
The Dichotomous Intensional Expressive Power
of the Nested Relational Calculus with Powerset?

Limsoon Wong

National University of Singapore
wongls@comp.nus.edu.sg

Abstract. Most existing studies on the expressive power of query lan-
guages have focused on what queries can be expressed and what queries
cannot be expressed in a query language. They do not tell us much about
whether a query can be implemented efficiently in a query language.
Yet, paradoxically, efficiency is of primary concern in computer science.
In this paper, the efficiency of queries in NRC(powerset), a nested re-
lational calculus with a powerset operation, is discussed. A dichotomy
in the efficiency of these queries on a large general class of structures—
which include long chains, deep trees, etc.—is discovered. In particular,
it is shown that these queries are either already expressible in the usual
nested relational calculus or require at least exponential space. This Di-
chotomy Theorem, when coupled with the Bounded Degree Property of
the usual nested relational calculus proved earlier by Libkin and Wong,
becomes a powerful general tool in studying the intensional expressive
power of query languages. The Bounded Degree Property makes it easy
to prove that a query is inexpressible in the usual nested relational cal-
culus. Then, if the query is expressible in NRC(powerset), subject to
the conditions of the Dichotomy Theorem, the query must take at least
exponential space.

1 Introduction

Existing research on the power of query languages has focused almost exclusively
on the expressive power of query languages. So we have many results of the
following kinds:

– Is a specific function expressible in a given query language? For example,
Libkin & Wong showed that all usual nested relational calculi and algebras
cannot express the transitive closure function in general [11].

– What complexity class do functions expressible in a given query language
belong to? For example, Buneman et al. showed that functions expressible
in all the usual nested relational calculi and algebras have polynomial com-
plexity [4].

? Supported in part by a Singapore National Research Foundation grant NRF-G-CRP-
2007-04-082(d), a Singapore Ministry of Education grant MOE2009-T2-2-004, and a
Singapore Agency for Science Technology and Research grant SERC-102-101-0030.

dcswls
Typewritten Text
A paper to celebrate Professor Peter Buneman's 70th birthday. Released online, 14 May 2012.

– What general properties do functions expressible in a given query language
have? For example, Dong et al. [7] showed that all functions on unordered
graphs expressible in a nested relational calculus with aggregate functions
have the Bounded Degree Property and, thus, cannot transform a simple
graph (which has an arbitrarily large but fixed degree) into a complex graph
(which has an arbitrary number of distinct degrees).

These results are purely extensional. They basically state that a large class of
queries is expressible or representable in a query language. However, they say
nothing about the efficiency of such a representation, even though the efficiency
aspect is of primary concern for computer science.

A function f that is expressible in a query language can be implemented in
many different ways, each corresponding to a different algorithm. These different
algorithms—which implement that same function f , as far as input/output is
concerned—may have rather different complexity. Moreover, some algorithms
for f may not even be expressible in the given query language, though some
other algorithm for f is expressible in the given query language. Seldom do
we see results that study the power of query languages from this “intensional”
perspective. Some of the exceptional papers that are in the spirit of intensional
expressive power include:

– The work of Colson [5] which showed that the function which computes the
minimum of two integers in unary representation cannot be programmed
using primitive recursion in O(min(m,n)) complexity.

– The work of Abiteboul and Vianu [2] which proved that the parity query
cannot be expressed in PTIME by a generic machine.

– The work of Suciu and Wong [14] which proved that any uniform translation
of sequential iteration queries (sri queries) into data-parallel iteration queries
(sru queries) over a nested relational algebra must map some PTIME queries
into exponential space ones.

– The work of Suciu and Paredaens [13] which proved that any implementa-
tion of the transitive closure query in Abiteboul and Beeri’s complex object
algebra must use an exponential amount of space.

However, these intensional results tend to be very query specific. Furthermore,
the proofs tend to be complex and are not easily “portable” to other queries.
So they do not shed sufficient light on the structure of the query languages
concerned or the structure of inefficient queries in these query languages that
render the cause of the inefficiency clear.

In contrast, the intensional expressive power of NRC(powerset), a nested
relational calculus endowed with a powerset operation, is studied here in a more
general non-query-specific setting—I think this is probably the first time that
intensional expression power is studied in such a general setting. This calcu-
lus, to be presented in Section 2, is equivalent to the complex object algebra
of Abiteboul and Beeri [1] which, as mentioned earlier, was shown by Suciu
and Paredaens [13] to use exponential space to implement the transitive closure
query.

Here, all flat relational queries on a general class of structures that exhibit a
“seriously dichotomous” property are considered. Intuitively, a seriously dichoto-
mous structure has two groups of “motifs” that characterize all the elements in
the structure. The first group of motifs have small radius and are populated by
a small predictable number of elements in the structure, while the second group
of motifs have large radius and are populated by an arbitrarily large number of
elements in the structure. Graphs with a few long chains or a few deep trees are
seriously dichotomous structures. Specifically, the points near the ends of the few
long chains satisfy the first group of motifs, while the rest of the chains—being
long and thus arbitrarily many—satisfy the second group of motifs. Similarly,
the points near the roots of the few deep trees satisfy the first group of motifs,
while the rest of the trees—being deep and thus arbitrarily many—satisfy the
second group of motifs.

The class of seriously dichotomous structures, however, exclude structures
that have arbitrarily large fan-out but shallow depth. For example, structures
containing an arbitrary number of short chains or an arbitrary number of short
circles are not members of this class. These two types of structures do not possess
the second group of motifs which are required to have large radius, as the chains
and circles are short. They also do not possess the first group of motifs which
are required to be populated by a small number of elements in the structure, as
there are arbitrary number of chains and circles.

By virtue of the fact that non-seriously dichotomous structures lack the sec-
ond group of motifs, all recursive queries on them can be converted to ones that
do not need recursion, provided the maximum radius of the group of motifs
for them is known in advance. Thus, the class of seriously dichotomous struc-
tures are those that *really* require an arbitrarily deep level of recursion or
the full power of the powerset operation (if recursion is unavailable) to manip-
ulate. Indeed, this paper proves—in Section 4—that all flat relational queries
in NRC(powerset) on seriously dichotomous structures either (i) are already
expressible without the powerset operation and, hence, has a PTIME implemen-
tation in NRC(powerset); or (ii) are inexpressible without using the powerset
operation on a non-trivial amount of data and, hence, can only be implemented
in NRC(powerset) using an exponential amount of space.

The proof of this Dichotomy Theorem reveals the exact cause of the blow-
up and, briefly, it proceeds as follows. NRC(powerset) is known to have the
Conservative Extension Property [16, 9], which is described later in Section 3.1.
Moreover, the normal form induced by this property does not increase the com-
plexity of the query. Inspecting this normal form, the subexpression containing
the first instance of the powerset operation—say powerset e—to be executed is
analyzed. By the Conservative Extension Property, e is known to be equivalent
to a first order formula ξ(x,y), where x are free variables corresponding to in-
put that is bound before e is excuted, and y are free variables corresponding to
output produced after e finishes execution. There are only three situations that
need to be considered:

1. yj in y is connected to some xi in x; that is, the point that yj is instantiated
with is close to some point that is used to instantiate an xi. If the query is
restricted to structures with a known maximum fan-out, then the number of
possible values that yj can take with respect to each instantiation of xi can
be calculated in advance.

2. yj has to be instantiated to a point characterized by the first type of motifs
in a seriously dichotomous structure. This type of motifs are populated by a
small predictable number of elements. So the number of possible values that
yj can take can be calculated in advance.

3. yj has to be instantiated to a point that is not close to any point xi and
is characterized by the second kind of motifs in a seriously dichotomous
structure. As mentioned, this kind of motifs are populated by an arbitraily
large number of elements in the structure. By the Locality Property of first
order formula [8, 7, 11], which is described later in Section 3.2, yj must take
on an arbitrarily large number of values. Unfortunately, this number cannot
be calculated in advance independent of the size of the input relations.

If each yj in y takes only a predictable number of possible values that can be
calculated in advance and independent of the size of the input relations, then
the number of tuples—say, h∗—in the result of evaluating e can be estimated
in advance and independent of the input relations. Then this powerset e can be
replaced by powerseth∗ e, where powerseth∗ is an operation that computes sub-
sets of size up to h∗. Clearly, powerseth∗ can be implemented in NRC(powerset)
without using the powerset operation. If all the powerset operations can be
eliminated in this manner, we get a PTIME implementation of the query in
NRC(powerset). On the other hand, if the third situation is encountered, then
that powerset e cannot be eliminated. It is easy to see that, in a seriously di-
chotomous structure A = 〈A,O〉, there are many more elements that populate
the second kind of motifs than the first kind. Thus, the expression e in powerset e
is guaranteed to produce at least c∗|O| number of elements, where c is a fraction
close to 1. Consequently, powerset e is forced to produce at leasy 2c∗|O| number
of elements, causing the exponential blow up.

2 Nested Relational Calculus with Powerset

Let me first recall the nested relational calculus NRC from Buneman et al. [4].
The types and expressions in NRC are given in Figure 1. The type superscripts
in the figure are usually omitted because they can be inferred.

The semantics of a type is just a set of complex objects. There are some
unspecified base types b and the usual Boolean base type bool . An object of
type s1 × · · · × sn is a tuple whose ith component is an object of type si, for
1 ≤ i ≤ n. An object of type {s} is a finite set whose elements are objects of
type s; an object of type {s} is called a “relation”. Moreover, if s = b× · · · × b,
then an object of type {s} (or s) is called a “flat relation”. On the other hand,
if s contains some set brackets, then an object of type {s} is called a “nested
relation”. More generally, a type s containing n levels of nested set brackets is

Types in NRC

s ::= b | bool | s1 × · · · × sn | {s}

Expressions in NRC

c : b xs : s

e1 : s1 . . . en : sn

(e1, . . . , en) : s1 × · · · × sn

e : s1 × · · · × sn

πi e : si
1 ≤ i ≤ n

{}s : {s}
e : s

{e} : {s}
e1 : {s} e2 : {s}
e1 ∪ e2 : {s}

e1 : {s} e2 : {t}⋃
{e1 | xt ∈ e2} : {s}

true : bool false : bool

e1 : bool e2 : s e3 : s

if e1 then e2 else e3 : s

e1 : b e2 : b

e1 = e2 : bool

e : {b× · · · × b}
isempty e : bool

Powerset Operator in NRC(powerset)

e : {b× · · · × b}
powerset e : {{b× · · · × b}}

Fig. 1. NRC and its extension NRC(powerset).

said to be of height n; e.g., b× b has height 0, {b× b} has height 1, and {b×{b}}
has height 2.

The semantics of the expression constructs are described below. The expres-
sion c denotes some constants of base type b. The expressions true, false, and
if e1 then e2 else e3 have their usual semantics. The expression (e1, . . . , en) de-
notes the tuple whose ith component is the object denoted by ei, for 1 ≤ i ≤ n.
The expression πi e denotes the ith component of the tuple denoted by e. The
expression {} denotes the empty set. The expression {e} denotes the singleton
set containing the object denoted by e. The expression e1∪ e2 denotes the union
of the sets e1 and e2. The expression

⋃
{e1 | x ∈ e2} denotes the set obtained by

first applying the function f(x) = e1 to each object in the set e2 and then taking
their union; that is,

⋃
{e1 | x ∈ e2} = f(C1) ∪ . . . ∪ f(Cn), where f(x) = e1 and

{C1, . . . , Cn} is the set denoted by e2.
Note that the x ∈ e2 part in the

⋃
{e1 | x ∈ e2} construct is not a mem-

bership test. It is an abstraction that introduces the variable x whose scope is
the expression e1. This construct is the sole means in NRC for iterating over a
set. For example, the cartesian product of two sets X and Y can be defined as
cartprod(X,Y) =df

⋃
{
⋃
{{(x, y)} | x ∈ X} | y ∈ Y }. As a second example, the

flattening of a nested set X can be defined as flatten(X) =df

⋃
{x | x ∈ X}. As

a last example, the projection of the first column of a relation X can be defined
as Π1(X) =df

⋃
{{π1 x} | x ∈ X}.

The notation e[R] stands for the an expression e with free variables R; how-
ever, when it is not important to explicitly list the free variables, it is written
simply as e. For a list of objects O that conform to the types of R, the no-
tation e[O/R] stands for the expression obtained by substituting O for R in
the standard way. The expression e[R] can be thought of as a “query” where
R are its input; equivalently, it can be thought of as a function f(R) = e[R].
The expression e[R] is said to be a “flat relational query” if each R in R is a
flat relation and e[R] : {b × · · · × b}. Recall that a flat relation can have type
{b × · · · × b} or type b × · · · × b. So, the notation e[R,x] is used here when it
is important to explicitly separate the two kinds of variables in a flat relational
query. The result below on the expressive power of NRC is well known.

Proposition 1 (Wong [16]).

1. NRC is in PTIME.
2. NRC is equivalent to the classical nested relational algebra.
3. NRC, when restricted to flat relational queries, is equivalent to the classical

relational algebra.

As NRC is not more powerful than the classical relational algebra, recursive
queries such as the transitive closure query are inexpressible in NRC. In fact, as
shown by Libkin and Wong [11], these queries remain inexpressible even when
NRC is augmented with arithmetics and aggregate functions. One proposal to
enable a nested relational calculus or algebra to express complex queries, without
resorting to explicit recursion, is to endow the calculus or algebra with a powerset
operation. Indeed, this option was proposed by Abiteboul and Beeri [1] and by
Suciu and Paredaens [13].

Following in their foot steps, a more powerful nested relational calculus
NRC(powerset) is defined here by augmenting NRC with a powerset operation
on flat relations, as shown in Figure 1. Here, powerset e produces a set containing
all the subsets of the set denoted by e, provided e is a flat relation. By factoring
through the equivalence [4] between NRC and a corresponding nested relational
algebra, the result below on the expressive power of NRC(powerset) is readily
obtained.

Proposition 2 (Buneman et al. [4]). NRC(powerset) is equivalent to the
complex object algebras of Abiteboul and Beeri and of Suciu and Paredaens.

Following Suciu and Paredaens [13], a call-by-value operational semantics is
defined for NRC(powerset), as shown in Figure 2. In this operational semantics,
e ⇓ C means the closed expression e is evaluated to the object C. The notation
C1 ∪ · · · ∪ Cn denotes the set of objects obtained by the union of the sets C1,
. . . , Cn. This evaluation is sound in the sense that, when e : s and e ⇓ C, then
C is an object of type s and e = C. Thus, each e : s evaluates to a unique C.
The notation e ⇓ is used here to refer to the unique evaluation tree of e.

c ⇓ c
e1 ⇓ C1 . . . en ⇓ Cn

(e1, . . . , en) ⇓ (C1, . . . , Cn)

e ⇓ (C1, . . . , Cn)

πi e ⇓ Ci
1 ≤ i ≤ n

{} ⇓ {}
e ⇓ C

{e} ⇓ {C}
e1 ⇓ C1 e2 ⇓ C2

e1 ∪ e2 ⇓ C1 ∪ C2

e2 ⇓ {C1, . . . , Cn} e1[C1/x] ⇓ C′
1 · · · e1[Cn/x] ⇓ C′

n⋃
{e1 | x ∈ e2} ⇓ C′

1 ∪ · · · ∪ C′
n

true ⇓ true false ⇓ false

e1 ⇓ true e2 ⇓ C
if e1 then e2 else e3 ⇓ C

e1 ⇓ false e3 ⇓ C
if e1 then e2 else e3 ⇓ C

e1 ⇓ C1 e2 ⇓ C2

e1 = e2 ⇓ true
C1 = C2

e1 ⇓ C1 e2 ⇓ C2

e1 = e2 ⇓ false
C1 6= C2

e ⇓ C
isempty e ⇓ true

C = {} e ⇓ C
isempty e ⇓ false

C 6= {}

e ⇓ {C1, . . . , Cn}
powerset e ⇓ {C′

1, . . . , C
′
2n}

where C′
1, . . . , C

′
2n are the subsets of {C1, . . . , Cn}

Fig. 2. A call-by-value operational semantics of NRC(powerset).

The complexity sizeof (e ⇓) of an evaluation is normally defined in terms
of the size of the evaluation tree. However, for the purpose of this paper, and
analogous to Suciu and Paredaens [13], it is sufficient to define it in terms of
the size of the largest object in the evaluation tree. That is, sizeof (e ⇓) =
max{sizeof (C) | the object C occurs in the evaluation tree e ⇓}. The size of an
object is defined in some standard way, e.g., the number of symbols needed to
write it out.

Suciu and Paredaens [13] showed a deep result that can be restated in
NRC(powerset) as follows:

Proposition 3 (Suciu and Paredaens [13]). Let e[R] be a query that imple-
ments the transitive closure of an input flat relation R : {b×b} in NRC(powerset).
Let O be a sufficiently long chain of type {b × b}. Then sizeof (e[O/R] ⇓) is
Ω(2|O|). That is, every implementation of transitive closure in NRC(powerset)
requires exponential space.

In this paper, an alternative proof of this result is presented. Moreover, it is
generalized here to a dichotomy result on practically all flat relational queries

expressible inNRC(powerset). In particular, practically all flat relational queries
expressible in NRC(powerset) are shown here to be dichotomous in the sense
that either they are already expressible in NRC or they require at least expo-
nential space. Hence, the extra expressive power that the powerset operation
buys for NRC(powerset) comes strictly with an exponential cost.

3 Conservative Extension and Locality Properties

Two main machineries are needed to prove the Dichotomy Theorem. The first
is the Conservative Extension Property of NRC and the system of rewrite rules
used for proving this property. The second is the Locality Property of first-order
queries.

3.1 Conservative Extension

The Conservative Extension Property and the associated system of rewrite rules
were initially described by Wong [16] and, later, generalized by Libkin and
Wong [9, 11]. This system of rewrite rules is given in Figure 3.

⋃
{e | x ∈ {}} 7→ {}⋃

{e1 | x ∈ {e2}} 7→ e1[e2/x]⋃
{e | x ∈ (e1 ∪ e2)} 7→

⋃
{e | x ∈ e1} ∪

⋃
{e | x ∈ e2}⋃

{e1 | x ∈
⋃
{e2 | y ∈ e3}} 7→

⋃
{
⋃
{e1 | x ∈ e2} | y ∈ e3}⋃

{e | x ∈ (if e1 then e2 else e3)} 7→ if e1 then
⋃
{e | x ∈ e2} else

⋃
{e | x ∈ e3}

πi(e1, . . . , e2) 7→ ei

πi (if e1 then e2 else e3) 7→ if e1 then πi e2 else πi e3
if true then e2 else e3 7→ e2
if false then e2 else e3 7→ e3

Fig. 3. A system of rewrite rules for NRC(powerset).

The following properties of this system of rewrite rules are well known.

Proposition 4 (Conservative Extension [16, 9]).

1. This system of rewrite rules is sound.
2. This system of rewrite rules is strongly normalizing.
3. Let e be an expression in NRC(powerset) that is in normal form with re-

spect to this system of rewrite rules. That is, no rule can be applied to further
rewrite e. Let e′[R] : s be a subexpression in e. Suppose R have types whose
height is atmost h, and the type s has height h′. Then all the types appear-
ing in the type derivation of e′[R] : s have height atmost max(h, h′), if the
powerset operation does not appear in e′[R]; or, they have height atmost
max(h, h′, 2), if the powerset operation appears in e′[R].

It is straightforward to show that this system of rewrite rules does not in-
crease the complexity of evaluation.

Proposition 5. Let e[R] 7→ e′[R]. Let O be a list of objects conforming to the
types of R. Then sizeof (e[O/R] ⇓) ≥ sizeof (e′[O/R] ⇓).

3.2 Locality

The second main machinery needed to prove the dichotomy result is the Lo-
cality Property. Let me first introduce the notions of “τ structure”, “Gaifman
graph”, “r-sphere”, and “r-neighbourhood”, before explaining what the Locality
Property is.

A signature τ is a list of symbols R, where R is to be regarded as input for
a query. The signature τm is obtained by extending the signature τ with m new
constant symbols. For the purpose of this paper, each Ri in R has type of the
form {b× · · · × b}. A τ structure A = 〈A,O〉 has a universe A (which is a finite
nonempty set of objects of type b) and a list of objects O (where each object
Oi in O is the interpretation of the corresponding Ri and, thus, having the type
of Ri). Also, all elements of O are in the universe A. The class of τ structures
is denoted by STRUCT[τ]. The symbol ' is used to denote isomorphism of τ
structures.

Given a τ structure A = 〈A,O〉, its Gaifman graph G(A) is defined as a
graph such that its edges are precisely those pairs (a, b) where there is a tuple
ti ∈ Oi, for some Oi in O, such that both a and b are in ti. The distance
dA(a, b) is defined as the length of the shortest path from a to b in G(A). Given
a tuple a = (a1, . . . , am) of objects in A, and some r ≥ 0, the r-sphere of a
is defined as SAr (a) =

⋃
1≤i≤m SAr (ai), where SAr (ai) = {b ∈ A | dA(ai, b) ≤

r}. Also, the r-neighbourhood of a is defined as the τm structure NAr (a) =
〈SAr (a),O|SAr (a), a1, . . . , am〉. That is, NAr (a) is obtained by restricting A to the
universe SAr (a) and adding some extra constants that are the elements of a.

Gaifman [8] showed that first-order queries exhibit a kind of locality property
in the sense that the result of these queries can be determined by considering
“small neighbourhoods” of its input. It follows easily from the work of Gaifman
and Part 3 of Proposition 1 that flat relational queries in NRC has this kind of
locality property.

Proposition 6 (Locality [8, 7]). Every flat relational query e[R] in NRC has
the Locality Property. That is, there is a finite natural number r such that, for
every A = 〈A,O〉 ∈ STRUCT[R], for every two m-ary vectors a and b of
elements of A, it is the case that NAr (a) ' NAr (b) implies a ∈ e[O/R] if and
only if b ∈ e[O/R].

In short, for every flat relational query expressible in NRC there is some
number r such that, for every pair (a, b), so long as a and b have neighbourhoods
that are isomorphic up to radius r, they must either be both in the result of the
query or both not in the result of the query. The smallest such number r is called
the “locality index” of the query.

An equivalence class a ≈Ar b is induced by NAr (a) ' NAr (b). Such an equiv-
alence class is called a neighbourhood type here. If a restriction is imposed so
that G(A) has degree atmost k, then the number of neighbourhood types is fi-
nite. Thus, under this restriction, for any flat relational query e[R] in NRC, its
result is completely characterized by a finite number of neighbourhood types.
Each neighbourhood type NAr (a) can be thought of as a “diagram” showing
how objects in this neighbourhood type are “connected” to each other and to
the fixed reference objects (i.e., a); c.f. the “neighbourhood formula” of Dong et
al. [7].

4 Complexity of Queries on Dichotomous Structures

Given a signature τ . A “motif” of radius r is a first order formula ψ(y) with
a single free variable y such that ψ(y) has locality index r on all τ structures.
A τ structure A is said to be “bounded” by a motif ψ(y) at a threshold g if
|{a ∈ A | A |= ψ(a)}| ≤ r ∗ g, where r is the radius of ψ(y). That is, there are
atmost r ∗ g elements in the universe of A that make ψ(y) true. A class C of τ
structures is said to be “bounded” by a motif ψ(y) at a threshold g if that motif
ψ(y) bounds all structures in C at the threshold g. On the other hand, C is said
to be “unbounded” by ψ(y) if there is a g such that, for every g′ > g, there is
some A ∈ C that is not bounded by ψ(y) at threshold g′.

Definition 1. A class C of τ structures is said to be “dichotomous” at radius r
and threshold g if and only if (i) C is bounded at threshold g by some motifs of
radius up to r, and (ii) C is unbounded by all other motifs (as well as at least
one motif) of radius r. Moreover, C is said to be “seriously dichotomous” at
threshold g if there is some r such that, C is dichotomous at threshold g and
every radius r′ > r. Seriously dichotomous structures include long chains, long
circles, deep trees, etc.

I am now ready to sketch a proof of the Dichotomy Theorem for such general
classes of structures. Given a flat relational structure A = 〈A,O〉, the size of the
structure is defined as |O| =

∑
Oi∈O sizeof (Oi).

Theorem 1 (Dichotomy). Let e[R] : {b× · · ·× b} be a flat relational query in
NRC(powerset) that is intended for the class C of seriously dichotomous struc-
tures whose Gaifman graph has degree atmost k. Then either e[R] is expressible
in NRC; or, there is a structure A = 〈A,O〉 ∈ C such that sizeof (e[O/R] ⇓) is
Ω(2|O|).

Proof. By Proposition 5, the system of rewrite rules in Figure 3 does not increase
complexity. By Proposition 4, it preserves semantics and is strongly normalizing.
Thus it can be assumed without loss of generality that e[R] is an expression in
normal form with respect to this system of rewrite rules.

If the powerset operation does not appear in e[R], then the theorem triv-
ially holds. So, let it contain some occurrences of the powerset operation. Let

powerset e′[R,x] be the occurrence of the powerset operation that corresponds
to the earliest instance of the powerset operation to be evaluated when e[R] is
evaluated.

Since the
⋃
{e1 | x ∈ e2} construct is the only way to introduce a new variable

in NRC(powerset), each new free variable xi in x must have been introduced in
an enclosing expression of the form

⋃
{· · · powerset e′[R,x] · · · | xi ∈ E}. As the

entire expression e[R] is in normal form, and e′[R,x] is the earliest instance of
the powerset operation to be evaluated, E must be one of the Ri in R, which is
a flat relation. Consequently, xi must have height 0 and has a type of the form
b× · · ·× b. Furthermore, as e′[R,x] is an input to a powerset operation, its type
must have the form {b×· · ·×b}. Thus e′[R,x] is a flat relational query in NRC.

In fact, by the Conservative Extension Property (Proposition 4), all the types
that appear in the typing derivation of e′[R,x] have height atmost 1 (i.e., must
be flat). By Proposition 1, e′[R,x] is equivalent to a first-order formula ϕ(x,y)
such that, for every τm structure A = 〈A,O,o〉 and objects o′ of the appropriate
types, it is the case that o′ ∈ e′[O/R,o/x] if and only if A |= ϕ(o,o′).

I am now almost ready to use the Locality Property, except for the variables
x. To deal with this inconvenience, we inspect the original expression e[R], in
an outside-in manner until we reach the expression e′[R,x], to extract all the
conditions that must hold on x before e′[R,x] gets evaluated. You will have to
trust me that the conjunction of these conditions can be expressed as a first
order formula ψ(x).

It follows by Proposition 6 that ψ(x)∧ϕ(x,y) enjoys the Locality Property.
Let r be its locality index. Since I am only considering structures A = 〈A,O〉
whose Gaifman graph has degree atmost k, there is a finite number of neigh-
bourhood types NAr (o,o′) that make ψ(x) ∧ ϕ(x,y) true.

Each such neighbourhood type can be described by a first order formula
ξ(x,y). An xi in x and a yj in y is said to be “connected” if there are R0(t0),
..., Rh(th) and variables z1, ..., zh−1 such that the pair (xi, z1) appears in t0,
the pair (z1, z2) appears in t1, ..., and the pair (zh−1, yj) appears in th, and
ξ(x,y) ` ∃t.R0(t0)∧ · · · ∧Rh(th), where t is the collection of variables in t0, ...,
th, excluding xi and yj . It is easy to see that, if xi and yj are connected, then
the corresponding oi in o and o′j in o′ satisfy o′j ∈ SAh (oi) and oi ∈ SAh (o′j).

The analysis above is repeated for all neighbourhood types that make ψ(x)∧
ϕ(x,y) true. If yj is connected to some xi (not necessarily the same one) in each
qualifying neighbourhood type, let hj∗ be the largest of the h’s found. Recall
that the Gaifman graph is restricted to degree atmost k. This means that given
any instantiation o for x, there can be atmost hk

j∗ distinct instantiations for yj

that make ψ(x) ∧ ϕ(x,y) true.
Assuming each yj in y is connected to some xi (not necessarily the same

one) in each qualifing neighbourhood type. Then for any instantiation o for x,
there can be atmost h∗ =

∏
j h

k
j∗ distinct instantiations o′ for y that make

ψ(x)∧ϕ(x,y) true. Notice that h∗ is independent of the cardinality of relations
used for instantiating R. Recall that o are values that the free variables x take in
an evaluation of powerset e′[R,x]. This means that for each instantiation of x,

e′[R,x] evaluates to a set whose cardinality is atmost h∗. Then the expression
powerset e′[R,x] can be replaced by another expression powerseth∗ e

′[R,x],
which is an NRC expression that produces subsets of size atmost h∗. Thus, in
this case, the powerset operation can be eliminated. The entire process above
is repeated as many times as necessary. At the end, if all occurrences of the
powerset operation are eliminated, then the original query e[R] is expressible in
NRC.

On the other hand, if there is an occurrence of the powerset operation that
cannot be eliminated as described above, then there must be some yj in y that
is not connected to any xi in some qualifying neighbourhood type. Recall that
the original query is intended for a class C of seriously dichotomous structures
at some threshold g. Thus, there are motifs ψ(y) at radius ≤ r that bounds C,
and all other motifs (and at least one motif) ψ′(yj) at radius r that does not
bound C. This puts us in two different scenarios.

The first scenario is when ξ(x,y) ` ψ(yj) holds for one of the bounding
motifs ψ(yj). Then there are atmost r ∗ g number of values for yj that make
ψ(yj) true. Consequently, by the Locality Property (Proposition 6), there are
atmost r ∗ g number of values for yj that make ξ(x,y) true. In this case, when
we are setting hj∗, we can let the h for this neighbourhood type to be r ∗ g.
The elimination of the powerset operation can then be performed as described
earlier.

The second scenario is when ξ(x,y) ` ψ(yj) does not hold for all the bound-
ing motifs ψ(yj). Then, by definition of seriously dichotomous structures, there
is a motif ψ′(yj) of radius r that does not bound C and ξ(x,y) ` ψ′(yj) holds
(** - more about this statement later when non-seriously dichotomous struc-
tures are discussed **). So a structure A = 〈A,O〉 ∈ C can be chosen so that
ψ′(yj) holds for Ω(|O|) number of values for yj . Then, by the Locality Property
(Proposition 6), the corresponding e′[R,x] must produce a set whose cardinality
is Ω(|O|). Consequently, powerset e′[R,x] must produce Ω(2|O|) subsets. Thus,
in this case, sizeof (e[O/R] ⇓) is Ω(2|O|), proving the theorem. ut

Therefore, for any query in NRC(powerset) on seriously dichotomous struc-
tures, either it is already expressible in NRC (and hence in PTIME) or all of
its implementations in NRC(powerset) need exponential space. Since the class
of structures containing a single long chain is seriously dichotomous, and the
transitive closure of single long chain is inexpressible in NRC [7], it follows
immediately as a corollary of the Dichotomy Theorem above that all imple-
mentations of transitive closure in NRC(powerset) must use at least exponent
space, as proven earlier by Suciu and Paredaens [13] in a less general brute-force
manner.

How about queries on structures that are not seriously dichotomous? By
definition, a class of seriously dichotomous structures must be unbounded by
at least one motif of radius r′ for every large r′. However, for each class C of
structures that is not seriously dichomotous, there is a number r such that for
all motifs ψ(y) with radius r′ ≥ r, it is the case that |{a ∈ A | A |= ψ(a)}| = 0
for every A ∈ C. That is, there is no motif with radius r′ ≥ r that unbounds C.

For example, the class of structures comprising sets of multiple short circles of
length atmost l is not seriously dichomotous, because there is no motif of radius
greater than l that unbounds these structures.

Intuitively, flat relational queries in NRC(powerset) on these non-seriously
dichotomous structures should not require the use of the powerset operation.
Since every class of structures must be either seriously dichotomous or not seri-
ously dichomotous, I think the following claim is very likely true:

Claim. Let e[R] : {b×b} be a query that is expressible in NRC(powerset), where
its input R : {b× b} is restricted to graphs of degree atmost k. Then e[R] has a
PTIME implementation in NRC(powerset) if and only if it is already expressible
in NRC.

To settle this claim requires every flat relational query in NRC(powerset) on
non-seriously dichotomous structures to be transformed to a query in NRC, or
to be shown to apply the powerset operation only on very small sets of interme-
diate data. The proof of the Dichotomy Theorem breaks down on non-seriously
dichotomous structures at the point marked (**), in the last paragraph of the
proof. At that point, the proof requires the existence of a motif ψ′(yj) of radius
r that (i) matches the r-neighbourhood around yj , i.e., ξ(x,y) ` ψ′(yj), and (ii)
has no bound on the number of values that yj can be instantiated with to make
ψ′(yj) true. In seriously dichotomous structures, the existence of such motifs is
guaranteed. In non-seriously dichotomous structures, beyond a certain radius,
such motifs do not exist.

5 Remarks

It was with Peter Buneman and Val Tannen that I first defined NRC in 1992 [3],
two decades ago! It was also Peter and Val who first posed me the Conservative
Extension Property of NRC as an open question, which I solved in 1993 [15] by
the analysing the normal forms of the system of rewrite rules presented earlier
in this paper.

I first saw in 1994 Dan Suciu and Jan Paredaens’ proof [12] that all im-
plementations of the transitive closure query in NRC(powerset) are necessarily
inefficient. This was my first encounter with the intensional aspect of expressive
power. It intrigued me greatly and I soon co-authored, in 1995, a paper [14]
with Dan comparing the efficiency of the algorithms that can be implemented
by different forms of structural recursion.

I first learned in 1994 [10] the Locality Property of first-order query lan-
guages from Leonid Libkin. It took me three further years to fully appreciate
this powerful property and to exploit it to prove, in 1997 [6], with Leonid and
Guozhu Dong, the Bounded Degree Property of query languages with aggregate
function.

Leonid, Dan, and I were students in the same group led by Peter, Val, and
Susan Davidson. While they have continued working in the database theory area,
I have more or less left the field to explore challenges in computational biology

since the late 1990s. After this ten-year break, I am delighted to briefly re-visit
the field and contribute to this Festschrift to Peter. I am pleasantly surprised that
I am able to chain together the series of our major past results (NRC, normal
forms of my favourite rewrite system, the Conservative Extension Property, and
the Locality Property) that Peter had a big role in nurturing, to solve a problem
that Peter also had a big role in keeping my continued fascination with it. I hope
you have enjoyed reading the paper as much as I have enjoyed working on it.

References

1. Serge Abiteboul and Catriel Beeri. The power of languages for the manipulation
of complex values. The VLDB Journal, 4(4):727–794, 1995.

2. Serge Abiteboul and Victor Vianu. Generic computation and its complexity. In
Proceedings of 23rd ACM Symposium on the Theory of Computing, pages 209–219,
1991.

3. Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Naturally embedded
query languages. In Proceedings of 4th International Conference on Database The-
ory, Berlin, Germany, October, 1992, pages 140–154, 1992.

4. Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Principles of
programming with complex objects and collection types. Theoretical Computer
Science, 149(1):3–48, 1995.

5. Loic Colson. About primitive recursive algorithms. Theoretical Computer Science,
83:57–69, 1991.

6. Guozhu Dong, Leonid Libkin, and Limsoon Wong. Local properties of query lan-
guages. In Proceedings of 6th International Conference on Database Theory, pages
140–154, 1997.

7. Guozhu Dong, Leonid Libkin, and Limsoon Wong. Local properties of query lan-
guages. Theoretical Computer Science, 239:277–308, 2000.

8. Haim Gaifman. On local and non-local properties. In Proceedings of the Herbrand
Symposium, Logic Colloquium ’81, pages 105–135, 1982.

9. Leonid Libkin and Limsoon Wong. Conservativity of nested relational calculi with
internal generic functions. Information Processing Letters, 49(6):273–280, 1994.

10. Leonid Libkin and Limsoon Wong. New techniques for studying set languages, bag
languages, and aggregate functions. In Proceedings of 13th ACM Symposium on
Principles of Database Systems, pages 155–166, 1994.

11. Leonid Libkin and Limsoon Wong. Query languages for bags and aggregate func-
tions. Journal of Computer and System Sciences, 55(2):241–272, 1997.

12. Dan Suciu and Jan Paredaens. Any algorithm in the complex object algebra needs
exponential space to compute transitive closure. In Proceedings of 13th ACM
Symposium on Principles of Database Systems, pages 201–209, 1994.

13. Dan Suciu and Jan Paredaens. The complexity of the evaluation of complex algebra
expressions. Journal of Computer and Systems Sciences, 55(2):322–343, 1997.

14. Dan Suciu and Limsoon Wong. On two forms of structural recursion. In Proceedings
of 5th International Conference on Database Theory, pages 111–124, 1995.

15. Limsoon Wong. Normal forms and conservative properties for query languages
over collection types. In Proceedings of 12th ACM Symposium on Principles of
Database Systems, pages 26–36, 1993.

16. Limsoon Wong. Normal forms and conservative extension properties for query lan-
guages over collection types. Journal of Computer and System Sciences, 52(3):495–
505, 1996.

