1 (9-27) 0.014614 

3.398285 PPARG peroxisome proliferator-activated receptor gamma 0.025147 

3.384179 GFRA1 GDNF family receptor alpha 1 0.021725 

3.362342 NFKBIA nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, alpha 

0.003195 

3.348567 MMD monocyte to macrophage differentiation-
associated 

0.004578 

3.33894 NFE2L3 nuclear factor (erythroid-derived 2)-like 3 0.047112 

3.329882 MT1X metallothionein 1X 0.032078 

3.321269 SLC11A2 solute carrier family 11 (proton-coupled divalent 
metal ion transporters), member 2 

5.85E-05 

3.299193 PTGFR prostaglandin F receptor (FP) 0.004578 

3.268607 MT1G metallothionein 1G 0.036366 

3.249937 NR4A3 nuclear receptor subfamily 4, group A, member 3 0.024206 

3.216968 PLSCR1 phospholipid scramblase 1 0.026199 

3.160602 LGALS9 lectin, galactoside-binding, soluble, 9 0.028025 

3.143586 PPP1R12B protein phosphatase 1, regulatory (inhibitor) 
subunit 12B 

0.045835 

3.135891 UCHL1 ubiquitin carboxyl-terminal esterase L1 (ubiquitin 
thiolesterase) 

2.51E-04 

3.114003 CHEK2 CHK2 checkpoint homolog (S. pombe) 0.012037 

3.099276 MT1F metallothionein 1F 0.003262 

3.092455 PTGES prostaglandin E synthase 0.031156 

3.076524 CCR1 chemokine (C-C motif) receptor 1 0.022235 

3.03837 EDNRB endothelin receptor type B 3.35E-04 

2.998312 IL15RA interleukin 15 receptor, alpha 0.011685 
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2.938915 STAT1 signal transducer and activator of transcription 1, 
91kDa 

0.022235 

2.927115 SMC2 structural maintenance of chromosomes 2 0.002621 

2.921418 NME5 non-metastatic cells 5, protein expressed in 
(nucleoside-diphosphate kinase) 

0.044101 

2.915037 SAMHD1 SAM domain and HD domain 1 0.021854 

2.833072 CD82 CD82 molecule 0.003571 

2.778108 ABLIM1 actin binding LIM protein 1 0.009496 

2.770222 LAMB3 laminin, beta 3 0.020989 

2.747634 MT1F metallothionein 1F 0.002955 

2.737904 HLA-F major histocompatibility complex, class I, F 0.003416 

2.734728 CFLAR CASP8 and FADD-like apoptosis regulator 0.006366 

2.734047 SIRPA signal-regulatory protein alpha 5.35E-04 

2.71983 PDLIM4 PDZ and LIM domain 4 0.026742 

2.702095 HLA-C major histocompatibility complex, class I, C 0.008699 

2.670183 SLC25A28 solute carrier family 25, member 28 5.80E-04 

2.65614 AK3L1 /// 
AK3L2 

adenylate kinase 3-like 1 /// adenylate kinase 3-
like 2 

0.024767 

2.648943 HLA-DMA major histocompatibility complex, class II, DM 
alpha 

0.038585 

2.638515 TAPBPL TAP binding protein-like 9.67E-04 

2.607675 NOVA1 neuro-oncological ventral antigen 1 0.036488 

2.566287 TAPBPL TAP binding protein-like 8.05E-04 

2.557721 CFLAR CASP8 and FADD-like apoptosis regulator 0.016501 

2.556034 DTNA dystrobrevin, alpha 5.70E-05 

2.552846 PDPN podoplanin 0.008288 

2.544963 LGALS3BP lectin, galactoside-binding, soluble, 3 binding 
protein 

0.009862 

2.528988 TDRD7 tudor domain containing 7 0.01541 

2.501654 PSME2 proteasome (prosome, macropain) activator 
subunit 2 (PA28 beta) 

0.004147 

2.50114 IRAK3 interleukin-1 receptor-associated kinase 3 0.01197 

2.484067 SLC1A1 solute carrier family 1 (neuronal/epithelial high 
affinity glutamate transporter, system Xag), 
member 1 

0.03058 

2.461875 CFLAR CASP8 and FADD-like apoptosis regulator 0.041418 

2.458896 CFLAR CASP8 and FADD-like apoptosis regulator 0.003262 

2.452654 HIST1H2BD histone cluster 1, H2bd 0.006247 

2.44606 PROCR protein C receptor, endothelial (EPCR) 0.004583 

2.442194 CFLAR CASP8 and FADD-like apoptosis regulator 0.005876 

2.431164 CYB5A cytochrome b5 type A (microsomal) 0.036591 

2.425255 FILIP1L filamin A interacting protein 1-like 0.003195 

2.424902 PSTPIP2 proline-serine-threonine phosphatase interacting 
protein 2 

0.040425 

2.421571 HLA-F major histocompatibility complex, class I, F 0.002401 

2.408101 CACNA1A calcium channel, voltage-dependent, P/Q type, 
alpha 1A subunit 

0.025861 

2.38139 SP100 SP100 nuclear antigen 0.046017 

2.357674 CFLAR CASP8 and FADD-like apoptosis regulator 0.006124 

2.347081 PPFIBP2 PTPRF interacting protein, binding protein 2 (liprin 2.44E-04 
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beta 2) 

2.331309 PSMB10 proteasome (prosome, macropain) subunit, beta 
type, 10 

0.049297 

2.316866 RNF114 ring finger protein 114 0.006302 

2.296515 SLC11A2 solute carrier family 11 (proton-coupled divalent 
metal ion transporters), member 2 

0.006778 

2.289964 PSMB8 proteasome (prosome, macropain) subunit, beta 
type, 8 (large multifunctional peptidase 7) 

0.039558 

2.28674 CFLAR CASP8 and FADD-like apoptosis regulator 0.011567 

2.254133 CLIC2 chloride intracellular channel 2 0.024261 

2.246542 DRAM damage-regulated autophagy modulator 9.40E-04 

2.238959 CFLAR CASP8 and FADD-like apoptosis regulator 0.001636 

2.231546 HLA-G major histocompatibility complex, class I, G 0.006441 

2.227878 FLJ22662 hypothetical protein FLJ22662 7.60E-04 

2.214319 RNF114 ring finger protein 114 0.007101 

2.213672 ICAM1 intercellular adhesion molecule 1 0.00542 

2.21116 HLA-G major histocompatibility complex, class I, G 0.002621 

2.193658 GFPT2 glutamine-fructose-6-phosphate transaminase 2 0.036153 

2.190023 LYN v-yes-1 Yamaguchi sarcoma viral related 
oncogene homolog 

0.004192 

2.182933 HLA-B major histocompatibility complex, class I, B 5.70E-05 

2.166235 HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 0.015877 

2.153668 MICALL2 MICAL-like 2 0.004841 

2.148729 ZMYM6 zinc finger, MYM-type 6 0.001636 

2.143614 SPARCL1 SPARC-like 1 (hevin) 0.038945 

2.137008 FAM13A1 family with sequence similarity 13, member A1 0.018784 

2.133692 SIRPA signal-regulatory protein alpha 3.77E-04 

2.131292 HLA-G major histocompatibility complex, class I, G 1.63E-04 

2.120025 CYB5A cytochrome b5 type A (microsomal) 0.010129 

2.117058 TAPBP TAP binding protein (tapasin) 0.003416 

2.116495 AKAP7 A kinase (PRKA) anchor protein 7 0.039896 

2.111383 PON2 paraoxonase 2 0.004134 

2.100947 NT5E 5'-nucleotidase, ecto (CD73) 2.51E-04 

2.076569 MDM2 Mdm2 p53 binding protein homolog (mouse) 0.043542 

2.065661 CNDP2 CNDP dipeptidase 2 (metallopeptidase M20 
family) 

0.039558 

2.047671 TRIM38 tripartite motif-containing 38 0.01996 

2.042615 HLA-B major histocompatibility complex, class I, B 7.91E-04 

2.026807 CFLAR CASP8 and FADD-like apoptosis regulator 0.035314 

2.016378 FSTL3 follistatin-like 3 (secreted glycoprotein) 0.032078 

2.016181 KIAA0391 /// 
PSMA6 

KIAA0391 /// proteasome (prosome, macropain) 
subunit, alpha type, 6 

0.006852 

1.989287 TRIM38 tripartite motif-containing 38 0.017295 

1.982656 ATRIP /// 
TREX1 

ATR interacting protein /// three prime repair 
exonuclease 1 

0.047112 

1.961992 GLIPR1 GLI pathogenesis-related 1 0.011306 

1.959727 NFKBIE nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, epsilon 

0.022704 

1.954683 C10orf26 chromosome 10 open reading frame 26 0.003262 
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1.951621 LY6E lymphocyte antigen 6 complex, locus E 0.02642 

1.934228 PANX1 pannexin 1 0.022964 

1.92549 TBC1D9 TBC1 domain family, member 9 (with GRAM 
domain) 

8.91E-04 

1.916083 ATOX1 ATX1 antioxidant protein 1 homolog (yeast) 0.020647 

1.910365 CSF1 colony stimulating factor 1 (macrophage) 0.023957 

1.896993 TNIP1 TNFAIP3 interacting protein 1 5.80E-04 

1.879147 LYN v-yes-1 Yamaguchi sarcoma viral related 
oncogene homolog 

0.009496 

1.869223 RELB v-rel reticuloendotheliosis viral oncogene homolog 
B 

0.017671 

1.861563 BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3 0.021585 

1.858279 BEX4 brain expressed, X-linked 4 0.00786 

1.848508 ACP2 acid phosphatase 2, lysosomal 0.028017 

1.846391 VPS13D vacuolar protein sorting 13 homolog D (S. 
cerevisiae) 

0.006904 

1.843842 TNFSF12 /// 
TNFSF12-
TNFSF13 /// 
TNFSF13 

tumor necrosis factor (ligand) superfamily, 
member 12 /// TNFSF12-TNFSF13 readthrough 
transcript /// tumor necrosis factor (ligand) 
superfamily, member 13 

0.048855 

1.814648 IRF2 interferon regulatory factor 2 0.008169 

1.813575 PON2 paraoxonase 2 0.008863 

1.809137 TRIM38 tripartite motif-containing 38 0.025296 

1.799581 BTG3 BTG family, member 3 0.024396 

1.798085 HLA-C major histocompatibility complex, class I, C 1.18E-04 

1.795796 HLA-A /// HLA-
A29.1 /// HLA-B 
/// HLA-G /// 
HLA-H /// HLA-
J 

major histocompatibility complex, class I, A /// 
major histocompatibility complex class I HLA-
A29.1 /// major histocompatibility complex, class I, 
B /// major histocompatibility complex, class I, G /// 
major histocompatibility complex, class I, H 
(pseudogene) /// major histocompatibility complex, 
class I, J (pseudogene) 

0.018539 

1.795212 NNMT nicotinamide N-methyltransferase 0.025147 

1.795001 IFNGR1 interferon gamma receptor 1 0.025147 

1.790361 CDC42EP4 CDC42 effector protein (Rho GTPase binding) 4 0.049112 

1.773213 HLA-C major histocompatibility complex, class I, C 0.003262 

1.76255 SLC30A1 Hbc647 mRNA sequence 0.006213 

1.760506 STAT3 signal transducer and activator of transcription 3 
(acute-phase response factor) 

0.008288 

1.752857 BASP1 brain abundant, membrane attached signal protein 
1 

0.014614 

1.744929 RFTN1 raftlin, lipid raft linker 1 0.022704 

1.743621 RAB20 RAB20, member RAS oncogene family 0.022704 

1.741601 BTG3 BTG family, member 3 0.007903 

1.734837 IFNGR1 interferon gamma receptor 1 0.002401 

1.726347 FTH1 ferritin, heavy polypeptide 1 0.019981 

1.705262 DNAJA1 DnaJ (Hsp40) homolog, subfamily A, member 1 0.020755 

1.69253 STBD1 starch binding domain 1 0.049297 

1.691625 HLA-C major histocompatibility complex, class I, C 4.98E-04 

1.690892 PSME1 proteasome (prosome, macropain) activator 
subunit 1 (PA28 alpha) 

0.032811 
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1.678448 HLA-B /// MICA major histocompatibility complex, class I, B /// 
MHC class I polypeptide-related sequence A 

0.004053 

1.671204 RFX5 regulatory factor X, 5 (influences HLA class II 
expression) 

0.037349 

1.65795 HSPA4L heat shock 70kDa protein 4-like 0.024306 

1.656616 P4HA2 prolyl 4-hydroxylase, alpha polypeptide II 0.049297 

1.648751 CD59 CD59 molecule, complement regulatory protein 0.008363 

1.647957 NNMT nicotinamide N-methyltransferase 0.019674 

1.641402 DNAJA1 HDJ2 protein 0.014305 

1.606447 NOC3L nucleolar complex associated 3 homolog (S. 
cerevisiae) 

0.022447 

1.597539 TBCC tubulin folding cofactor C 0.008288 

1.584331 TMEM22 transmembrane protein 22 0.004657 

1.579374 IFITM3 interferon induced transmembrane protein 3 (1-
8U) 

0.008288 

1.554896 DFNA5 deafness, autosomal dominant 5 0.047112 

1.545585 C15orf24 chromosome 15 open reading frame 24 0.008288 

1.545367 LOC284889 /// 
MIF 

hypothetical protein LOC284889 /// macrophage 
migration inhibitory factor (glycosylation-inhibiting 
factor) 

0.044672 

1.541742 ENDOD1 endonuclease domain containing 1 0.040086 

1.540308 BTN2A2 butyrophilin, subfamily 2, member A2 0.001322 

1.53979 USP25 ubiquitin specific peptidase 25 0.033598 

1.520112 HLA-A major histocompatibility complex, class I, A 0.01797 

1.50069 SGCB sarcoglycan, beta (43kDa dystrophin-associated 
glycoprotein) 

0.012635 

1.487067 DDX18 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 0.012601 

1.482268 OPTN optineurin 0.043452 

1.481941 CD59 CD59 molecule, complement regulatory protein 0.009636 

1.481617 TRAF3 TNF receptor-associated factor 3 0.022704 

1.470603 NDUFA9 NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 9, 39kDa 

0.048855 

1.468841 RBX1 ring-box 1 0.011306 

1.462896 PEX12 peroxisomal biogenesis factor 12 0.020864 

1.455167 MMP2 matrix metallopeptidase 2 (gelatinase A, 72kDa 
gelatinase, 72kDa type IV collagenase) 

0.01541 

1.450561 ZCCHC6 zinc finger, CCHC domain containing 6 0.011728 

1.397826 MPZL1 myelin protein zero-like 1 0.047736 

1.365859 LARP7 La ribonucleoprotein domain family, member 7 0.049297 

1.355799 ALAS1 aminolevulinate, delta-, synthase 1 0.021863 

1.347957 CSTB cystatin B (stefin B) 0.043939 

1.338753 PLS3 plastin 3 (T isoform) 0.049297 

1.260726 CHMP4A chromatin modifying protein 4A 0.006124 

1.258344 FTH1 ferritin, heavy polypeptide 1 0.004014 

1.244612 BUD31 BUD31 homolog (S. cerevisiae) 0.006352 

1.229484 B2M beta-2-microglobulin 0.016094 

1.190801 TANK TRAF family member-associated NFKB activator 0.007903 

 



 166 

A.3 Full list of 86 genes upregulated in keloid compared to normal fibroblasts 

using the RMA summarization algorithm (P < 0.05) 

Fold 
change 

Gene Symbol Gene Title Corrected 
p-value 

18.0305 POSTN periostin, osteoblast specific factor 0.006498 

5.40679 IGFBP3 insulin-like growth factor binding protein 3 0.024325 

3.959037 COL15A1 collagen, type XV, alpha 1 0.028774 

3.21548 SEMA5A sema domain, seven thrombospondin repeats 
(type 1 and type 1-like), transmembrane domain 
(TM) and short cytoplasmic domain, (semaphorin) 
5A 

0.013197 

3.042947 SEMA5A sema domain, seven thrombospondin repeats 
(type 1 and type 1-like), transmembrane domain 
(TM) and short cytoplasmic domain, (semaphorin) 
5A 

0.035137 

2.726196 CADM1 cell adhesion molecule 1 0.001646 

2.631936 ATXN1 ataxin 1 0.020822 

2.531559 FARP1 FERM, RhoGEF (ARHGEF) and pleckstrin 
domain protein 1 (chondrocyte-derived) 

0.045664 

2.375326 MICAL2 microtubule associated monoxygenase, calponin 
and LIM domain containing 2 

0.037055 

2.176466 ECM1 extracellular matrix protein 1 0.047073 

2.129065 SLC25A6 solute carrier family 25 (mitochondrial carrier; 
adenine nucleotide translocator), member 6 

0.019936 

2.053115 KCNJ6 potassium inwardly-rectifying channel, subfamily 
J, member 6 

0.021022 

1.990826 TBC1D2 TBC1 domain family, member 2 0.048158 

1.985587 CADM1 cell adhesion molecule 1 0.046985 

1.959726 NXN nucleoredoxin 0.002448 

1.906954 MICAL2 microtubule associated monoxygenase, calponin 
and LIM domain containing 2 

0.017212 

1.897066 COL1A1 collagen, type I, alpha 1 0.008827 

1.878355 PDGFRB platelet-derived growth factor receptor, beta 
polypeptide 

0.002791 

1.869649 SLC25A6 solute carrier family 25 (mitochondrial carrier; 
adenine nucleotide translocator), member 6 

0.046273 

1.865537 GPSM2 G-protein signaling modulator 2 (AGS3-like, C. 
elegans) 

0.04761 

1.852414 LOC644191 /// 
LOC728937 /// 
RPS26 

similar to hCG15685 /// similar to 40S ribosomal 
protein S26 /// ribosomal protein S26 

0.038141 

1.84265 CTSB cathepsin B 0.018933 

1.836179 ODZ3 odz, odd Oz/ten-m homolog 3 (Drosophila) 6.59E-04 

1.835598 JUP /// KRT19 junction plakoglobin /// keratin 19 0.02721 

1.807992 LAMA2 laminin, alpha 2 0.006566 

1.796024 FHOD1 formin homology 2 domain containing 1 0.014803 

1.764263 CTDSPL CTD (carboxy-terminal domain, RNA polymerase 
II, polypeptide A) small phosphatase-like 

0.018992 

1.749725 SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 0.038598 
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1.747925 HDLBP high density lipoprotein binding protein 0.037741 

1.730545 COL5A3 collagen, type V, alpha 3 0.042118 

1.719725 PTK7 PTK7 protein tyrosine kinase 7 0.041423 

1.686518 NONO non-POU domain containing, octamer-binding 0.017365 

1.676297 NT5DC2 5'-nucleotidase domain containing 2 0.044871 

1.667339 ATF4 activating transcription factor 4 (tax-responsive 
enhancer element B67) 

0.004086 

1.664031 LOC100130624 hypothetical LOC100130624 0.039839 

1.634808 FAM155A family with sequence similarity 155, member A 0.027042 

1.627513 PQBP1 polyglutamine binding protein 1 0.003057 

1.615317 RPL13 ribosomal protein L13 1.97E-04 

1.612627 RPS8 ribosomal protein S8 0.023227 

1.597447 HOXA11 homeobox A11 0.037859 

1.58056 MGC87895 /// 
RPS14 

similar to ribosomal protein S14 /// ribosomal 
protein S14 

0.026445 

1.568977 RPL3 ribosomal protein L3 0.024636 

1.562242 EIF1 eukaryotic translation initiation factor 1 0.038827 

1.544172 RPL13 ribosomal protein L13 7.69E-04 

1.544152 RPL8 ribosomal protein L8 0.001713 

1.531647 LOC642741 similar to ribosomal protein L3 0.001728 

1.521308 RPS5 ribosomal protein S5 0.010015 

1.51899 C20orf149 chromosome 20 open reading frame 149 0.047073 

1.513227 EPHB3 EPH receptor B3 0.037648 

1.499035 RPL13 ribosomal protein L13 0.002784 

1.469517 RPL10L ribosomal protein L10-like 0.030904 

1.468484 RPL3 ribosomal protein L3 0.015644 

1.459514 DBN1 drebrin 1 0.021666 

1.456908 RPL3 ribosomal protein L3 0.025091 

1.443996 RPL10 ribosomal protein L10 0.018933 

1.441773 PARVB parvin, beta 1.48E-04 

1.436187 RPS16 ribosomal protein S16 0.004886 

1.43166 SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 0.002008 

1.425044 RPLP2 ribosomal protein, large, P2 0.008827 

1.417303 SLC1A4 solute carrier family 1 (glutamate/neutral amino 
acid transporter), member 4 

0.046909 

1.415545 RPL3 ribosomal protein L3 0.016536 

1.413611 YBX1 Y box binding protein 1 0.040024 

1.408501 RPL13 ribosomal protein L13 7.69E-04 

1.405121 RPS6 ribosomal protein S6 0.043219 

1.403469 PPP2R3A protein phosphatase 2 (formerly 2A), regulatory 
subunit B'', alpha 

0.011736 

1.386019 EIF3B eukaryotic translation initiation factor 3, subunit B 0.020335 

1.379153 RPS17L4 ribosomal protein S17-like 4 0.04918 

1.360253 RPS2 ribosomal protein S2 0.029039 

1.34878 TREX2 /// 
UCHL5IP 

three prime repair exonuclease 2 /// UCHL5 
interacting protein 

0.014841 

1.33581 RPS13 ribosomal protein S13 0.00654 

1.32547 GRB10 growth factor receptor-bound protein 10 0.023425 

1.303224 RPL9 ribosomal protein L9 0.046875 
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1.300171 RPL38 ribosomal protein L38 0.021022 

1.276438 NUDT3 nudix-type motif 3 0.04918 

1.274737 PARD3 par-3 partitioning defective 3 homolog (C. 
elegans) 

0.047977 

1.27258 RPL27 ribosomal protein L27 0.040303 

1.264076 RPL17 ribosomal protein L17 0.018933 

1.261194 CDYL chromodomain protein, Y-like 0.049917 

1.255499 RPS9 ribosomal protein S9 0.007091 

1.245831 RP5-1077B9.4 invasion inhibitory protein 45 0.017708 

1.23863 hCG_21078 /// 
RPL27A 

hCG21078 /// ribosomal protein L27a 0.002151 

1.22714 EIF1 eukaryotic translation initiation factor 1 0.033374 

1.216908 RPS24 ribosomal protein S24 0.026217 

1.170586 LOC100130553 
/// RPS18 

hypothetical protein LOC100130553 /// ribosomal 
protein S18 

0.02368 

1.161676 INPPL1 inositol polyphosphate phosphatase-like 1 0.022554 

1.146715 RPL28 ribosomal protein L28 0.037601 

 

A.4 Full list of 258 genes downregulated in keloid compared to normal 

fibroblasts using the RMA summarization algorithm (P < 0.05) 

Fold 
change 

Gene Symbol Gene Title Corrected 
p-value 

44.34992 CXCL6 chemokine (C-X-C motif) ligand 6 (granulocyte 
chemotactic protein 2) 

9.29E-10 

41.64695 CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma 
growth stimulating activity, alpha) 

1.89E-05 

37.03845 C2 /// CFB complement component 2 /// complement factor 
B 

1.75E-08 

33.61232 HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1 1.50E-06 

29.71772 TNFAIP6 tumor necrosis factor, alpha-induced protein 6 0.008827 

21.50683 CXCL2 chemokine (C-X-C motif) ligand 2 5.89E-05 

20.34249 TNFAIP6 tumor necrosis factor, alpha-induced protein 6 0.011388 

19.02187 IL8 interleukin 8 0.003057 

18.80414 SLC39A8 solute carrier family 39 (zinc transporter), 
member 8 

1.22E-05 

16.76682 SLC39A8 solute carrier family 39 (zinc transporter), 
member 8 

7.69E-04 

14.08095 C3 complement component 3 2.94E-04 

13.78165 RSAD2 radical S-adenosyl methionine domain containing 
2 

0.013835 

12.01816 SOD2 superoxide dismutase 2, mitochondrial 0.002706 

11.75815 IL8 interleukin 8 0.001761 

11.65778 CCL2 chemokine (C-C motif) ligand 2 9.46E-07 

10.88791 SFRP1 secreted frizzled-related protein 1 0.026217 

9.990352 G0S2 G0/G1switch 2 0.001019 

9.679501 IFI44L interferon-induced protein 44-like 0.04903 
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8.604651 CHI3L2 chitinase 3-like 2 0.019936 

8.378408 IL6 interleukin 6 (interferon, beta 2) 4.59E-04 

8.213031 CA12 carbonic anhydrase XII 2.40E-04 

8.204023 OAS1 2',5'-oligoadenylate synthetase 1, 40/46kDa 0.015085 

8.195308 GCH1 GTP cyclohydrolase 1 2.29E-04 

8.068323 CA12 carbonic anhydrase XII 0.00631 

7.890376 SOD2 superoxide dismutase 2, mitochondrial 0.001861 

7.244113 IFIT1 interferon-induced protein with tetratricopeptide 
repeats 1 

0.035976 

7.188362 TNFAIP3 tumor necrosis factor, alpha-induced protein 3 8.07E-05 

6.98734 IFIT3 interferon-induced protein with tetratricopeptide 
repeats 3 

0.014427 

6.850272 TNFSF10 tumor necrosis factor (ligand) superfamily, 
member 10 

0.03935 

6.773449 OAS1 2',5'-oligoadenylate synthetase 1, 40/46kDa 0.044028 

6.696858 NAMPT nicotinamide phosphoribosyltransferase 0.001998 

6.448252 IFIH1 interferon induced with helicase C domain 1 0.016536 

6.327625 CA12 carbonic anhydrase XII 0.006223 

6.259846 HERC6 hect domain and RLD 6 0.009306 

6.225736 CTSS cathepsin S 8.67E-05 

6.107744 GBP1 guanylate binding protein 1, interferon-inducible, 
67kDa 

0.003902 

5.973147 IFIT2 interferon-induced protein with tetratricopeptide 
repeats 2 

0.049917 

5.971855 CA12 carbonic anhydrase XII 0.004125 

5.964412 CA12 carbonic anhydrase XII 4.59E-04 

5.887205 HERC5 hect domain and RLD 5 0.012534 

5.848494 CXCL3 chemokine (C-X-C motif) ligand 3 5.04E-04 

5.825303 SOD2 superoxide dismutase 2, mitochondrial 7.69E-04 

5.720924 NAMPT nicotinamide phosphoribosyltransferase 0.023627 

5.663569 BTN3A2 butyrophilin, subfamily 3, member A2 0.042157 

5.519223 WTAP Wilms tumor 1 associated protein 9.55E-05 

5.507072 WTAP Wilms tumor 1 associated protein 0.009169 

5.327916 CCL5 chemokine (C-C motif) ligand 5 0.002448 

5.289413 ABCA8 ATP-binding cassette, sub-family A (ABC1), 
member 8 

0.006956 

5.146521 SLC39A14 solute carrier family 39 (zinc transporter), 
member 14 

0.024324 

4.979725 RARRES3 retinoic acid receptor responder (tazarotene 
induced) 3 

0.003712 

4.976672 IFI44 interferon-induced protein 44 0.037647 

4.80152 AKR1B1 aldo-keto reductase family 1, member B1 (aldose 
reductase) 

3.95E-04 

4.67249 LAP3 leucine aminopeptidase 3 0.024205 

4.650329 PTGES prostaglandin E synthase 0.012578 

4.624918 TNFAIP2 tumor necrosis factor, alpha-induced protein 2 7.11E-04 

4.616492 CCL5 chemokine (C-C motif) ligand 5 0.010015 

4.304027 MT1X metallothionein 1X 0.020822 

4.30355 NFKBIA nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, alpha 

4.59E-04 
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4.096058 PLSCR1 phospholipid scramblase 1 0.011388 

4.09106 CLU clusterin 0.026445 

4.075102 MT1E metallothionein 1E 0.047073 

4.064827 TNFAIP3 tumor necrosis factor, alpha-induced protein 3 0.001023 

4.041319 GBP1 guanylate binding protein 1, interferon-inducible, 
67kDa 

0.021022 

3.909078 CLU clusterin 0.033121 

3.828279 STEAP1 six transmembrane epithelial antigen of the 
prostate 1 

0.014024 

3.82739 MT2A metallothionein 2A 0.029119 

3.806854 IFI35 interferon-induced protein 35 0.025091 

3.680742 XAF1 XIAP associated factor 1 0.023346 

3.657572 MT1E /// MT1H /// 
MT1M /// MT1P2 

metallothionein 1E /// metallothionein 1H /// 
metallothionein 1M /// metallothionein 1 
pseudogene 2 

0.021022 

3.653427 CXCL5 chemokine (C-X-C motif) ligand 5 0.004989 

3.645952 PSMB9 proteasome (prosome, macropain) subunit, beta 
type, 9 (large multifunctional peptidase 2) 

0.03417 

3.586836 IL15RA interleukin 15 receptor, alpha 0.011711 

3.463399 ICAM1 intercellular adhesion molecule 1 1.10E-04 

3.378218 UCHL1 ubiquitin carboxyl-terminal esterase L1 (ubiquitin 
thiolesterase) 

0.004886 

3.338111 MT1X metallothionein 1X 0.026959 

3.33326 NFIB nuclear factor I/B 0.026219 

3.289887 TMEM100 transmembrane protein 100 0.04263 

3.285261 NRCAM neuronal cell adhesion molecule 7.94E-04 

3.285236 TLR3 toll-like receptor 3 0.039578 

3.279497 SLC1A1 solute carrier family 1 (neuronal/epithelial high 
affinity glutamate transporter, system Xag), 
member 1 

7.69E-04 

3.275539 SLC11A2 solute carrier family 11 (proton-coupled divalent 
metal ion transporters), member 2 

3.06E-04 

3.262109 IL32 interleukin 32 4.59E-04 

3.245122 LRRN3 leucine rich repeat neuronal 3 0.00287 

3.224767 MT1F metallothionein 1F 0.023227 

3.219482 PTGFR prostaglandin F receptor (FP) 0.027574 

3.194404 PARP12 poly (ADP-ribose) polymerase family, member 
12 

0.048335 

3.130064 ICAM1 intercellular adhesion molecule 1 3.40E-05 

3.075876 MID1 midline 1 (Opitz/BBB syndrome) 0.033374 

3.055434 MT1P2 metallothionein 1 pseudogene 2 0.035137 

3.049139 VCAM1 vascular cell adhesion molecule 1 0.047073 

2.993775 CP ceruloplasmin (ferroxidase) 8.67E-05 

2.925094 AMPD3 adenosine monophosphate deaminase (isoform 
E) 

0.010801 

2.918264 IFI30 interferon, gamma-inducible protein 30 0.023627 

2.903807 APOL3 apolipoprotein L, 3 0.042118 

2.896697 SLC11A2 solute carrier family 11 (proton-coupled divalent 
metal ion transporters), member 2 

2.81E-04 

2.892534 STAT1 signal transducer and activator of transcription 1, 0.032961 
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91kDa 

2.862865 MMD monocyte to macrophage differentiation-
associated 

0.006815 

2.810585 ABLIM1 actin binding LIM protein 1 0.026332 

2.798357 DDX60 DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 0.043219 

2.72018 FILIP1L filamin A interacting protein 1-like 0.004067 

2.711745 GPRC5B G protein-coupled receptor, family C, group 5, 
member B 

0.016484 

2.703468 HIST1H2BD histone cluster 1, H2bd 0.015237 

2.693878 PSME2 proteasome (prosome, macropain) activator 
subunit 2 (PA28 beta) 

0.001077 

2.689429 BTN3A2 butyrophilin, subfamily 3, member A2 0.025091 

2.688505 CFLAR CASP8 and FADD-like apoptosis regulator 0.015237 

2.687159 LGALS3BP lectin, galactoside-binding, soluble, 3 binding 
protein 

0.013645 

2.650053 CXCL5 chemokine (C-X-C motif) ligand 5 0.015587 

2.647512 DRAM damage-regulated autophagy modulator 0.003902 

2.634461 MT1M metallothionein 1M 0.008827 

2.629179 UBE2L6 ubiquitin-conjugating enzyme E2L 6 0.03412 

2.62574 MT1F metallothionein 1F 9.22E-04 

2.595849 CHEK2 CHK2 checkpoint homolog (S. pombe) 5.84E-05 

2.594678 CFLAR CASP8 and FADD-like apoptosis regulator 0.00493 

2.593336 NMI N-myc (and STAT) interactor 0.044028 

2.569516 CFLAR CASP8 and FADD-like apoptosis regulator 5.48E-04 

2.54052 SIRPA signal-regulatory protein alpha 1.38E-05 

2.528263 CEBPD CCAAT/enhancer binding protein (C/EBP), delta 0.019171 

2.522403 BTN3A3 butyrophilin, subfamily 3, member A3 0.048335 

2.520541 CYB5A cytochrome b5 type A (microsomal) 0.011736 

2.514324 SLC11A2 solute carrier family 11 (proton-coupled divalent 
metal ion transporters), member 2 

0.006815 

2.498402 PALM Paralemmin 0.009971 

2.490228 RNF114 ring finger protein 114 0.047073 

2.454265 TRIM38 tripartite motif-containing 38 0.021022 

2.411988 SLC25A28 solute carrier family 25, member 28 0.001713 

2.410709 STAT4 signal transducer and activator of transcription 4 3.39E-04 

2.408566 CYB5A cytochrome b5 type A (microsomal) 0.015085 

2.390128 KIAA0391 /// 
PSMA6 

KIAA0391 /// proteasome (prosome, macropain) 
subunit, alpha type, 6 

0.027574 

2.366543 SLC15A3 solute carrier family 15, member 3 0.027138 

2.361601 GHR growth hormone receptor 0.001713 

2.354626 C1QTNF1 C1q and tumor necrosis factor related protein 1 0.048335 

2.351021 NFIB nuclear factor I/B 0.040444 

2.347035 PANX1 pannexin 1 0.03639 

2.336691 LRRN3 leucine rich repeat neuronal 3 0.016484 

2.333014 RGS3 regulator of G-protein signaling 3 0.026787 

2.319342 NT5E 5'-nucleotidase, ecto (CD73) 0.002448 

2.311114 MARCH3 membrane-associated ring finger (C3HC4) 3 0.001642 

2.27852 CYB5A cytochrome b5 type A (microsomal) 0.023425 

2.251881 TRIM38 tripartite motif-containing 38 0.032743 
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2.23989 CFLAR CASP8 and FADD-like apoptosis regulator 0.023911 

2.235737 PPFIBP2 PTPRF interacting protein, binding protein 2 
(liprin beta 2) 

0.003755 

2.224926 HLA-F major histocompatibility complex, class I, F 0.009477 

2.22473 TAPBP TAP binding protein (tapasin) 0.002016 

2.215581 HLA-C major histocompatibility complex, class I, C 0.006519 

2.210316 AK3L1 /// AK3L2 adenylate kinase 3-like 1 /// adenylate kinase 3-
like 2 

0.003202 

2.20811 HLA-F major histocompatibility complex, class I, F 0.00287 

2.17376 SMC2 structural maintenance of chromosomes 2 0.002998 

2.169356 CYLD cylindromatosis (turban tumor syndrome) 0.046985 

2.167533 NOVA1 neuro-oncological ventral antigen 1 0.04244 

2.146688 C10orf26 chromosome 10 open reading frame 26 0.025091 

2.13148 HLA-B major histocompatibility complex, class I, B 0.006956 

2.124391 HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 0.026762 

2.12098 SLC39A8 solute carrier family 39 (zinc transporter), 
member 8 

0.004086 

2.108726 TNIP1 TNFAIP3 interacting protein 1 0.027814 

2.097694 SAMHD1 SAM domain and HD domain 1 0.047977 

2.097592 PON2 paraoxonase 2 0.025091 

2.092583 CFLAR CASP8 and FADD-like apoptosis regulator 0.003645 

2.089171 HLA-B major histocompatibility complex, class I, B 0.002024 

2.072831 CFLAR CASP8 and FADD-like apoptosis regulator 0.00197 

2.0599 DHRS3 dehydrogenase/reductase (SDR family) member 
3 

0.001019 

2.055893 DKFZP586H2123 regeneration associated muscle protease 0.037791 

2.048616 CFLAR CASP8 and FADD-like apoptosis regulator 8.55E-04 

2.023844 HLA-B /// MICA major histocompatibility complex, class I, B /// 
MHC class I polypeptide-related sequence A 

0.018933 

2.021447 BIRC3 baculoviral IAP repeat-containing 3 0.001713 

2.007685 PDPN podoplanin 0.033129 

2.001211 LY6E lymphocyte antigen 6 complex, locus E 0.027138 

1.998355 ZC3H12A zinc finger CCCH-type containing 12A 5.99E-05 

1.981507 HLA-A /// HLA-
A29.1 /// HLA-B 
/// HLA-G /// HLA-
H /// HLA-J 

major histocompatibility complex, class I, A /// 
major histocompatibility complex class I HLA-
A29.1 /// major histocompatibility complex, class 
I, B /// major histocompatibility complex, class I, 
G /// major histocompatibility complex, class I, H 
(pseudogene) /// major histocompatibility 
complex, class I, J (pseudogene) 

0.006852 

1.96592 CSF1 colony stimulating factor 1 (macrophage) 0.015085 

1.942084 HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 0.003902 

1.935575 ACP2 acid phosphatase 2, lysosomal 0.006566 

1.927046 PON2 paraoxonase 2 0.014803 

1.924471 IFNGR1 interferon gamma receptor 1 0.018356 

1.911548 FAM117A family with sequence similarity 117, member A 0.001713 

1.909791 C14orf159 chromosome 14 open reading frame 159 0.010796 

1.896043 HLA-G major histocompatibility complex, class I, G 0.008626 

1.877315 MT1F metallothionein 1F 1.10E-04 

1.876992 HLA-C major histocompatibility complex, class I, C 7.69E-04 
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1.87264 MEIS3P1 Meis homeobox 3 pseudogene 1 0.007091 

1.87205 TAPBPL TAP binding protein-like 0.001292 

1.85887 HLA-G major histocompatibility complex, class I, G 0.003202 

1.857911 BASP1 brain abundant, membrane attached signal 
protein 1 

0.026445 

1.847917 MICALL2 MICAL-like 2 7.91E-04 

1.844846 SIRPA signal-regulatory protein alpha 0.002908 

1.843371 GFRA1 GDNF family receptor alpha 1 0.031214 

1.837641 HLA-E major histocompatibility complex, class I, E 0.042803 

1.822478 DENND2D DENN/MADD domain containing 2D 0.009234 

1.811002 TRIM38 tripartite motif-containing 38 0.014427 

1.805608 NNMT nicotinamide N-methyltransferase 0.033657 

1.801476 FTH1 ferritin, heavy polypeptide 1 0.032417 

1.785207 PION pigeon homolog (Drosophila) 0.026445 

1.763702 NNMT nicotinamide N-methyltransferase 0.015237 

1.752336 HLA-C major histocompatibility complex, class I, C 0.001075 

1.748331 NR4A3 nuclear receptor subfamily 4, group A, member 3 0.010796 

1.718806 PROCR protein C receptor, endothelial (EPCR) 0.027362 

1.700887 PDCD5 programmed cell death 5 0.039578 

1.683461 HSPB8 heat shock 22kDa protein 8 0.04761 

1.668382 HLA-C major histocompatibility complex, class I, C 0.016484 

1.667567 PDCD1LG2 programmed cell death 1 ligand 2 0.004125 

1.651713 SLCO3A1 solute carrier organic anion transporter family, 
member 3A1 

0.00287 

1.641853 SLC1A1 solute carrier family 1 (neuronal/epithelial high 
affinity glutamate transporter, system Xag), 
member 1 

0.014024 

1.629699 HLA-G major histocompatibility complex, class I, G 0.006852 

1.626722 BTN3A1 butyrophilin, subfamily 3, member A1 0.0442 

1.625006 HLA-A major histocompatibility complex, class I, A 0.002743 

1.61725 LARGE like-glycosyltransferase 0.013456 

1.617092 AK3L1 /// AK3L2 adenylate kinase 3-like 1 /// adenylate kinase 3-
like 2 

0.033481 

1.592655 PION pigeon homolog (Drosophila) 0.003955 

1.589381 NFKBIE nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, epsilon 

0.019276 

1.584692 RNF8 ring finger protein 8 0.016484 

1.576378 CD59 CD59 molecule, complement regulatory protein 4.56E-04 

1.571031 LYN v-yes-1 Yamaguchi sarcoma viral related 
oncogene homolog 

0.029499 

1.563836 MMP2 matrix metallopeptidase 2 (gelatinase A, 72kDa 
gelatinase, 72kDa type IV collagenase) 

5.99E-05 

1.556934 NRP2 neuropilin 2 0.02645 

1.533629 P2RX4 purinergic receptor P2X, ligand-gated ion 
channel, 4 

0.021666 

1.523406 NFKB1 nuclear factor of kappa light polypeptide gene 
enhancer in B-cells 1 

0.042118 

1.522656 SVEP1 sushi, von Willebrand factor type A, EGF and 
pentraxin domain containing 1 

0.011711 

1.518637 WWC1 WW and C2 domain containing 1 0.045278 
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1.499967 LSAMP limbic system-associated membrane protein 0.009696 

1.497518 APOL2 apolipoprotein L, 2 0.047977 

1.493991 PGK1 phosphoglycerate kinase 1 0.042095 

1.489115 GBA /// GBAP glucosidase, beta; acid (includes 
glucosylceramidase) /// glucosidase, beta; acid, 
pseudogene 

0.036143 

1.488427 KHDC1 /// SPA17 KH homology domain containing 1 /// sperm 
autoantigenic protein 17 

0.004067 

1.482473 PSTPIP2 proline-serine-threonine phosphatase interacting 
protein 2 

0.008121 

1.466329 POLD3 polymerase (DNA-directed), delta 3, accessory 
subunit 

0.025058 

1.449279 DTNA dystrobrevin, alpha 0.037974 

1.446802 RELB v-rel reticuloendotheliosis viral oncogene 
homolog B 

0.009818 

1.445625 ELF3 E74-like factor 3 (ets domain transcription factor, 
epithelial-specific ) 

0.02046 

1.440517 CYP27A1 cytochrome P450, family 27, subfamily A, 
polypeptide 1 

0.04263 

1.439601 HYPK Huntingtin interacting protein K 0.019813 

1.429019 ACP6 acid phosphatase 6, lysophosphatidic 0.039972 

1.406325 TFDP2 transcription factor Dp-2 (E2F dimerization 
partner 2) 

0.006852 

1.397198 CTSS cathepsin S 0.046985 

1.388266 B2M beta-2-microglobulin 0.024654 

1.38517 CSTB cystatin B (stefin B) 0.017681 

1.382151 SNCA synuclein, alpha (non A4 component of amyloid 
precursor) 

0.006815 

1.368093 PDLIM4 PDZ and LIM domain 4 0.041423 

1.367311 NFE2L1 nuclear factor (erythroid-derived 2)-like 1 0.032417 

1.349224 FTH1 ferritin, heavy polypeptide 1 0.013128 

1.321152 ARHGEF10L Rho guanine nucleotide exchange factor (GEF) 
10-like 

0.030511 

1.320407 LGALS8 lectin, galactoside-binding, soluble, 8 0.044328 

1.313343 FTHP1 ferritin, heavy polypeptide pseudogene 1 0.03731 

1.308686 EDNRB endothelin receptor type B 0.046273 

1.307239 HLA-F major histocompatibility complex, class I, F 0.039578 

1.272 SLC19A3 solute carrier family 19, member 3 0.031469 

1.266423 SLC11A2 solute carrier family 11 (proton-coupled divalent 
metal ion transporters), member 2 

0.018933 

1.25115 RBKS ribokinase 0.018933 

1.249708 CAND2 cullin-associated and neddylation-dissociated 2 
(putative) 

0.020736 

1.246255 SNX11 sorting nexin 11 0.020092 

1.238541 C6orf64 chromosome 6 open reading frame 64 0.044823 

1.232883 ZMIZ2 zinc finger, MIZ-type containing 2 0.033374 

1.225532 CSF1 colony stimulating factor 1 (macrophage) 0.013754 

1.196416 NFIB nuclear factor I/B 0.047977 

1.174331 TFDP2 transcription factor Dp-2 (E2F dimerization 
partner 2) 

0.029499 

1.155878 WDR48 WD repeat domain 48 0.006116 
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1.146091 SP100 SP100 nuclear antigen 0.015085 

1.131624 TLR1 toll-like receptor 1 0.033657 

1.106074 CXCL5 chemokine (C-X-C motif) ligand 5 0.044823 

1.104509 TAF1B TATA box binding protein (TBP)-associated 
factor, RNA polymerase I, B, 63kDa 

0.037317 

1.101118 BRCA2 breast cancer 2, early onset 0.027138 

 

A.5 List of genes differentially expressed using both the RMA and MAS 5.0 

summarization algorithm (P < 0.05) 

Regulation 
(Keloid vs 
Normal) 

Gene 
Symbol 

Gene Title 

down CXCL6 chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic 
protein 2) 

down CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating 
activity, alpha) 

down IL8 interleukin 8 

down HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1 

down IL8 interleukin 8 

down CCL5 chemokine (C-C motif) ligand 5 

down CXCL2 chemokine (C-X-C motif) ligand 2 

down RSAD2 radical S-adenosyl methionine domain containing 2 

down C2 /// CFB complement component 2 /// complement factor B 

down CXCL5 chemokine (C-X-C motif) ligand 5 

down TNFAIP6 tumor necrosis factor, alpha-induced protein 6 

down CXCL3 chemokine (C-X-C motif) ligand 3 

down IL32 interleukin 32 

down CP ceruloplasmin (ferroxidase) 

down CHI3L2 chitinase 3-like 2 

down TNFAIP6 tumor necrosis factor, alpha-induced protein 6 

down C3 complement component 3 

down SLC39A8 solute carrier family 39 (zinc transporter), member 8 

down CXCL5 chemokine (C-X-C motif) ligand 5 

down G0S2 G0/G1switch 2 

down OAS1 2',5'-oligoadenylate synthetase 1, 40/46kDa 

down TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 

down SLC39A8 solute carrier family 39 (zinc transporter), member 8 

down GCH1 GTP cyclohydrolase 1 

down CCL5 chemokine (C-C motif) ligand 5 

down SLC19A3 solute carrier family 19, member 3 

down HERC5 hect domain and RLD 5 

down IL6 interleukin 6 (interferon, beta 2) 

down NRCAM neuronal cell adhesion molecule 

down CCL2 chemokine (C-C motif) ligand 2 

down ABCA8 ATP-binding cassette, sub-family A (ABC1), member 8 
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down SFRP1 secreted frizzled-related protein 1 

down TMEM100 transmembrane protein 100 

down SOD2 superoxide dismutase 2, mitochondrial 

down CTSS cathepsin S 

down IFI30 interferon, gamma-inducible protein 30 

down HERC6 hect domain and RLD 6 

down TLR3 toll-like receptor 3 

down RARRES3 retinoic acid receptor responder (tazarotene induced) 3 

down SOD2 superoxide dismutase 2, mitochondrial 

down TNFAIP3 tumor necrosis factor, alpha-induced protein 3 

down CA12 carbonic anhydrase XII 

down CTSS cathepsin S 

down IFIT2 interferon-induced protein with tetratricopeptide repeats 2 

down LRRN3 leucine rich repeat neuronal 3 

down IFIT3 interferon-induced protein with tetratricopeptide repeats 3 

down BIRC3 baculoviral IAP repeat-containing 3 

down CA12 carbonic anhydrase XII 

down GBP1 guanylate binding protein 1, interferon-inducible, 67kDa 

down TNFAIP2 tumor necrosis factor, alpha-induced protein 2 

down CA12 carbonic anhydrase XII 

down PTGES prostaglandin E synthase 

down GBP1 guanylate binding protein 1, interferon-inducible, 67kDa 

down NAMPT nicotinamide phosphoribosyltransferase 

down SLC39A8 solute carrier family 39 (zinc transporter), member 8 

down CA12 carbonic anhydrase XII 

down STAT4 signal transducer and activator of transcription 4 

down CA12 carbonic anhydrase XII 

down LRRN3 leucine rich repeat neuronal 3 

down MT1X metallothionein 1X 

down NAMPT nicotinamide phosphoribosyltransferase 

down MT1M metallothionein 1M 

down WTAP Wilms tumor 1 associated protein 

down MT1P2 metallothionein 1 pseudogene 2 

down ELF3 E74-like factor 3 (ets domain transcription factor, epithelial-
specific ) 

down TNFAIP3 tumor necrosis factor, alpha-induced protein 3 

down SOD2 superoxide dismutase 2, mitochondrial 

down MT1E metallothionein 1E 

down ZC3H12A zinc finger CCCH-type containing 12A 

down ICAM1 intercellular adhesion molecule 1 

down SLC39A14 solute carrier family 39 (zinc transporter), member 14 

down MT1F metallothionein 1F 

down AKR1B1 aldo-keto reductase family 1, member B1 (aldose reductase) 

down SNCA synuclein, alpha (non A4 component of amyloid precursor) 

down WWC1 WW and C2 domain containing 1 

down ICAM1 intercellular adhesion molecule 1 

down WTAP Wilms tumor 1 associated protein 

down SLC15A3 solute carrier family 15, member 3 
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down IFI35 interferon-induced protein 35 

down MT1E /// 
MT1H /// 
MT1M /// 
MT1P2 

metallothionein 1E /// metallothionein 1H /// metallothionein 1M /// 
metallothionein 1 pseudogene 2 

down AMPD3 adenosine monophosphate deaminase (isoform E) 

down MT2A metallothionein 2A 

down LAP3 leucine aminopeptidase 3 

down SLC11A2 solute carrier family 11 (proton-coupled divalent metal ion 
transporters), member 2 

down MARCH3 membrane-associated ring finger (C3HC4) 3 

down CLU Clusterin 

down STEAP1 six transmembrane epithelial antigen of the prostate 1 

down GFRA1 GDNF family receptor alpha 1 

down NFKBIA nuclear factor of kappa light polypeptide gene enhancer in B-cells 
inhibitor, alpha 

down MMD monocyte to macrophage differentiation-associated 

down MT1X metallothionein 1X 

down SLC11A2 solute carrier family 11 (proton-coupled divalent metal ion 
transporters), member 2 

down PTGFR prostaglandin F receptor (FP) 

down NR4A3 nuclear receptor subfamily 4, group A, member 3 

down PLSCR1 phospholipid scramblase 1 

down UCHL1 ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase) 

down CHEK2 CHK2 checkpoint homolog (S. pombe) 

down MT1F metallothionein 1F 

down EDNRB endothelin receptor type B 

down IL15RA interleukin 15 receptor, alpha 

down STAT1 signal transducer and activator of transcription 1, 91kDa 

down SMC2 structural maintenance of chromosomes 2 

down SAMHD1 SAM domain and HD domain 1 

down ABLIM1 actin binding LIM protein 1 

down MT1F metallothionein-1F 

down HLA-F major histocompatibility complex, class I, F 

down CFLAR CASP8 and FADD-like apoptosis regulator 

down SIRPA signal-regulatory protein alpha 

down HLA-C major histocompatibility complex, class I, C 

down SLC25A28 solute carrier family 25, member 28 

down AK3L1 /// 
AK3L2 

adenylate kinase 3-like 1 /// adenylate kinase 3-like 2 

down TAPBPL TAP binding protein-like 

down NOVA1 neuro-oncological ventral antigen 1 

down DTNA dystrobrevin, alpha 

down PDPN Podoplanin 

down LGALS3BP lectin, galactoside-binding, soluble, 3 binding protein 

down PSME2 proteasome (prosome, macropain) activator subunit 2 (PA28 
beta) 

down SLC1A1 solute carrier family 1 (neuronal/epithelial high affinity glutamate 
transporter, system Xag), member 1 
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down CFLAR CASP8 and FADD-like apoptosis regulator 

down HIST1H2BD histone cluster 1, H2bd 

down PROCR protein C receptor, endothelial (EPCR) 

down CFLAR CASP8 and FADD-like apoptosis regulator 

down CYB5A cytochrome b5 type A (microsomal) 

down FILIP1L filamin A interacting protein 1-like 

down PSTPIP2 proline-serine-threonine phosphatase interacting protein 2 

down HLA-F major histocompatibility complex, class I, F 

down CFLAR CASP8 and FADD-like apoptosis regulator 

down PPFIBP2 PTPRF interacting protein, binding protein 2 (liprin beta 2) 

down RNF114 ring finger protein 114 

down SLC11A2 solute carrier family 11 (proton-coupled divalent metal ion 
transporters), member 2 

down CFLAR CASP8 and FADD-like apoptosis regulator 

down DRAM damage-regulated autophagy modulator 

down CFLAR CASP8 and FADD-like apoptosis regulator 

down HLA-G major histocompatibility complex, class I, G 

down LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog 

down HLA-B major histocompatibility complex, class I, B 

down HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 

down MICALL2 MICAL-like 2 

down SIRPA signal-regulatory protein alpha 

down HLA-G major histocompatibility complex, class I, G 

down CYB5A cytochrome b5 type A (microsomal) 

down TAPBP TAP binding protein (tapasin) 

down PON2 paraoxonase 2 

down NT5E 5'-nucleotidase, ecto (CD73) 

down TRIM38 tripartite motif-containing 38 

down HLA-B major histocompatibility complex, class I, B 

down CFLAR CASP8 and FADD-like apoptosis regulator 

down KIAA0391 
/// PSMA6 

KIAA0391 /// proteasome (prosome, macropain) subunit, alpha 
type, 6 

down TRIM38 tripartite motif-containing 38 

down NFKBIE nuclear factor of kappa light polypeptide gene enhancer in B-cells 
inhibitor, epsilon 

down C10orf26 chromosome 10 open reading frame 26 

down LY6E lymphocyte antigen 6 complex, locus E 

down PANX1 pannexin 1 

down CSF1 colony stimulating factor 1 (macrophage) 

down TNIP1 TNFAIP3 interacting protein 1 

down RELB v-rel reticuloendotheliosis viral oncogene homolog B 

down ACP2 acid phosphatase 2, lysosomal 

down PON2 paraoxonase 2 

down TRIM38 tripartite motif-containing 38 

down HLA-C major histocompatibility complex, class I, C 

down HLA-A /// 
HLA-A29.1 
/// HLA-B /// 
HLA-G /// 

major histocompatibility complex, class I, A /// major 
histocompatibility complex class I HLA-A29.1 /// major 
histocompatibility complex, class I, B /// major histocompatibility 
complex, class I, G /// major histocompatibility complex, class I, H 
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HLA-H /// 
HLA-J 

(pseudogene) /// major histocompatibility complex, class I, J 
(pseudogene) 

down NNMT nicotinamide N-methyltransferase 

down HLA-C major histocompatibility complex, class I, C 

down BASP1 brain abundant, membrane attached signal protein 1 

down IFNGR1 interferon gamma receptor 1 

down FTH1 ferritin, heavy polypeptide 1 

down HLA-C major histocompatibility complex, class I, C 

down HLA-B /// 
MICA 

major histocompatibility complex, class I, B /// MHC class I 
polypeptide-related sequence A 

down CD59 CD59 molecule, complement regulatory protein 

down NNMT nicotinamide N-methyltransferase 

down HLA-A major histocompatibility complex, class I, A 

down MMP2 matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 
72kDa type IV collagenase) 

down CSTB cystatin B (stefin B) 

down FTH1 ferritin, heavy polypeptide 1 

down B2M beta-2-microglobulin 

up POSTN periostin, osteoblast specific factor 

up COL15A1 collagen, type XV, alpha 1 

up HOXA11 homeobox A11 

up KCNJ6 potassium inwardly-rectifying channel, subfamily J, member 6 

up JUP /// 
KRT19 

junction plakoglobin /// keratin 19 

up IGFBP3 insulin-like growth factor binding protein 3 

up ATXN1 ataxin 1 

up CADM1 cell adhesion molecule 1 

up SEMA5A sema domain, seven thrombospondin repeats (type 1 and type 1-
like), transmembrane domain (TM) and short cytoplasmic domain, 
(semaphorin) 5A 

up GPSM2 G-protein signaling modulator 2 (AGS3-like, C. elegans) 

up FAM155A family with sequence similarity 155, member A 

up MICAL2 microtubule associated monoxygenase, calponin and LIM domain 
containing 2 

up CADM1 cell adhesion molecule 1 

up SEMA5A sema domain, seven thrombospondin repeats (type 1 and type 1-
like), transmembrane domain (TM) and short cytoplasmic domain, 
(semaphorin) 5A 

up SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 

up MICAL2 microtubule associated monoxygenase, calponin and LIM domain 
containing 2 

up FARP1 FERM, RhoGEF (ARHGEF) and pleckstrin domain protein 1 
(chondrocyte-derived) 

up MGC87895 
/// RPS14 

similar to ribosomal protein S14 /// ribosomal protein S14 

up TBC1D2 TBC1 domain family, member 2 

up ECM1 extracellular matrix protein 1 

up SLC25A6 solute carrier family 25 (mitochondrial carrier; adenine nucleotide 
translocator), member 6 

up PDGFRB platelet-derived growth factor receptor, beta polypeptide 
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up CTSB cathepsin B 

up FHOD1 formin homology 2 domain containing 1 

up SLC25A6 solute carrier family 25 (mitochondrial carrier; adenine nucleotide 
translocator), member 6 

up NXN Nucleoredoxin 

up PTK7 PTK7 protein tyrosine kinase 7 

up LAMA2 laminin, alpha 2 

up LOC644191 
/// 
LOC728937 
/// RPS26 

similar to hCG15685 /// similar to 40S ribosomal protein S26 /// 
ribosomal protein S26 

up PARVB parvin, beta 

up COL1A1 collagen, type I, alpha 1 

up SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 

up NONO non-POU domain containing, octamer-binding 

up ATF4 activating transcription factor 4 (tax-responsive enhancer element 
B67) 

up RPS9 ribosomal protein S9 

up RPL13 ribosomal protein L13 

up RPS8 ribosomal protein S8 

up RPL13 ribosomal protein L13 

up RPS6 ribosomal protein S6 

up RPL8 ribosomal protein L8 

up PPP2R3A protein phosphatase 2 (formerly 2A), regulatory subunit B'', alpha 

up RPL13 ribosomal protein L13 
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A.6 Cytokine-cytokine receptor interaction from the KEGG database 

(Benjamini corrected P-value = 0.094)  
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A.7 Toll-like receptor signaling pathway from the KEGG database 

(Benjamini corrected P-value = 0.246) 

 


