

Towards A More Consistent and

Reproducible Gene Expression Analysis

A thesis submitted by

Chai Haoqiang

in partial fulfilment for the

Degree of Bachelor of Science with Honours

in

Computational Biology

Supervisor: Professor Choi Kwok Pui

Co-Supervisor: Professor Limsoon Wong

i

Acknowledgement

I wish to express my gratitude to my supervisors, Prof Choi Kwok Pui and Prof

Limsoon Wong, for their invaluable guidance and patience throughout the course of this

project. I deeply appreciate the time they sacrificed for me.

ii

Contents

Acknowledgement ... i

Contents ...ii

Abstract ... iv

Introduction ... 1

Methods and Materials .. 2

SNet Algorithm ... 2

Various Alpha ... 6

Merge Neighbouring Subnetworks ... 9

Overlap Checking ... 11

Visualization ... 14

Graphic User Interface .. 15

Materials.. 16

Results ... 17

Number of Subnetwork Generated .. 18

Subnetwork Size ... 19

Overlap between two datasets ... 22

Significant Subnetworks Generated .. 25

Discussion ... 27

Inconsistency with Soh‟s Result ... 27

Effectiveness of Various Alpha and Neighbour Merge .. 28

Checking Overlap Algorithm .. 29

Conclusion .. 30

Reference .. 31

Appendix A User Manual For SNet GUI .. i

1.0 GENERAL INFORMATION ... iv

1.1 System Overview .. iv

1.2 Authorized Use Permission ... iv

1.3 Points of Contact ... iv

2.0 Pre-Requirement .. v

2.1 System Requirement .. v

2.2 MySQL Database Requirement ... v

2.3 Datasets Requirement... v

3.0 GETTING STARTED .. vi

iii

3.1 Extracting from the .ZIP archive ... vi

3.1.1 Install Windows Service Component .. vi

3.2 Starting the Application .. vi

Appendix B Source Code for SNet GUI .. 1

iv

Abstract

Contemporary methods of microarray analysis often have a tendency to produce

different results from different datasets of the same disease. SNet is a technique that

identifies specific connected portions of pathways that are significant for a certain

disease, and the portions (termed as subnetworks) are shown to be consistent for

different datasets. This project aims to further improve the consistency of SNet by

adding two modifications, which are Various Alpha and Neighbour Merge. This project

also increases the convenience of SNet by implementing a Graphic User Interface and

visualization tool. It was shown that Neighbour Merge improved the consistency of

SNet significantly, while Various Alpha did not.

dcswls
Comment on Text
The reader of this abstract does not know what these two things are. You should at leats briefly explain what they are.

1

Introduction

There are plenty of techniques for identifying significant differential gene expression.

These techniques can be categorized into three approaches; namely, individual genes,

gene pathways and gene classes approaches. Individual Gene techniques search for

individual genes that are differentially expressed, such as t-test and Significance

Analysis of Microarrays (SAM) (Tusher et al., 2001). Gene Pathway techniques try to

produce a list of gene networks solely from the analysis of the gene expression data,

without using pre-existing biological information. Examples are Bayesian learning

(Friedman et al., 2000) and Boolean network learning (Lahdesmaki et al., 2006).

Gene Classes techniques test how gene classes behave as a whole. These techniques

normally produce a list of pathways or gene groups based on both analysis of gene

expression data and existing biological background knowledge. The commonly

acknowledged challenge of these techniques is obtaining reproducible results; in other

words, when applying these methods on different datasets for the same disease, the

gene lists or gene group lists produced by same algorithm has little overlap for

different datasets.

For this purpose, a new algorithm SNet was developed by Soh et al. to identify

subnetworks which are expressed significantly within a phenotype of a microarray

experiment (Soh et al., 2012). Carefully conducted experiments demonstrate that this

technique shows greater consistency and hence reproducibility.

This paper presents the re-implementation of SNet and a continual investigation and

development on SNet. Two modifications were applied on SNet algorithm, which are

Various Alpha and Neighbour Merge, to achieve a more consistent and reproducible

algorithm. On top of that, by implementing a Graphic User Interface (GUI) and

dcswls
Cross-Out

dcswls
Replacement Text
2011

dcswls
Comment on Text
briefly explain these.

2

incorporating a visualization module, the SNet technique is made less complicated

and more easily manageable. It was shown that Neighbour Merge increased the

significance and reproducibility of SNet in the way of producing subnetworks with

larger sizes and higher consistencies among different datasets, while Various Alpha

did now show a significant improvement on SNet.

Methods and Materials

SNet Algorithm

This section reviews the SNet algorithm briefly.

Overview

The phenotype of interest is labelled as d and the remaining phenotypes are labelled

as d’. First of all, a list of genes that are highly expressed within phenotype d is

generated from the microarray experiment. This list of genes is then mapped onto all

the pathways of human identified so far. A list of subnetworks cc (whose genes are

highly expressed in phenotype d) is obtained by selecting the connected components.

Next, a score (depending on the significance of its genes and its consistency among

the patients) is calculated and assigned to each subnetwork. Finally the p-value is

estimated for every single subnetwork within the list and only those with significant

p-values are kept.

This process is elaborated in greater details in the following steps.

Step1: Subnetwork Extraction

For each patient within a phenotype, a ranked list of genes is selected according to the

gene expression level in that patient. Then top α% of the genes from this list are

3

selected for each patient. This condensed gene list is referred to as GPi for the i
th

patient Pi. Next, the genes which appear in the GPi for more than β% of all the

patients with phenotype d is selected by iterating across gene list GPi. This creates a

list of genes GL which turns up highly expressed across most of the patients of

phenotype d. Finally, using the programmatic interface of PathwayAPI (Soh et al.,

2010), gene list GL is segregated into the respective subnetworks. In this project, α is

taken to be 10 and β is taken to be 50.

To segregate GL into the different subnetworks, firstly the genes in the gene list GL

are mapped on all the pathways. (It‟s been highlighted that a gene is allowed to appear

in more than one pathway). Next, by treating each gene as a vertex and each gene-

gene relationship as an edge, the connected components (subnetworks) in each

pathway formed by these edges (gene-gene relationships) and vertices (genes) are

located in each pathway. This process is illustrated in the Figure 1 below.

As shown in the Figure 1, firstly a gene list was generated. Then it was mapped onto a

pathway. After removing genes that do not belong to the gene list, two subnetworks

one and two were generated.

4

Figure 1 SNet Overview

Step 2: Subnetwork Scoring

For each subnetwork sp within cc and for each patient Pi (regardless of phenotype),

the overall expression level of sp in Pi is computed by

5

 ∑

Here, g denotes a gene in the subnetwork sp that is highly expressed (top α%) in

patient Pi; k is the number of patients of phenotype d who have gene g highly

expressed; and n is the total number of patients of phenotype d.

Let P1… Pn be patients of phenotype d; and Pn+1 … Pm be patients of other phenotypes

d‟. Two score vectors Sspsp,d and Sspsp,d‟ are assigned respectively for these two

groups of patients, where

The t-statistics is now calculated between these two vectors, creating a final score for

each subnetwork sp.

Step 3: Subnetwork Significance

The significance of the observed subnetworks is estimated by randomly permuting the

phenotypes labels of two phenotypes d and d’, re-generating the subnetworks and re-

computing their t-statistics scores. This generates a null distribution for the score of

the subnetworks. The p-value of each subnetwork is then calculated relative to this

null distribution. The detailed procedure is as follows:

A. Assign each patient a new phenotype label randomly with the probability

distribution proportional to the original phenotype ratio. Re-generate the

subnetworks and re-compute their t-statistic scores.

B. Repeat [A] for 1000 permutations. This creates a two dimensional histogram

of the scores and sizes of the subnetworks.

6

C. Estimate the nominal p-value of each subnetwork by using the histogram

created in point [B].

Finally, the subnetworks whose p-value was sufficiently small (<= 0.05) is considered

to be significant. This would provide an independent set of significant subnetworks

SN for each dataset. For the same disease, significant subnetworks SN are then

compared across different datasets, thereby to show the consistency of SNet algorithm.

Various Alpha

This section describes the first modification on SNet algorithm. It was inspired by the

thought that original α (=10%) was not guaranteed to be the most suitable coefficient.

It would be more reasonable to adjust α to different values, and then decide which α

to use by comparing the different result. One intuitive approach to this adjustment is

to repeat the SNet algorithm with different α. However, the problem of this approach

is that the subnetworks list generated by different α are different; in other words, it is

not possible to map each subnetwork in the new list to any other subnetworks in the

original list. Thereby changes made to specific subnetworks cannot be tracked. Hence,

an alternative approach was used to carry out this modification, which is to evaluate

the significance of different α by modifying the original subnetwork list.

This approach is illustrated in greater details as the following steps.

Step 1: Original Subnetwork List Generation

Define α0 as original α, and use it to carry out SNet algorithm. This will provide a list

of significant subnetworks sp on α0. In this project a0 is set to be 10%.

Step 2: Generate New Gene List GL1 with New α

7

Define another α called α1, which is slightly larger than the original α0. Repeat first

part of Step 1 of SNet algorithm with α = α1. This creates a list of genes GL1 which

turns up highly expressed across most of the patients of phenotype d.

Step 3: Subnetworks Modification

For each subnetwork SN in original subnetwork list sp, check each of its immediate

neighbours ni (genes that are one edge away from SN). If ni belongs to GL1, then add

ni to this subnetwork. The detail of this process is shown in the Figure 2 below.

8

Figure 2 Various Alpha Algorithm Overview

9

Step 4: Subnetworks Significance

Use the null distribution generated in Step 3 of SNet to calculate the p-value of each

modified subnetwork.

Merge Neighbouring Subnetworks

This is the second modification to SNet algorithm. This modification was based on

the thought that parameter α was set to be too strict, there may exist such genes that

they‟re not in the gene list GL, but due to their absence from the list, some significant

subnetworks are separated into smaller subnetworks and hence no longer significant.

The solution to this problem is to check subnetworks pairwise, if they are very close,

then merge them as a new subnetwork and add the gene that joined them into new

subnetwork.

This approach is illustrated in greater details as follows.

Step 1: Subnetworks Generation

Perform SNet on a dataset. This generates a list of subnetworks.

Step 2: Detect and Merge Neighbouring Subnetworks

Two subnetworks are defined as neighbouring if they can be connected by one gene.

As shown in the Figure 3, subnetwork one and three are separated by only one gene

Gene W, hence they‟re merged into a new subnetwork one&three. While Subnetwork

two and three are separated by two genes Gene X and Gene Y, hence they are not

merged.

10

Figure 3 Neighbour Merge Algorithm Overview

11

Step 3: Subnetwork Significance

The null distribution generated in Step 3 of SNet is used to calculate the p-value for

each modified subnetworks.

Overlap Checking

After generating a list of subnetworks for each of the two datasets, we then checked

the overlap percentage of two subnetwork lists, thereby to evaluate whether the

algorithm can produce consistent subnetworks among different datasets of same

diseases. Since a subnetwork is a group of genes, thus it is not feasible to define two

subnetworks as the same directly. Hence it is not feasible to calculate overlap of two

subnetwork lists directly. Thereby three indirect methods were used to assess the

overlap of subnetwork lists in different perspectives, which are Gene Overlap,

Pathway Overlap and Subnetwork Overlap.

Gene Overlap

Gene overlap is to calculate the overlap of genes of two subnetwork lists. The process

is done as follows:

Step 1: For each of the two subnetwork lists, retrieve all the genes of each

subnetwork and add them into a list of genes called GeneList(i) (i=1,2);

Step 2: Remove duplications in the GeneList(i) (i=1,2);

Step 3: The overlap percentage will be calculated as overlap of two gene lists divided

by the number of genes of the smaller gene list as follows:

)))

)))

12

Pathway Overlap

Pathway overlap is to calculate the overlap of pathways that each subnetwork list

contained. It‟s calculated as follows:

1/ For each of the 2 subnetwork lists, generate a list of pathways which records all the

pathway numbers that each subnetwork belongs to, call it as PathwayList(i) (i=1,2);

2/ Calculate the overlap of two pathway lists using the same method for calculating

gene overlap, which is as follows:

)))

)))

Subnetwork Overlap

As mentioned in the beginning of this section, it is not feasible to define two

subnetworks as the “same”, since significant subnetworks are often composed of

several genes, and a single gene difference will result two subnetworks as different.

For example, both subnetwork A from subnetwork list 1 and B from subnetwork list 2

contains 7 genes, and they share 6 common genes. Although there is not an exact

match between the two subnetworks, a 6/7 match indicates that they have a high

similarity, as a single mismatch maybe caused by experimental errors or threshold

choosing. Hence, such a strict approach is not a good way to check subnetwork

overlap since it filtered quite a number of significant overlap. To improve it, a new

approach for checking subnetwork overlap is introduced as below.

In this approach, two definitions were introduced, which are perfect match and

partial match.

13

Two subnetworks are said to be perfect match if most of their genes are the same,

and they contain roughly the same number of genes. In the case above, subnetwork A

and B will be perfect match.

Sometimes due to missing some important genes, a big subnetwork is divided into

two or more smaller subnetworks in the other subnetwork list; then this subnetwork

cannot find a perfect match in the other subnetwork list. Partial match solves this

problem. A subnetwork is partial match to a subnetwork list, if most of its genes can

be found in the Gene List generated by this subnetwork list.

In the Figure 4 below, subnetwork A from subnetwork list 1 and subnetwork C from

subnetwork list 2 are perfect match; while subnetwork B is only partial match to

subnetwork list 2 since Gene 4 is missing in subnetwork list 2, and hence B is divided

into two smaller subnetworks.

The standard definition of perfect match is as follows:

Subnetwork A and B are said to be the perfect match if:

Subnetwork A is partial match to a subnetwork list C if:

In this project, .

14

Figure 4 Perfect Match and Partial Match Overview

Through evaluation methods above, we can evaluate the similarity of two subnetwork

lists, and thereby evaluate the consistency of our methods across different datasets.

Visualization

A visualization component was implemented to SNet, with the aid of Cytoscape

software. It allows the users to visualize the subnetwork list been generated and to

compare the subnetworks after modification with the original subnetworks.

The visualization is realized by setting subnetworks as node attributes and gene

interactions as edge attribute respectively, and then apply the attributes on the

pathway network.

15

Graphic User Interface

Graphic User Interface was employed to integrate all the functions mentioned above-

the original SNet algorithm, Various Alpha algorithm, Neighbour Merge algorithm

and visualization- into a software package, and allow future researchers to access

these methods in an easier and more convenient way.

The program was implemented in C# using Microsoft Visual Studio 2010, with

MySQL as database platform. The User Manual is attached in Appendix A and the

source code is attached in the Appendix B. The software can be downloaded from the

link provided in the User Manual.

Below is a snapshot for software user interface.

Figure 4 SNet GUI

16

Materials

Pathways sources were retrieved from PathwayAPI (Soh et al., 2010) which offered

the combined pathway information of KEGG, Ingenuity and Wikipathways along

with a modern JSON-based application programming interface. PathwayAPI was

dumped into the local MySQL database and then retrieved by C# using MySQL

connector.

The testing datasets used were the same as original SNet project. Four disease types

were used. Each disease contains two datasets generated by two different platforms.

The selection of the two datasets for each disease is to check the overlap of results

thereby to validity the algorithm. The details of each datasets are as follows:

 Duchenne Muscular Dystrophy (shorted as DMD): Comparison between

patients suffering from DMD and normal patients. Haslett (Haslett et al., 2002)

uses the Affymetrix HG-U95Av2 GeneChip while Pescatori (Pescatori et al.,

2007) uses HGU133A GeneChip. Haslett contains 24 samples from 12 DMD

patients and 12 unaffected controls and Pescatori consists of 36 samples from

22 DMD patients and 14 controls.

 Childhood Acute Lymphoblastic Leukaemia (shorted as ALL) Subtype:

Comparison between two subtypes of childhood ALL leukaemia, E2A-PBX1

and BCR-ABL. Mary (Ross et al., 2004) uses the Affymetrix HG-U95Av2

GeneChip with 15 BCR-ABL patients and 27 E2A-PBX1 patients. Yeoh et al.

(2002) uses the U133A GeneChip with 15 BCR-ABL patients and 18 E2A-

PBX1 patients.

 Lung Cancer (shorted as Lung): Comparison between patients suffering from

squamous cell lung carcinomas and normal patients. For lung cancer, the

17

cDNA microarray data consisted of 13 samples with squamous cell lung

carcinomas and five normal lung specimens (Garber et al., 2001), while the

data by Affymetrix human U95A oligonucleotide arrays consist of 21

squamous cell lung carcinomas and 17 normal lung specimens (Bhattacharjee

et al., 2001).

 Prostate Cancer (shorted as Prostate): Comparison of patients suffering from

prostate cancer and normal patients. The cDNA microarray data consist of 62

tumors and 41 normal prostate samples (Lapointe et al., 2004), while the oligo

microarray (Affymetrix U95Av2) data contain 52 tumor and 50 non-tumor

samples (Singh et al., 2002).

The original data for each dataset is in csv format, and most of them only contain

probe_set_id but lack of a universal gene name for each gene. Hence, a mapping table

for each platform is downloaded from (HgU133Plus2, 2003), and a universal gene

name was given to each gene before the datasets is dumped into database.

Data Pre-processing

For each disease, two datasets were processed by removing genes that do not appear

in all the samples or don‟t have a gene name.

Results

In this section, the performance of SNet, Various Alpha and Neighbour Merge

algorithm will be assessed in the following perspective: total number of significant

subnetworks generated, significant subnetworks‟ size and overlap ratio of different

datasets.

18

Number of Subnetwork Generated

Table 1 describes total number of significant subnetworks generated by SNet, Various

Alpha and Neighbour Merge. Chart 1 presents it in chart format. From Chart 1, it is

shown that in some cases Various Alpha produces more subnetworks than SNet, but

in other cases it produces less; while for Neighbour Merge, it consistently produces

fewer subnetworks than SNet in all datasets.

 SNet Various Alpha Neighbour Merged

DMD-has 469 403 395

DMD-pec 567 464 387

Lung-bha 873 894 740

Lung-gar 900 805 862

Prostate-lap 2168 2313 1977

Prostate-sin 1745 1923 1475

ALL-all 703 735 544

All-mar 507 616 473

Table 1 Total Number of Subnetworks Generated by SNet, Various Alpha and

Neighbour Merge

19

Chart 1 Total Number of Significant Subnetworks Generated by SNet, Various Alpha

and Neighbour Merge

Subnetwork Size

The sizes of subnetworks generated by different algorithms are then compared. The

sizes are segregated into 10 intervals according to the distribution of sizes: 1, 2-5, 6-

10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70 and 70 onwards. Chart 2.1 – 2.8 depict

size distribution of subnetworks generated from each dataset. Since the majority of

subnetworks are of size 1, and listing them in the graph will make other interval

unrecognizable, hence subnetworks of size 1 are neglected in the charts.

From these charts, it was shown that Neighbour Merge produces more subnetworks

than SNet in most of intervals. Particularly it produces more extra-large subnetworks,

whose sizes are more than 60. While for Various Alpha algorithm, it consistently

produces more subnetworks in the small size range 2-5, but produces less large

subnetworks.

0

500

1000

1500

2000

2500

DMD-has DMD-pec Lung-bha Lung-gar Prostate-lap Prostate-sin ALL-all All-mar

SNet

Various Alpha

Merged

20

Chart 2.1 Subnetworks Size Distribution for DMD-Haslett

Chart 2.2 Subnetworks Size Distribution for DMD-Pescatori

Chart 2.3 Subnetworks Size Distribution for Lung-Bhatt

0

10

20

30

40

50

60

70

80

 2-5 6-10 11-20 21-30 31-40 41-50 51-60 61-70 >70

SNet

Various Alpha

Merge

0

20

40

60

80

100

120

 2-5 6-10 11-20 21-30 31-40 41-50 51-60 61-70 >70

SNet

Various Alpha

Merge

0

20

40

60

80

100

120

140

160

180

 2-5 6-10 11-20 21-30 31-40 41-50 51-60 61-70 >70

SNet

Various Alpha

Merge

21

Chart 2.4 Subnetworks Size Distribution for Lung-Garber

Chart 2.5 Subnetworks Size Distribution for Prostate-Lapointe

Chart 2.6 Subnetworks Size Distribution for Prostate-Singh

0

20

40

60

80

100

120

140

 2-5 6-10 11-20 21-30 31-40 41-50 51-60 61-70 >70

SNet

Vaious Alpha

Merge

0

50

100

150

200

250

 2-5 6-10 11-20 21-30 31-40 41-50 51-60 61-70 >70

SNet

Various Alpha

Merge

0

50

100

150

200

250

300

350

400

 2-5 6-10 11-20 21-30 31-40 41-50 51-60 61-70 >70

SNet

Various Alpha

Merge

22

Chart 2.7 Subnetworks Size Distribution for All-Allen

Chart 2.8 Subnetworks Size Distribution for All-Mary

Overlap between two datasets

Gene Overlap

The gene list overlap is shown in the Table 2 below. As shown in the table, Neighbour

Merge consistently produces higher overlap than the original SNet algorithm, while

the performance of Various Alpha varied vastly across different datasets.

0

20

40

60

80

100

120

 2-5 6-10 11-20 21-30 31-40 41-50 51-60 61-70 >70

SNet

Various Alpha

Merge

0

10

20

30

40

50

60

70

 2-5 6-10 11-20 21-30 31-40 41-50 51-60 61-70 >70

SNet

Various Alpha

Merge

23

 SNet Various Alpha Neighbour Merged

DMD 27% 20% 32%

Lung 25% 26% 29%

Prostate 42% 44% 43%

All 27% 29% 31%

Table 2 Gene Overlap of Subnetworks Produced by SNet, Various Alpha and

Neighbour Merge

Pathway Overlap

The pathway overlap is shown in the Table 3 below. In general, the pathway overlaps

produced by all three algorithms are much higher than the gene overlaps in all

datasets.

As shown in the table, the average overlap of pathways produced by Neighbour

Merge is slightly smaller than SNet. Particularly in ALL datasets, overlap produced

by Neighbour Merge is 10% smaller than SNet.

For Various Alpha, the overlap percentage only slightly varied from SNet.

 SNet Various Alpha Merged

DMD 74% 71% 71%

Lung 83% 84% 83%

Prostate 96% 96% 95%

All 84% 80% 75%

Table 3 Pathway Overlap of Subnetworks Produced by SNet, Various Alpha and

Neighbour Merge

24

Subnetwork Overlap

Table 4 and 5 depicts the number of Perfect Match and Partial Match found within

subnetwork lists generated by different algorithms. Unlike gene overlap and pathway

overlap, the Perfect Match and Partial Match are presented in the format of number of

Matches found, instead of its percentage taken. This is because Perfect Match and

Partial Match are not accurate estimating methods, and they can only provide a rough

estimation of subnetwork overlaps. The detailed analysis of their accuracy will be

discussed in the Discussion section.

As shown in Table 4, the Perfect Matches found in Various Alpha don‟t show a

consistent pattern. Sometimes they are fewer than those found in SNet, but other

times they are more.

However, Neighbour Merge consistently produces fewer Perfect Matches than SNet

for all diseases tested. It seems that the subnetworks produced by Neighbour Merge

are less consistent than SNet.

 SNet Various Alpha Neighbour Merged

DMD 89 18 38

Lung 155 170 85

Prostate 1671 1969 1210

All 132 147 90

Table 4 Perfect Match within Subnetworks Lists Produced by SNet, Various Alpha

and Neighbour Merge

As shown in Table 5, in most cases (75%) Various Alpha produces more Partial

Overlap than SNet. For Neighbour Merge it is the other way around, which in most

cases (75%) produces less Partial Overlaps than SNet.

25

 SNet Various Alpha Neighbour Merged

DMD-Has 54 35 64

DMD-Pec 117 78 98

Lung-Bha 227 229 172

Lung-Gar 94 111 121

Prostate-Lap 493 593 474

Prostate-Sin 801 946 643

ALL-All 144 182 112

ALL-Mar 89 130 84

Table 5 Partial Match within Subnetworks Lists Produced by SNet, Various Alpha

and Neighbour Merge

Significant Subnetworks Generated

For each disease, one of the most significant subnetworks generated by Neighbour

Merge is selected. This subnetwork satisfies such criteria: 1. It appears in both

datasets; 2. It has the biggest size in all the subnetworks that satisfy 1. These

subnetworks can be further studied for their biological relevance to the respective

disease.

Figure 5-9 below shows the most significant subnetworks from DMD, Lung, Prostate

and ALL respectively.

26

Figure 6 Most Significant Subnetwork Produced by Neighbour Merge for DMD

Figure 7 Most Significant Subnetwork Produced by Neighbour Merge for Lung

27

Figure 8 Most Significant Subnetwork Produced by Neighbour Merge for Prostate

Figure 9 Most Significant Subnetwork Produced by Neighbour Merge for ALL

Discussion

In this section, a comparison was made between the results produced by the Soh‟s

original SNet algorithm and the ones produced by the modified SNet algorithm. The

effectiveness of Various Alpha and Neighbour Merge algorithm is then evaluated.

Inconsistency with Soh’s Result

The first part of this project is a re-implementation of SNet. The algorithm used for

SNet is the same as Soh proposed. However, the result produced by our SNet

28

algorithm is different from Soh‟s Result, even though the same datasets and the same

SNet algorithm were used.

In Soh‟s research, the overlap of genes is between 51% and 93%. While in this project,

the overlap of genes is between 25% and 42%. This is nearly half of Soh‟s result. In

Soh‟s research, the overlap of pathways is between 48% and 91%. For our project,

this is between 75% and 96%.

Several possible factors for causing this difference were proposed.

Different version of PathwayAPI used. The PathwayAPI used in this project was

downloaded from PathwayAPI website (Soh, 2009), which is a different version from

the one used in Soh‟s research. This should be the key factor that caused the results to

be different. However, due to the unavailability of the PathwayAPI version used by

Soh, this factor cannot be eliminated.

Problems in mapping Probe_set_id to Gene Name. The original datasets for each

disease only contain Probe_set_id for each gene, and they were pre-processed by

adding a Gene_Name to each gene with the aid of a mapping table. The mapping table

used in this project may be different from the one used by Soh, thus, leading to

different results.

Effectiveness of Various Alpha and Neighbour Merge

From the results, it is shown that with the use of Various Alpha method, there is not a

consistent improvement on the number of overlaps and size of subnetworks. While,

Neighbour Merge method has enhanced the results on SNet.

First of all, Neighbour Merge consistently produces subnetworks with larger sizes, as

shown in Chart 1 and Chart 2.1 to 2.8. Particularly, Neighbour Merge produces more

dcswls
Comment on Text
I think not exactly the same algorithm was used. In particular, in your report, the assessment of significance was done using a two-tail test. But the scoring system used by SNet was set up for a right-tail test. This is clear from figure 5 of Donny's paper, which show the null score distribution (where negative scores have high p-values).

29

extra-large subnetworks with size larger than 60. In addition, even though total

overlaps produced by Neighbour Merge method is less than those produced by SNet,

the size of overlapping subnetworks are significantly larger in Neighbour Merge

method. Thus, Neighbour Merge method is more effective in improving the SNet

algorithm, by increasing the subnetworks sizes, but not in the total number of

subnetworks produced.

Checking Overlap Algorithm

As mentioned earlier, the algorithm used to check overlap is not accurate. As two

subnetworks with the same genes may be labelled as different ones in SNet, the

number of overlaps calculated by this algorithm is an overestimation.

From the results of Perfect Match and Partial Match, it is common that the same

subnetwork may appear in more than one pair of overlaps. For example in the overlap

result of Prostate datasets, the subnetwork 4339 from Lapointe‟s Data appeared 12

times, and subnetwork 4013 from Lapointe‟s Data appeared 14 times. The reason for

such a situation is that the same gene may exist in more than one pathway, while

when SNet is performed, this is not taken into consideration. When two subnetworks

containing the same genes are generated from two different pathways, they are

marked as different subnetworks in SNet algorithm. Hence, one subnetwork may

correspond to more than one subnetwork in the other list. As a result, the number of

overlaps generated by the overlap checking algorithm is an overestimation of the

actual value.

30

Conclusion

In conclusion, this project has added two modifications to SNet algorithm, which are

Various Alpha and Neighbour Merge. Various Alpha is shown to be not effective in

improving the results of SNet, while Neighbour Merge method is more significant in

the enhancement of SNet algorithm by increasing the size of subnetworks and

consistency of results. Also, a visualization component was included for the users to

better visualize and compare the subnetworks concerned. Finally, a software package

which encompasses all the functions was implemented for a more convenient use of

SNet.

31

Reference
Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno

R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub

TR, Sugarbaker DJ, Mayerson M. (2001). Classification of human lung carcinomas

by mRNA expression profiling reveals distinct adenocarcinoma subclasses.

Proceedings of the National Academy of Sciences of the United States of America,

98(24), 13790-13795.

Donny Soh, Difeng Dong, Yike Guo, Limsoon Wong. (2012). Finding Consistent disease

subnetworks across datasets. Genomics (accepted, not published).

Friedman N, Linial M, Nachman I, Pe'er D. (2000). Using Bayesinan networks to analyze

expression data. J Comput Biol, 7(3-4), 601-620.

Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, et al. (2011). Diversity of

gene expression in adenocarcinoma of the lung. Proceedings of the National

Academy of Sciences of The United States of America, 98(24), 13790-13795.

Haslett, J. N., Sanoudou, D., Kho, A. T., Bennett, R. R., Greenberg, S. A., Kohane, I. S.,

Beggs, A. H., and Kunkel, L. M. (2002). Gene expression comparison of biopsies

from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proceedings

of the National Academy of Sciences of the United States of America, 99(23).

HgU133Plus2. (29 12, 2003). Retrieved 12 9, 2011, from Cardio Genomics:

http://cardiogenomics.med.harvard.edu/groups/proj1/pages/hgu133plus2.html

Lahdesmaki H, Hautaniemi S, Shmulevich I, Yli-Harja O. (2006). Relationships between

probabilistic Boolean networks and dynamic Bayesian networks as models of gene

regulatory networks. Signal Process, 86(4), 814-834.

Lapointe J, Li C, Higgins JP, van de Rijin M, Bair E, Montgomery K, Ferrari M, Egevad L,

Rayford W, Bergerheium U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D,

Brown PO, Brooks JD, Pollack JR. (2004). Gene expression profling identifies

clinically relevant subtypes of prostate cancer. Proceedings of the National Academy

of Sciences of the United States of America, 101(3), 811-816.

Pescatori, M., Broccolini, A., Minetti, C., Bertini, E., Bruno, C., Bernardini, C., Mirabella, M.,

Silvestri, G., Giglio, V., Modoni, A., Pedemonte, M., Tasca, G., Galluzzi, G., Mercuri,

E., Tonali, P. A., and Ricci, E. (2007). Gene expression profiling in the early phases

of DMD: a constant molecular signature characterizes DMD muscle from early

postnatal life throughout disease progression. FASEBJ, 21(4).

Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G, Shurtleff SA, Pounds S, Cheng C,

Ma J, Riberio RC, Rubnitz JE, Girtman K, Williams W, Raimondi SC, Liang DC,

Shih LY, Pui CH, Downing JR. (2004). Gene expression profiling of pediatric acute

myelogenous leukemia. Blood, 104(12), 3679-3687.

Singh D, Febbox PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA,

D'Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR.

32

(2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell,

1(9), 203.

Soh D, Dong D, Guo Y, Wong L. (2010). Consistency, Comprehensiveness and

Compatibility of Pathway Databases. BMC Bioinformatics, 11(449).

Soh, D. (2009). Dump Database (sql). Retrieved 3 2, 2010, from Pathway API:

http://www.pathwayapi.com/data/pathwaysql.zip

Tusher VG, Tibshirani R, Chu G. (2001). Significance analysis of microarrays applied to the

ionizing radiation responces. Proc Natl Acad Sci U S A, 98(9), 5116-5121.

Yeoh EJ, Ross ME, Shurtle SA, Williams KW, Patel D, Mahfouz R, Behm FG, Raimondi SC,

Relling MV, Patel A, Cheng. (n.d.). Classification, subtype discovery, and prediction

of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling.

Cancer Cell, 1(2), 133-143.

i

Appendix A User Manual For SNet GUI

ii

SNet GUI

USER’S MANUAL

Chai Haoqiang

Version 1 Deliverable

Download Link:

http://dl.dropbox.com/u/4168537/SNet%20GUI.

zip

2011-10-23

http://dl.dropbox.com/u/4168537/SNet%20GUI.zip
http://dl.dropbox.com/u/4168537/SNet%20GUI.zip

iii

Revision Sheet

Release No. Date Revision Description

1.0 2011-10-23 Initial Revision

iv

1.0 GENERAL INFORMATION

1.1 System Overview

SNet is an algorithm developed by Soh et al. that produces connected gene groups from

microarray datasets, with the aid of existing pathway information. The SNet GUI is a

software developed to assist researchers perform SNet algorithm through a Graphic User

Interface. It also incorporated three new functions to SNet, which are Neighbor Merge,

Various Alpha and Visualization.

1.2 Authorized Use Permission

Usage of this software is open to everyone.

1.3 Points of Contact

For additional information, the developer can be contacted through his email:

lucas.nus@gmail.com.

v

2.0 Pre-Requirement

2.1 System Requirement

The operation system should be Windows 2000/XP/2003/Vista/7 or higher versions, and is

installed with MySQL 4.0 or higher versions.

2.2 MySQL Database Requirement

The MySQL Database should be pre-installed with PathwayAPI under schema called

“pathwayapi”. Otherwise, please download and install PathwayAPI from this site:

http://www.pathwayapi.com/data/pathwaysql.zip.

2.3 Datasets Requirement

Datasets used should be pre-installed into MySQL database, under schema called “FYP”. The

table name for each datasets should follow the following format: “XXXX_normal”,

“XXXX_disease” where XXXX refers to dataset name.

vi

3.0 GETTING STARTED

Extracting, Installing, and Running SNet GUI

3.1 Extracting from the .ZIP archive

In addition to user documentation, the SNet GUI.ZIP file contains installers for the Windows

service aspect of the application. It must be executed before SNet GUI can be optimized and

run.

3.1.1 Install Windows Service Component

Installs SNet GUI

3.1.2.1 Unzip the SNet GUi.zip file to a convenient location

3.1.2.2 Run setup.exe

3.2 Starting the Application

3.2.1 Start the „SNet GUI” windows service

3.2.2 Configure the database

3.2.2.1 Click “Database Setting”

3.2.2.2 Input the “Service Host”, “Username” and “Password” for Mysql Database

3.2.2.3 Input the “Directory” for output directory. E.g. “C:/”

3.2.2.4 Click “Done”

3.2.3 Configure Parameter

3.2.3.1 Input the parameters for current datasets

3.2.3.2 For alpha0 and alpha1, instead of 10% and 15%, they refers to the number of

genes in the datasets times 10% and 15% respectively

3.2.4 Configure Datasets

3.2.4.1 Input the table name for datasets 1

3.2.4.2 Input the table name for datasets 2

3.2.5 Run SNet

3.2.5.1 Tick the datasets to be run (select either one or both datasets)

3.2.5.2 Click “SNet”

3.2.5.3 The label at left-bottom will show “processing”. When the program finished

execution, it will change to “Done.”

3.2.6 Run Various Alpha

vii

3.2.6.1 Tick the datasets to be run (select either one or both datasets)

3.2.6.2 Click “Various Alpha”

3.2.6.3 The label at left-bottom will show “processing”. When the program finished

execution, it will change to “Done.”

3.2.7 Run Neighbor Merge

3.2.7.1 Tick the datasets to be run (select either one or both datasets)

3.2.7.2 Click “Neighbor Merge”

3.2.7.3 The label at left-bottom will show “processing”. When the program finished

execution, it will change to “Done.”

3.2.8 Run Comparison

3.2.8.1 Precondition: Two subnetworks must be generated in the previous step

3.2.8.2 Click “Compare Result”

3.2.9 Output Format

3.2.9.1 Subnetworks file:

3.2.9.1.1 “disease”_“dataset”_ “disease”.csv

3.2.9.1.2 “disease”_“dataset”_ “disease”.rtf

3.2.9.1.3 “disease”_“dataset”_ “disease”_VariousAlpha.csv

3.2.9.1.4 “disease”_“dataset”_ “disease”_VariousAlpha.rtf

3.2.9.1.5 “disease”_“dataset”_ “disease”_merged.csv

3.2.9.1.6 “disease”_“dataset”_ “disease”_merged.rtf

3.2.9.2 Compare Result

3.2.9.2.1 compareResult_“disease”.txt

3.2.9.3 Compare Log

3.2.9.3.1 “disease”_ snOverlapRecord.csv

3.2.9.3.2 “disease”_ snOverlapRecord(VariousAlpha).csv

3.2.9.3.3 “disease”_ snOverlapRecord(Merged).csv

3.2.9.3.4 “disease”_ snPartialOverlapRecord.csv

3.2.9.3.5 “disease”_ snPartialOverlapRecord(VariousAlpha).csv

3.2.9.3.6 “disease”_ snPartialOverlapRecord(Merged).csv

3.2.9.3.7 “disease”_ snPartialOverlapRecord2.csv

3.2.9.3.8 “disease”_ snPartialOverlapRecord(VariousAlpha)2.csv

3.2.9.3.9 “disease”_ snPartialOverlapRecord(Merged)2.csv

1

Appendix B Source Code for SNet GUI
// Subnetwork Class

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace SNet_V2._0.Module

{

 class Subnetwork

 {

 int _ID; // ID of this subnetwork

 string _pathwayID; // ID of the pathway that this subnetwork belongs

 List<Gene> _genes = new List<Gene>();

 List<GeneRelation> _geneRelations = new List<GeneRelation>();

 List<double>[] _scoreVector = new List<double>[2];

 List<double>[] _scoreVectorA1A2 = new List<double>[2];

 List<double>[] _scoreVectorMerged = new List<double>[2];

 double _tScore;

 double _pValue;

 double _tScoreA1A2;

 double _pValueA1A2;

 double _tScoreMerged;

 double _pValueMerged;

 public Subnetwork(int SNID)

 {

 _ID = SNID;

 }

 // Constructor for the subnetworks with single Gene

 public Subnetwork(List<string> gene, string pathwayID, int SNID)

 {

 _ID = SNID;

 _genes.Add(new Gene(gene));

 _pathwayID = pathwayID;

 }

 public void Add(List<string> geneRelation)

 {

 int flag1 = 0;

 int flag2 = 0;

 foreach (Gene g in _genes)

 {

 if (g.getGeneID() == geneRelation[1]) // Gene 1 already existed in subnetwork

 flag1 = 1;

 if (g.getGeneID() == geneRelation[2]) // Gene 2 already existed in subnetwork

 flag2 = 1;

 }

 if (flag1 == 0) // Means gene 1 is not in subnetwork yet, then add it in

 {

 Gene tempGene = new Gene(geneRelation[1], geneRelation[4], geneRelation[5]);

 _genes.Add(tempGene);

 }

 if (flag2 == 0)// Means gene 2 is not in subnetwork yet, then add it in

 {

 Gene tempGene = new Gene(geneRelation[2], geneRelation[6], geneRelation[7]);

 _genes.Add(tempGene);

 }

2

 GeneRelation gR = new GeneRelation(geneRelation[0], geneRelation[1], geneRelation[2],

geneRelation[3], geneRelation[4], geneRelation[6]);

 _geneRelations.Add(gR);

 updatePathwayID();

 }

 public void addRange(Subnetwork newSN)

 {

 _genes.AddRange(newSN.getGenes());

 _geneRelations.AddRange(newSN.getGeneRelations());

 _pathwayID = newSN.getPathwayID();

 }

 public void addScoreVector(List<double> scoreVector, int phenotype) { _scoreVector[phenotype] =

scoreVector; }

 public void addTScore(double tScore) { _tScore = tScore; }

 public void addPValue(double pValue) { _pValue = pValue; }

 public void addPValueA1A2(double pValue) { _pValueA1A2 = pValue; }

 public void addPValueMerged(double pValue) { _pValueMerged = pValue; }

 public List<Gene> getGenes() { return _genes; }

 public List<GeneRelation> getGeneRelations() { return _geneRelations; }

 public List<double>[] getScoreVector() { return _scoreVector; }

 public double getTScore() { return _tScore; }

 public double getTScoreA1A2() { return _tScoreA1A2; }

 public double getTScoreMerged() { return _tScoreMerged; }

 public double getPValue() { return _pValue; }

 public double getPValueA1A2() { return _pValueA1A2; }

 public double getPValueMerged() { return _pValueMerged; }

 public int getID() { return _ID; } // Returns the ID of this subnetwork

 public void updatePathwayID()

 {

 if (_geneRelations.Count > 0)

 _pathwayID = _geneRelations[0].getPathwayID();

 }

 public string getPathwayID() { return _pathwayID; }

 public void clear()

 {

 _genes = new List<Gene>();

 }

 public bool isEmpty()

 {

 if (_genes.Count == 0)

 return true;

 else return false;

 }

 public int overlap(Subnetwork sn)

 {

 int geneOverlap = 0;

 foreach (Gene g1 in _genes)

 {

 foreach (Gene g2 in sn.getGenes())

 {

 if (g1.getGeneID() == g2.getGeneID())

 geneOverlap++;

 }

 }

 return geneOverlap;

 }

 }

 class Gene : IEquatable<Gene>

 {

 string[] _gene = new string[3]; // 0 gene_id, 1 gene_name, 2 gScore

3

 public Gene() { }

 public Gene(List<string> gene)

 {

 for (int i = 0; i < 3; i++)

 _gene[i] = gene[i];

 }

 public Gene(string gene_id, string gene_name, string gScore)

 {

 _gene[0] = gene_id;

 _gene[1] = gene_name;

 _gene[2] = gScore;

 }

 public string[] getGene() { return _gene; }

 public string getGeneID() { return _gene[0]; }

 public string getGeneName() { return _gene[1]; }

 public string getGScore() { return _gene[2]; }

 public bool Equals(Gene other)

 {

 if (this._gene[0] == other._gene[0])

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 }

 class GeneRelation

 {

 string _pathway_id;

 string _gene_id1;

 string _gene_id2;

 string _gene_name1;

 string _gene_name2;

 string _rs;

 public GeneRelation(string pathway_id, string gene_id1, string gene_id2, string rs, string gene_name1,

string gene_name2)

 {

 _pathway_id = pathway_id;

 _gene_id1 = gene_id1;

 _gene_id2 = gene_id2;

 _rs = rs;

 _gene_name1 = gene_name1;

 _gene_name2 = gene_name2;

 }

 public string[] getRelation()

 {

 string[] tempString = new string[4];

 tempString[0] = _pathway_id;

 tempString[1] = _gene_id1;

 tempString[2] = _gene_id2;

 tempString[3] = _rs;

 return tempString;

 }

 public string getRelationString()

 {

 string tempString = _pathway_id + " ";

4

 tempString += _gene_id1 + " ";

 tempString += _gene_id2 + " ";

 tempString += _rs;

 return tempString;

 }

 public string getPathwayID() { return _pathway_id; }

 }

}

5

// Logic Class

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data;

using MySql.Data;

using MySql.Data.MySqlClient;

using System.IO;

namespace SNet_V2._0.Module

{

 class Logic

 {

 #region test

 public void testDatabase()

 {

 List<List<string>> test = retrieveTopAlphaPercentGene(10, 3, "genechip_normal");

 foreach (List<string> l in test)

 {

 foreach (string s in l)

 {

 Console.Write(s + " ");

 }

 Console.Write("\n");

 }

 Console.Read();

 }

 #endregion

 /* This region will connect to the SQL server and retrieve necessary data */

 //2011-10-12

 List<List<string>> _geneList;

 List<List<string>>[] _pathwayList = new List<List<string>>[400];

 public List<double> _totalTScore;

 #region Database Connection and Data Retrieving

 // Retrieve top 10% gene of each sample, and return in an list of list

 // SampleStart is in the genechip start from which column that samples started. (e.g. GeneName,

GeneID, Sample1, Sample2... Then it's 3)

 // alpha is a number, not a percent

 // Return Value: A List of list, each list is the top alpha geneID of that sample

 public List<List<string>> retrieveTopAlphaPercentGene(double alpha, int sampleStart, string

tableName)

 {

 List<List<string>> selectedGenes = new List<List<string>>();

 List<string> columnNames = new List<string>();

 #region routine connuction

 MySqlConnection connection = new MySqlConnection();

 MySqlDataAdapter data = new MySqlDataAdapter();

 connection.ConnectionString =

 "server=localhost;" // Server name (on my computer it's localhost)

 + "database=fyp;" // Database name (on my computer it's fyp)

 + "uid=root;" // User name

 + "password=root;"; // Password

 connection.Open();

 #endregion

 #region get column names

 MySqlCommand command_select = connection.CreateCommand();

 command_select.CommandText =

6

 "select column_name from INFORMATION_SCHEMA.COLUMNS where TABLE_NAME = '" +

tableName + "'"; // Select the column names from table

 data.SelectCommand = command_select;

 DataSet dataset = new DataSet();

 data.Fill(dataset, "sample_data");

 IDataReader dataReader = dataset.CreateDataReader();

 while (dataReader.Read())

 {

 columnNames.Add(dataReader.GetString(0));

 }

 for (int i = 0; i < sampleStart - 1; i++)

 columnNames.Remove(columnNames[0]);

 #endregion

 foreach (string name in columnNames)

 {

 List<string> singleColumnGenes = new List<string>();

 // This special code is for each column not to 0

 string columnNotZero = null;

 foreach (string colName in columnNames)

 columnNotZero = columnNotZero + " and " + colName + " <>0 ";

 command_select.CommandText =

 "select IDENTIFIER from " + tableName + " WHERE IDENTIFIER<>'0' " + columnNotZero + "

order by " + name + " limit " + alpha; ; // select Top alpha genes of each sample

 data.SelectCommand = command_select;

 DataSet tempDataSet = new DataSet();

 data.Fill(tempDataSet, "sample_data");

 dataReader = tempDataSet.CreateDataReader();

 while (dataReader.Read())

 {

 singleColumnGenes.Add(dataReader.GetString(0));

 }

 selectedGenes.Add(singleColumnGenes);

 }

 return selectedGenes;

 }

 public List<string>[] pathwayAPITableRetrieve(string query)

 {

 MySqlConnection connection = new MySqlConnection();

 MySqlDataAdapter data = new MySqlDataAdapter();

 connection.ConnectionString =

 "server=localhost;" // Server name (on my computer it's localhost)

 + "database=pathwayapi;" // Database name (on my computer it's pathwayapi)

 + "uid=root;" // User name

 + "password=root;"; // Password

 connection.Open();

 MySqlCommand command_select = connection.CreateCommand();

 command_select.CommandText = query;

 data.SelectCommand = command_select;

 DataSet dataset = new DataSet();

7

 data.Fill(dataset, "sample_data");

 int M = 100000; // Assume each pathway contains less than 10000 genes

 IDataReader dataReader = dataset.CreateDataReader();

 List<string>[] listArrayTemp = new List<string>[M];

 for (int i = 0; i < M; i++) listArrayTemp[i] = new List<string>();

 int rowNumber = 0; // The first row is for store of basic information, including "row count" and

"column count"

 while (dataReader.Read())

 {

 for (int i = 0; i < dataReader.FieldCount; i++)

 {

 listArrayTemp[rowNumber].Add(Convert.ToString(dataReader.GetValue(i)));

 }

 rowNumber++;

 }

 List<string>[] listArray = new List<string>[rowNumber];

 for (int i = 0; i < rowNumber; i++)

 {

 listArray[i] = listArrayTemp[i];

 }

 return listArray;

 }

 #endregion

 #region core

 int nextSNID;

 UI ui;

 public Logic(UI _ui)

 {

 ui = _ui;

 }

 // Return all the genes that belong to SN list

 public List<Subnetwork> core(string phenotype1, string phenotype2, double alpha, double alpha2,

double beta, int sampleStart)

 {

 nextSNID = 0;

 for (int i = 0; i < 400; i++)

 _pathwayList[i] = new List<List<string>>();

 List<Subnetwork> subnetworks = subnetworkGeneration(phenotype1, alpha, beta, sampleStart); //

Generate Subnetwork

 Jump j = new Jump(Convert.ToString(subnetworks.Count));

 j.ShowDialog();

 subnetworks = scoring(subnetworks, phenotype1, phenotype2, alpha, sampleStart); // Score them

 subnetworks = validation(phenotype1, phenotype2, alpha, beta, sampleStart, subnetworks); //

Validate them

 subnetworks = sortSubnetworksBasedOnPValue(subnetworks); // Sort according to pValue

 #endregion

 return subnetworks;

 }

8

 #region subnetwork generation

 public List<Subnetwork> subnetworkGeneration(string phenotype, double alpha, double beta, int

sampleStart)

 {

 List<List<string>> topAlphaGenes = retrieveTopAlphaPercentGene(alpha, sampleStart, phenotype);

// Select List of Top alpha genes for each sample; 1000 is alpha, 3 is start position of sample,

"genechip_normal" is table name

 List<List<string>> topBetaGenes = geneListGeneration(topAlphaGenes, beta); // Select genes

belonging to the genelists of at least beta percent samples. For each element, 0 is geneName, 1 is G Score

 List<List<string>> geneList = addInGeneID(topBetaGenes); // Modify a bit. Now 0 is geneID, 1 is

geneName, 2 is GScore

 //2011-10-12

 _geneList = new List<List<string>>();

 foreach (List<string> ls in geneList)

 _geneList.Add(ls);

 List<Subnetwork> subnetworks = new List<Subnetwork>();

 // Go through each pathway and select genes that belong to both geneList and that pathway, also use

these genes to form subnetworks

 for (int i = 0; i < 398; i++)

 {

 List<List<string>> tempList = selectGenesOfThatPathway(geneList, i);

 subnetworks.AddRange(formSubnetwork(tempList, i)); // Add newly generated subnetworks in to

the big list

 }

 return subnetworks;

 }

 public List<List<string>> geneListGeneration(List<List<string>> topAlphaGenes, double beta)

 {

 List<List<string>> geneList = new List<List<string>>();

 List<string> recordList = new List<string>();

 foreach (List<string> lS in topAlphaGenes)

 {

 foreach (string s in lS)

 {

 if (!recordList.Contains(s))

 {

 List<string> tempList = new List<string>();

 int count = 1;

 foreach (List<string> otherLS in topAlphaGenes)

 {

 if (otherLS != lS)

 {

 if (otherLS.Contains(s)) count++;

 }

 }

 if (count > Convert.ToDouble(topAlphaGenes.Count) * beta)

 {

 recordList.Add(s);

 tempList.Add(s); // Add in Gene Name

 tempList.Add(Convert.ToString(Convert.ToDouble(count) /

Convert.ToDouble(topAlphaGenes.Count))); // Add in GScore

 geneList.Add(tempList);

 }

 }

 }

 }

 return geneList;

 }

 public List<List<string>> addInGeneID(List<List<string>> geneList)

9

 {

 /// Input: A list of of List<string>, for each List<string>, 0 is GeneName, 1 is GScore

 /// Function: Add in GeneID

 /// OutPut: Another List of List<string>, for each List<string>, 0 is GeneID, 1 is GeneName, 2 is

GScore

 List<string>[] geneMapping;

 geneMapping = pathwayAPITableRetrieve("select * from gene_mapping;");

 var gene_id = from p in geneList

 join q in geneMapping on p[0] equals q[1]

 select new List<string> { q[0], p[0], p[1] }; // Now becomes 0 is GeneID, 1 is GeneName, 2

is G score

 geneList = new List<List<string>>();

 foreach (List<string> list in gene_id)

 {

 geneList.Add(list);

 }

 return geneList;

 }

 public List<List<string>> selectGenesOfThatPathway(List<List<string>> geneList, int

pathwayNumber)

 {

 /// Input: GeneList (0 is GeneID, 1 is GeneName, 2 is GScore), pathwayNumber

 /// Function: Filter GeneList, select those genes belong to given pathway

 /// OutPut: A smaller GeneList (0 is GeneID, 1 is GeneName, 2 is GScore), pathwayNumber

 List<string>[] pathwayGenes;

 List<List<string>> selectedGeneList = new List<List<string>>();

 pathwayGenes = pathwayAPITableRetrieve("select * from pathway_genes where pathway_id = " +

pathwayNumber + ";");

 var selected_gene_id = from gene in geneList

 join p in pathwayGenes on gene[0] equals p[1]

 select gene;

 foreach (List<string> a in selected_gene_id)

 {

 selectedGeneList.Add(a);

 }

 return selectedGeneList;

 }

 public List<Subnetwork> formSubnetwork(List<List<string>> geneList, int pathwayNumber)

 {

 /* Get the Subnetworks formed by selected genes in that pathway

 * Input: A List of List<string> Genes belonging to that pathway (0 is GeneID, 1 is GeneName, 2 is

GScore), pathwayNumber

 * Output is a list of Subnetworks (defined by Subnetwork class)

 */

 List<Subnetwork> SubnetworkList = new List<Subnetwork>();

 List<string>[] pathwayRS; // Gene relation in a certain pathway (retrieved from pathwayAPI)

 List<List<string>> pathwayRSList = new List<List<string>>();

 pathwayRS = pathwayAPITableRetrieve("select * from pathway_rs where pathway_id = " +

Convert.ToString(pathwayNumber) + ";");

 foreach (List<string> a in pathwayRS)

 {

 pathwayRSList.Add(a);

 //2011-10-12

 _pathwayList[pathwayNumber].Add(a);

 }

 //Remove relations where not both genes appear in the geneList

10

 foreach (List<string> RS in pathwayRSList.ToList())

 {

 int flag1 = 0;

 int flag2 = 0;

 foreach (List<string> GL in geneList)

 {

 if (GL[0] == RS[1])

 {

 flag1 = 1;

 RS.Add(GL[1]); // 4: GeneName

 RS.Add(GL[2]); // 5: GScore

 }

 }

 foreach (List<string> GL in geneList)

 {

 if (GL[0] == RS[2])

 {

 flag2 = 1;

 RS.Add(GL[1]); // 6: GeneName

 RS.Add(GL[2]); // 7: GScore

 }

 }

 if (flag1 == 0 || flag2 == 0)

 {

 pathwayRSList.Remove(RS);

 }

 }

 // By now, in the pathwayRSList, there should have a List of Relations

 // In each relation, 0 is pathwayID, 1 is geneID1, 2 is geneID2, 3 is relation, 4 geneName1, 5

GScore1, 6 geneName2, 7 GScore2

 // It must have information of both genes, otherwise it won't exist, because it would already be

deleted

 // Select Subnetworks having more than 1 genes using breadth first search

 while (pathwayRSList.Count() > 0)

 {

 Subnetwork tempSubnetwork = new Subnetwork(getNextSNID()); // Create a new subnetwork

 tempSubnetwork.Add(pathwayRSList[0]); // Add the first relation to it

 pathwayRSList.Remove(pathwayRSList[0]); // Remove the relation once its been added

 int count = pathwayRSList.Count();

 int smallCount = 0;

 do

 {

 // What's smallCount for?

 // Each round, I'll go through each unchecked relation and check if it is linked to the

tempSubnetwork

 // If in one round, one or more relation is added (smallCount becomes non zero), then I have to

redo the whole round again

 // in case there're relations that is linked to the newly added relation

 smallCount = 0;

 foreach (List<string> a in pathwayRSList.ToList())

 {

 Gene tempGene1 = new Gene(a[1], a[4], a[5]);

 Gene tempGene2 = new Gene(a[2], a[6], a[7]);

 if (tempSubnetwork.getGenes().Contains(tempGene1) ||

tempSubnetwork.getGenes().Contains(tempGene2))

 {

 tempSubnetwork.Add(a);

 pathwayRSList.Remove(a);

 smallCount++;

 }

 }

 } while (smallCount > 0);

11

 SubnetworkList.Add(tempSubnetwork);

 }

 // Assign Subnetworks with only one element

 foreach (List<string> g in geneList)

 {

 int flag = 0;

 Gene tempGene = new Gene(g);

 foreach (Subnetwork c in SubnetworkList) // Check all the subnetworks to see if this gene already

belong to one of them

 {

 if (c.getGenes().Contains(tempGene))

 flag = 1;

 }

 if (flag == 0) // If this gene doesn't belong to any existing subnetwork, create a new subnetwork to

hold it

 {

 Subnetwork tempSubnetwork = new Subnetwork(g, Convert.ToString(pathwayNumber),

getNextSNID());

 SubnetworkList.Add(tempSubnetwork);

 }

 }

 return SubnetworkList;

 // This function can be improved in efficiency

 // When generating subnetworks in previous step, remove added genes from geneList

 // Thus when doing this step, the geneList will be much shorter

 // And we don't even need to check! 2011-06-05 20:51 Yes, agreed.

 }

 public int getNextSNID()

 {

 // returns the ID of "next" subnetwork

 nextSNID++;

 return nextSNID;

 }

 #endregion

 #region scoring

 public List<Subnetwork> scoring(List<Subnetwork> subnetworks, string phenotype1, string

phenotype2, double alpha, int sampleStart)

 {

 List<List<string>> topAlphaGenes1 = retrieveTopAlphaPercentGene(alpha, sampleStart,

phenotype1);

 List<List<string>> topAlphaGenes2 = retrieveTopAlphaPercentGene(alpha, sampleStart,

phenotype2);

 subnetworks = addScoreVector(subnetworks, topAlphaGenes1, 1);

 subnetworks = addScoreVector(subnetworks, topAlphaGenes2, 2);

 subnetworks = calculateTScore(subnetworks);

 return subnetworks;

 }

 public List<Subnetwork> addScoreVector(List<Subnetwork> subnetworks, List<List<string>>

topAlphaGenes, int whichPhenotype)

 {

 foreach (Subnetwork cluster in subnetworks)

 {

 List<double> SNVector = new List<double>();

 foreach (List<string> s in topAlphaGenes)

 {

 double SN = 0;

 foreach (Gene g in cluster.getGenes())

 {

12

 if (s.Contains(g.getGeneName()))

 SN += Convert.ToDouble(g.getGScore());

 }

 SNVector.Add(SN);

 }

 cluster.addScoreVector(SNVector, whichPhenotype - 1);

 }

 return subnetworks;

 }

 public List<Subnetwork> calculateTScore(List<Subnetwork> subnetworks)

 {

 int k = 1;

 foreach (Subnetwork c in subnetworks)

 {

 double tScore;

 List<double>[] scoreVector = c.getScoreVector();

 double S;

 int n1 = scoreVector[0].Count();

 int n2 = scoreVector[1].Count();

 S = Math.Sqrt(((n1 - 1) * getVariance(scoreVector[0]) + (n2 - 1) * getVariance(scoreVector[1])) /

(n1 + n2 - 2));

 tScore = (scoreVector[0].Average() - scoreVector[1].Average()) / (S * Math.Sqrt(1 /

Convert.ToDouble(n1) + 1 / Convert.ToDouble(n2)));

 if ((getVariance(scoreVector[0]) + getVariance(scoreVector[1])) == 0)

 {

 if (scoreVector[0].Average() == scoreVector[1].Average())

 tScore = 0;

 else tScore = 100;

 // Means they're very diffrent

 // Before this, every NaN is treated as infinity which is unfair

 }

 c.addTScore(tScore);

 k++;

 }

 return subnetworks;

 }

 public double getVariance(List<double> list)

 {

 // double avg = list.Average(); // I don't trust you

 double avg = 0;

 foreach (double d in list)

 avg += d;

 avg /= list.Count;

 double sumDeviation = 0;

 double variance;

 foreach (double d in list)

 {

 sumDeviation += (d - avg) * (d - avg);

 }

 variance = sumDeviation / (list.Count() - 1);

 return variance;

 }

 #endregion

 #region modification

 // For each subnetwork SN, find their immediate neighbour (IN), which is a gene that is only one edge

away

 // If this IN is in the geneList2, then add IN to the subnetwork SN

 public List<Subnetwork> alpha1alpha2(List<Subnetwork> subnetworks, string phenotype1, double

alpha2, double beta, int sampleStart)

13

 {

 List<List<string>> topAlphaGenes2 = retrieveTopAlphaPercentGene(alpha2, sampleStart,

phenotype1); // Select List of Top alpha genes for each sample; 1000 is alpha, 3 is start position of sample,

"genechip_normal" is table name

 List<List<string>> topBetaGenes2 = geneListGeneration(topAlphaGenes2, beta); // Select genes

belonging to the genelists of at least beta percent samples. For each element, 0 is geneName, 1 is G Score

 List<List<string>> geneListTemp2 = addInGeneID(topBetaGenes2); // Modify a bit. Now 0 is

geneID, 1 is geneName, 2 is GScore

 List<string> geneList2 = new List<string>(); // Modify a bit more. Now it only contains a list of

geneID.

 foreach (List<string> lS in geneListTemp2)

 geneList2.Add(lS[0]);

 int count = 1;

 foreach (Subnetwork sn in subnetworks)

 {

 int flag = 0; // flag becomes 1 when sn contains an IN that is in geneList2

 string pathwayNumber = sn.getPathwayID();

 List<string> selectedGenes = new List<string>(); // List of genes that are immediately connected

to sn

 List<List<string>> selectedRelations = new List<List<string>>(); // Relations that correspond to

selectedGenes

 List<string> geneIDs = new List<string>(); // IDs of Genes that are contained in sn

 foreach (Gene g in sn.getGenes())

 geneIDs.Add(g.getGeneID());

 List<string>[] pathwayRS; // Gene relation in a certain pathway (retrieved from pathwayAPI)

 List<List<string>> pathwayRSList = new List<List<string>>();

 pathwayRS = pathwayAPITableRetrieve("select * from pathway_rs where pathway_id = " +

pathwayNumber + ";");

 foreach (List<string> a in pathwayRS)

 {

 pathwayRSList.Add(a);

 }

 // Check each relation, if one of its node is contained in the sn but the other is not, then add the

other in the selectedGenes, and add the relation in the selectedRelations

 foreach (List<string> r in pathwayRSList)

 {

 if (geneIDs.Contains(r[1]) && !geneIDs.Contains(r[2]))

 {

 selectedGenes.Add(r[2]);

 selectedRelations.Add(r);

 }

 if (geneIDs.Contains(r[2]) && !geneIDs.Contains(r[1]))

 {

 selectedGenes.Add(r[1]);

 selectedRelations.Add(r);

 }

 }

 for (int i = 0; i < selectedGenes.Count; i++)

 {

 if (geneList2.Contains(selectedGenes[i])) // If this IN is contained in the geneList2, then add the

corresponded relation to the subnetwork

 {

 selectedRelations[i] = modifyRelation(selectedRelations[i], geneListTemp2); // Modifiy it

into a format that can be added to SN

14

 sn.Add(selectedRelations[i]);

 flag = 1;

 }

 }

 count++;

 }

 return subnetworks;

 }

 // Modify incoming relation List<string> by adding

 // 4, 5: GeneName and GScore of Gene1

 // 6, 7: GeneName and GScore of Gene2

 public List<string> modifyRelation(List<string> relation, List<List<string>> geneList)

 {

 foreach (List<string> GL in geneList)

 {

 if (GL[0] == relation[1])

 {

 relation.Add(GL[1]); // 4: GeneName

 relation.Add(GL[2]); // 5: GScore

 }

 if (GL[0] == relation[2])

 {

 relation.Add(GL[1]); // 6: GeneName

 relation.Add(GL[2]); // 7: GScore

 }

 }

 // Possible Problem

 if (relation.Count == 4)

 {

 relation.Add("Null"); // 4

 relation.Add("0.5"); // 5

 relation.Add("Null"); // 6

 relation.Add("0.5"); // 7

 }

 else if (relation.Count == 6)

 {

 relation.Add("Null"); // 6

 relation.Add("0.5"); // 7

 }

 return relation;

 }

 // Check subnetworks of the same pathway pairwisely

 // If they're separated by only one neighbour, merge them

 public List<Subnetwork> detectNearSubnetwork(List<Subnetwork> subnetworks, string phenotype1,

double alpha, double beta, int sampleStart, string directory)

 {

 int flag = 1;

 string recordingString = null;

 int round = 0;

 //List<List<int>> checkedPairs = new List<List<int>>(); // once SN1 and SN2 are checked to be "not

near", then put in this list, and don't check them next time

 int[,] snPairs = new int[subnetworks.Count + 1, subnetworks.Count + 1]; // used to record if one pair

is checked

 for (int i = 0; i <= subnetworks.Count; i++)

 for (int j = 0; j <= subnetworks.Count; j++) // i and j are the SNID of each SN

 snPairs[i, j] = 0; // once checked, change its value to 1

 while (flag == 1) // Indicating that new overlap was found

 {

15

 round++;

 // Console.WriteLine("Round: " + round); // Current round 2011-10-31

 // Console.WriteLine("SN Count: " + subnetworks.Count); // Current number of subnetworks

2011-10-31

 flag = 0; // Initialize it as 0, if nothing happened, it will remain as 0

 for (int i = 0; i < subnetworks.Count; i++)

 {

 for (int j = i + 1; j < subnetworks.Count; j++)

 {

 if (subnetworks[i].getPathwayID() == subnetworks[j].getPathwayID()) // Only SNs in the

same pathway will be checked

 {

 int SNID1 = subnetworks[i].getID();

 int SNID2 = subnetworks[j].getID();

 if (snPairs[SNID1, SNID2] == 0) // Indicating that this pair is not checked yet

 {

 Subnetwork tempSN = checkOverlap(subnetworks[i], subnetworks[j], phenotype1, alpha,

beta, sampleStart);

 if (tempSN.isEmpty() == false)

 {

 recordingString += tempSN.getID() + ": " + subnetworks[i].getID() + ", " +

subnetworks[j].getID() + "\n";

 subnetworks[i] = tempSN;

 subnetworks.Remove(subnetworks[j]);

 j--;

 flag = 1;

 // Console.WriteLine("BreakHere"); 2011-10-31

 break;

 }

 else

 {

 snPairs[SNID1, SNID2] = 1;

 snPairs[SNID2, SNID1] = 1;

 }

 }

 }

 }

 if (flag == 1)

 break;

 }

 }

 printString(recordingString, directory, phenotype1 + "_mergedLog");

 return subnetworks;

 }

 // Check if two subnetworks sn1 and sn2 are one neighbor away

 // If yes, merge them and return a new subnetwork sn3

 // Otherwise, return an empty subnetwork sn3

 // IN: Immediate Neighbours of one subnetwork

 // relation: relations that are corresponding to IN

 public Subnetwork checkOverlap(Subnetwork sn1, Subnetwork sn2, string phenotype1, double alpha,

double beta, int sampleStart)

 //public Subnetwork checkOverlap(Subnetwork sn1, Subnetwork sn2, List<string> IN1, List<string>

IN2, List<List<string>> relation1, List<List<string>> relation2)

 {

 Subnetwork sn3 = new Subnetwork(sn1.getID());

 sn3.addRange(sn2);

16

 sn3.addRange(sn1);

 int flag = 0;

 // selecedGenes1 and selectedGenes2 contains IN of sn1 and sn2 respectively

 // selectedRelations1 and selectedRelations2 contains relations of sn1 and sn2 respectively

 // flag is 0 in the beginning, once one overlapped IN was found, flag became 1

 string pathwayNumber1 = sn1.getPathwayID();

 List<string> selectedGenes1 = new List<string>(); // List of genes that are immediately connected to

sn1

 List<List<string>> selectedRelations1 = new List<List<string>>(); // Relations that correspond to

selectedGenes1

 List<string> geneIDs1 = new List<string>(); // IDs of Genes that are contained in sn1

 foreach (Gene g in sn1.getGenes())

 geneIDs1.Add(g.getGeneID());

 //2011-10-12，ê?上¦?面?的Ì?comment也°2是º?今?天¬̈ ¬除y去 £̈¤的Ì?

 List<List<string>> pathwayRSList1 = _pathwayList[Convert.ToInt16(pathwayNumber1)];

 // Check each relation, if one of its node is contained in the sn2 but the other is not, then add the other

in the selectedGenes2, and add the relation in the selectedRelations2

 foreach (List<string> r in pathwayRSList1)

 {

 if (geneIDs1.Contains(r[1]) && !geneIDs1.Contains(r[2]))

 {

 selectedGenes1.Add(r[2]);

 selectedRelations1.Add(r);

 }

 if (geneIDs1.Contains(r[2]) && !geneIDs1.Contains(r[1]))

 {

 selectedGenes1.Add(r[1]);

 selectedRelations1.Add(r);

 }

 }

 string pathwayNumber2 = sn2.getPathwayID();

 List<string> selectedGenes2 = new List<string>(); // List of genes that are immediately connected to

sn2

 List<List<string>> selectedRelations2 = new List<List<string>>(); // Relations that correspond to

selectedGenes2

 List<string> geneIDs2 = new List<string>(); // IDs of Genes that are contained in sn2

 foreach (Gene g in sn2.getGenes())

 geneIDs2.Add(g.getGeneID());

 //2011-10-12

 List<List<string>> pathwayRSList2 = _pathwayList[Convert.ToInt16(pathwayNumber2)];

 // Check each relation, if one of its node is contained in the sn2 but the other is not, then add the other

in the selectedGenes2, and add the relation in the selectedRelations2

 foreach (List<string> r in pathwayRSList2)

 {

 if (geneIDs2.Contains(r[1]) && !geneIDs2.Contains(r[2]))

 {

 selectedGenes2.Add(r[2]);

 selectedRelations2.Add(r);

 }

 if (geneIDs2.Contains(r[2]) && !geneIDs2.Contains(r[1]))

 {

 selectedGenes2.Add(r[1]);

 selectedRelations2.Add(r);

 }

 }

17

 //2011-10-12

 List<List<string>> geneListTemp = _geneList;

 for (int i = 0; i < selectedGenes1.Count; i++)

 {

 for (int j = 0; j < selectedGenes2.Count; j++)

 {

 if (selectedGenes1[i] == selectedGenes2[j])

 {

 List<string> relation1 = modifyRelation(selectedRelations1[i], geneListTemp);

 List<string> relation2 = modifyRelation(selectedRelations2[j], geneListTemp);

 sn3.Add(relation1);

 sn3.Add(relation2);

 flag = 1;

 }

 }

 }

 if (flag == 0)

 {

 sn3.clear();

 }

 return sn3;

 }

 #endregion

 #region validation

 public List<Subnetwork> validation(string phenotype1, string phenotype2, double alpha, double beta,

int sampleStart, List<Subnetwork> comingSubnetworks)

 {

 // 1st, get 1000 randomly generated subnetworks, and calculate the tScore for each of them

 // Store these tScores in the totalTscore

 List<Subnetwork> bigSubnetworks = new List<Subnetwork>(); // A list of randomly generated

subnetworks

 List<double> totalTScore = new List<double>(); // A list of tScores

 int count = 0;

 // Repeat while loop, until more than 10000 subnetworks (tScores) are generated

 // Count is the termination restriction, make sure that the loop does not spend too much time

 Jump j;

 while (bigSubnetworks.Count < 5000 || count == 50)

 {

 j = new Jump(Convert.ToString(bigSubnetworks.Count));

 j.ShowDialog();

 // Genearte and merge topAlpha Genes of two phenotypes

 List<List<string>> topAlphaGenes1 = retrieveTopAlphaPercentGene(alpha, sampleStart,

phenotype1); // Select List of Top alpha genes for each sample; 1000 is alpha, 3 is start position of sample,

"genechip_normal" is table name

 List<List<string>> topAlphaGenes2 = retrieveTopAlphaPercentGene(alpha, sampleStart,

phenotype2); // Select List of Top alpha genes for each sample; 1000 is alpha, 3 is start position of sample,

"genechip_normal" is table name

 List<List<string>> topAlphaGenes = new List<List<string>>(); // Total List

 topAlphaGenes.AddRange(topAlphaGenes1);

 topAlphaGenes.AddRange(topAlphaGenes2);

 // Randomly relabel samples and generate clusters

 topAlphaGenes1 = randomSelect(topAlphaGenes, topAlphaGenes1.Count); // Randomly select

same number of samples of this phenotype from all

 topAlphaGenes2 = topAlphaGenes; // Remaining assigned to another phenotype

18

 List<List<string>> topBetaGenes = geneListGeneration(topAlphaGenes1, beta); // Select genes

belong to Top beta of all sample's genelist. For each element, 0 is geneName, 1 is G value

 List<List<string>> geneList = addInGeneID(topBetaGenes); // Modify a bit. 0 is geneID, 1 is

geneName, 2 is GScore

 List<Subnetwork> subnetworks = new List<Subnetwork>();

 // Go through each pathway, and select genes that both belong to geneList and that pathway, also

use these genes form subnetworks

 for (int i = 0; i < 398; i++)

 {

 //Console.WriteLine("Pathway: " + i);

 List<List<string>> tempList = selectGenesOfThatPathway(geneList, i);

 subnetworks.AddRange(formSubnetwork(tempList, i)); // Add newly generated subnetworks in

to the big list

 }

 // Scoring

 subnetworks = addScoreVector(subnetworks, topAlphaGenes1, 1);

 subnetworks = addScoreVector(subnetworks, topAlphaGenes2, 2);

 subnetworks = calculateTScore(subnetworks);

 bigSubnetworks.AddRange(subnetworks);

 count++;

 }

 // Move tScores from each subnetwork to the totalTScore

 foreach (Subnetwork s in bigSubnetworks)

 totalTScore.Add(s.getTScore());

 // Sort it from small to big

 totalTScore.Sort();

 // 2nd, Update the pValue of comingSubnetworks according to totalTscore from 1st

 foreach (Subnetwork s in comingSubnetworks)

 {

 double tScore = s.getTScore();

 s.addPValue(calPValue(tScore, totalTScore));

 }

 //2011-10-12

 _totalTScore = new List<double>();

 foreach (double d in totalTScore)

 _totalTScore.Add(d);

 return comingSubnetworks;

 }

 // tScore is the T-Score of one subnetwork

 // totalTScore is all the randomly generated T-Scores using random relabelling

 // The returned value is the pValue of this certain tScore, given the random distribution of totalTScore

 public double calPValue(double tScore, List<double> totalTScore)

 {

 double pValue;

 if (tScore >= 0)

 {

 int greaterThan = getGreaterThan(totalTScore, tScore);

 pValue = Convert.ToDouble(greaterThan) / Convert.ToDouble(totalTScore.Count);

 }

 else

 {

 int smallerThan = getSmallerThan(totalTScore, tScore);

19

 pValue = Convert.ToDouble(smallerThan) / Convert.ToDouble(totalTScore.Count);

 }

 return pValue;

 }

 // This is a regular binary search for positive tScore

 // It's recursive, and returns the location of element that is slightly smaller than or equal to b

 // For an example of algorithm

 // Please refer to Binary Search under Test Folder

 int binarySearchPositive(List<double> a, double b, int start, int end)

 {

 int middle = (start + end) / 2; // Middle point

 if (a[start] == b) return start; // Found in right boundary

 if (a[end] == b) return end; // Found in left boundary

 if (a[middle] == b) return middle; // Found in middle

 if (start == end) // Only 1 element left

 return start;

 if (middle == start) // Only 2 elements left

 {

 if (a[start] > b) // Even the left (smallest number) is larger than it

 return start; // Return location. This is good enough. Since = and > are the same

 if (a[end] < b) // Even the right boundary (largest number) is smaller than it

 return end + 1; // Return location + 1

 else

 return end;

 }

 if (a[middle] < b)

 return binarySearchPositive(a, b, middle, end);

 else

 return binarySearchPositive(a, b, start, middle);

 }

 // This is a regular binary search for Negative tScore

 // It's recursive, and returns the location of element that is slightly bigger than or equal to b

 // For an example of algorithm

 // Please refer to Binary Search under Test Folder

 int binarySearchNegative(List<double> a, double b, int start, int end)

 {

 int middle = (start + end) / 2; // Middle point

 if (a[start] == b) return start; // Found in right boundary

 if (a[end] == b) return end; // Found in left boundary

 if (a[middle] == b) return middle; // Found in middle

 if (start == end) // Only 1 element left

 return end;

 if (middle == start) // Only 2 elements left

 {

 if (a[start] > b) // Even the left (smallest number) is larger than it

 return start; // Return location. This is good enough. Since = and > are the same

 if (a[end] < b) // Even the right boundary (largest number) is smaller than it

 return end;

 else

 return end;

 }

 if (a[middle] < b)

 return binarySearchNegative(a, b, middle, end);

 else

 return binarySearchNegative(a, b, start, middle);

 }

 // Return number of elements in a, which are greater than or equal to b (a is sorted from small to big)

 int getGreaterThan(List<double> a, double b)

 {

 for (int i = 0; i < a.Count; i++)

20

 {

 if (a[i] >= b) return a.Count - i;

 }

 return a.Count - a.Count;

 }

 // Return number of elements in a, which are greater than or equal to b (a is sorted from small to big)

 int getSmallerThan(List<double> a, double b)

 {

 for (int i = a.Count - 1; i >= 0; i--)

 {

 if (a[i] <= b) return i + 1;

 }

 return 0;

 }

 // Randomly Select "numberToSelect" List<string> from topAlphaGenes, delete from it

 public List<List<string>> randomSelect(List<List<string>> topAlphaGenes, int numberToSelect)

 {

 List<List<string>> topAlphaGenes1 = new List<List<string>>();

 Random random = new Random();

 for (int i = 0; i < numberToSelect; i++)

 {

 int totalNumber = topAlphaGenes.Count();

 int select = Convert.ToInt16(Math.Floor(random.NextDouble() *

Convert.ToDouble(totalNumber)));

 topAlphaGenes1.Add(topAlphaGenes[select]);

 topAlphaGenes.Remove(topAlphaGenes[select]);

 }

 return topAlphaGenes1;

 }

 // Output: List of List<double>. Each List<double>, [0] left bound, [1] right bound, [2] count within the

range

 public List<List<double>> getDistribution(List<double> totalTScore)

 {

 List<List<double>> distribution = new List<List<double>>();

 List<double> totalTScore2 = new List<double>(); // And the following 4 lines, to avoid NaN

 foreach (double d in totalTScore)

 {

 if (d < 100000 && d > -100000)

 totalTScore2.Add(d);

 }

 double max = totalTScore2.Max();

 double min = totalTScore2.Min();

 int count = totalTScore.Count;

 double range = (max - min) / Convert.ToDouble(count / 10);

 Console.WriteLine(max + " " + min + " " + count + " " + range);

 Console.Read();

 // Set distribution range, initialize 0

 for (int i = 0; i < count / 10; i++)

 {

 List<double> list = new List<double>();

 list.Add(min);

 list.Add(min + range);

 list.Add(0);

 min = min + range;

 distribution.Add(list);

 }

 // Count number of points in each range

21

 foreach (double d in totalTScore)

 {

 foreach (List<double> list in distribution)

 {

 if (d >= list[0] && d <= list[1])

 {

 list[2]++;

 break;

 }

 }

 }

 foreach (List<double> list in distribution)

 list[2] /= Convert.ToDouble(count); // Convert it to probability

 return distribution;

 }

 // Sort the subnetworks based on their pValue, from samll to big. If pValue is 0, then sort according to

geneCount

 public List<Subnetwork> sortSubnetworksBasedOnPValue(List<Subnetwork> subnetworks)

 {

 List<Subnetwork> newSubnetworks = new List<Subnetwork>();

 List<Subnetwork> newNewSubnetworks = new List<Subnetwork>();

 int count = subnetworks.Count;

 // Sort according to pValue

 for (int i = 0; i < count; i++) // Run so many times

 {

 double min = 10; // Since the biggest observed pValue is <1

 int selectedOne = 0;

 for (int j = 0; j < subnetworks.Count; j++)

 {

 if (subnetworks[j].getPValue() <= min)

 {

 min = subnetworks[j].getPValue();

 selectedOne = j;

 }

 }

 newSubnetworks.Add(subnetworks[selectedOne]);

 subnetworks.Remove(subnetworks[selectedOne]);

 }

 count = newSubnetworks.Count;

 // Sort according to Number of Genes, big to small

 for (int i = 0; i < count; i++) // Run so many times

 {

 double max = 0;

 int selectedOne = 0;

 for (int j = 0; j < newSubnetworks.Count; j++)

 {

 if (newSubnetworks[j].getPValue() == 0 && newSubnetworks[j].getGenes().Count > max)

 {

 max = newSubnetworks[j].getGenes().Count;

 selectedOne = j;

 }

 }

 newNewSubnetworks.Add(newSubnetworks[selectedOne]);

 newSubnetworks.Remove(newSubnetworks[selectedOne]);

 }

 // Add remaining subnetworks (pValue != 0)

 for (int i = 0; i < newSubnetworks.Count; i++)

22

 {

 newNewSubnetworks.Add(newSubnetworks[i]);

 }

 return newNewSubnetworks;

 }

 #endregion

 #region visualization

 public void drawSubnetworks(List<Subnetwork> SNs, string directory, string dataName, int

typeNumber)

 {

 List<List<List<string>>> selectedRelations = new List<List<List<string>>>();

 List<List<string>> selectedGenes = new List<List<string>>();

 for (int i = 0; i < 400; i++) // Assume there're less than 400 pathways

 selectedRelations.Add(new List<List<string>>());

 foreach (Subnetwork sn in SNs)

 {

 foreach (GeneRelation relation in sn.getGeneRelations())

 {

 int pathwayID = Convert.ToInt16(relation.getPathwayID());

 List<string> relationString = new List<string>();

 relationString.Add(relation.getRelation()[1]); // geneID of first gene

 relationString.Add(relation.getRelation()[2]); // geneID of second gene

 relationString.Add(relation.getRelation()[3]); // interaction type

 selectedRelations[pathwayID].Add(relationString); // add this relation to the pathway it belongs

to

 }

 foreach (Gene gene in sn.getGenes())

 {

 List<string> geneString = new List<string>();

 geneString.Add(gene.getGene()[0]); // geneID

 geneString.Add(gene.getGene()[1]); // geneName

 geneString.Add(gene.getGene()[2]); // GScore

 selectedGenes.Add(geneString); // Potential Problem: genes from different sn may dupilicate

(same gene different GScore)

 }

 }

 draw(selectedRelations, selectedGenes, directory, dataName, typeNumber);

 }

 // Type number: which column does the dataName corresponds to. 4 -> 1, 5 -> 2, etc.

 public void draw(List<List<List<string>>> selectedRelations, List<List<string>> selectedGenes, string

directory, string dataName, int typeNumber)

 {

 int pathwayID = 0;

 StreamWriter relations_sw = new StreamWriter(directory + dataName + "_edges" + ".eda");

 relations_sw.WriteLine("Interation_" + dataName + " " + "(class=string)");

 StreamWriter genes_sw = new StreamWriter(directory + dataName + "_nodes" + ".txt");

 genes_sw.WriteLine("GeneID" + "\t" + "GeneName" + "\t" + "GScore" + "\t" + "InTypeOne" + "\t"

+ "InTypeTwo");

 foreach (List<List<string>> pathway in selectedRelations)

 {

 if (pathway.Count > 0) // Means that it has at least one relation been selected

 {

 StreamWriter pthwy_sw = new StreamWriter(directory + "pthwy_" + pathwayID + ".txt");

 List<string>[] pathwayRS; // Gene relation in a certain pathway (retrieved from pathwayAPI)

 pathwayRS = pathwayAPITableRetrieve("select * from pathway_rs where pathway_id = " +

Convert.ToString(pathwayID) + ";");

 foreach (List<string> a in pathwayRS)

 {

 pthwy_sw.WriteLine(a[1] + "\t" + a[2] + "\t" + a[3]);

 }

23

 pthwy_sw.Close();

 foreach (List<string> relation in pathway)

 {

 relations_sw.WriteLine(relation[0] + " " + "(" + relation[2] + ") " + relation[1] + " = " +

dataName);

 }

 }

 pathwayID++;

 }

 foreach (List<string> gene in selectedGenes)

 {

 genes_sw.Write(gene[0] + "\t"); // geneID

 genes_sw.Write(gene[1] + "\t"); // geneName

 genes_sw.Write(gene[2] + "\t"); // GScore

 for (int i = 1; i < typeNumber; i++)

 genes_sw.Write("\t");

 genes_sw.Write(dataName);

 genes_sw.Write("\n"); // potential problem

 }

 relations_sw.Close();

 genes_sw.Close();

 }

 #endregion

 #region print

 public void printSubnetworks(List<Subnetwork> subnetworks, string directory, string fileName)

 {

 DateTime currentTime = new DateTime();

 currentTime = DateTime.Now;

 string timeString = currentTime.Year + "-" + currentTime.Month + "-" + currentTime.Day + " " +

currentTime.Hour + "." + currentTime.Minute + "." + currentTime.Second + "." + currentTime.Millisecond;

 List<int> pathwayID = new List<int>();

 StreamWriter sw = new StreamWriter(directory + timeString + " " + fileName + ".rtf");

 sw.WriteLine("Total Pathways: " + countPathway(subnetworks));

 foreach (Subnetwork s in subnetworks)

 {

 if (s.getPValue() <= 0.05)

 {

 sw.WriteLine("Subnetwork:" + s.getID());

 sw.WriteLine("PathwayID:" + s.getPathwayID());

 sw.WriteLine("TScore:" + s.getTScore() + " PValue: " + s.getPValue());

 sw.WriteLine("Genes: ");

 foreach (Gene g in s.getGenes())

 {

 sw.Write(g.getGeneName() + "(" + g.getGeneID() + "),");

 }

 sw.Write("\nGene Relations: \n");

 foreach (GeneRelation gr in s.getGeneRelations())

 {

 sw.WriteLine(gr.getRelationString());

 }

 sw.WriteLine("--------------------------------");

 }

 }

 sw.Close();

 }

 // Count how many non-redundent pathways are there in the subnetwork list

 public int countPathway(List<Subnetwork> subnetworks)

 {

24

 List<string> pathwayIDs = new List<string>();

 foreach (Subnetwork sn in subnetworks)

 {

 if (!pathwayIDs.Contains(sn.getPathwayID()))

 pathwayIDs.Add(sn.getPathwayID());

 }

 return pathwayIDs.Count;

 }

 // Get the bar chart distribution of SN count. 1, 2-5, 6-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, >70

 public List<int> getBarChart(List<Subnetwork> subnetworks)

 {

 List<int> barChart = new List<int>();

 for (int i = 0; i < 10; i++)

 barChart.Add(0);

 int geneCount = 0;

 foreach (Subnetwork sn in subnetworks)

 {

 if (sn.getPValue() <= 0.05)

 {

 geneCount = sn.getGenes().Count;

 if (geneCount == 1)

 barChart[0]++;

 else if (geneCount > 1 && geneCount < 6)

 barChart[1]++;

 else if (geneCount >= 6 && geneCount < 11)

 barChart[2]++;

 for (int i = 0; i < 6; i++)

 {

 if (geneCount >= (11 + i * 10) && geneCount < (21 + i * 10))

 barChart[3 + i]++;

 }

 if (geneCount >= 71)

 barChart[9]++;

 }

 }

 return barChart;

 }

 public void printSubnetworksCSV(List<Subnetwork> subnetworks, string directory, string fileName)

 {

 DateTime currentTime = new DateTime();

 currentTime = DateTime.Now;

 string timeString = currentTime.Year + "-" + currentTime.Month + "-" + currentTime.Day + " " +

currentTime.Hour + "." + currentTime.Minute + "." + currentTime.Second + "." + currentTime.Millisecond;

 StreamWriter sw = new StreamWriter(directory + timeString + " " + fileName + ".csv");

 sw.WriteLine("ID,PValue,TScore,Count");

 foreach (Subnetwork s in subnetworks)

 {

 if (s.getPValue() <= 0.05)

 sw.WriteLine(s.getID() + "," + s.getPValue() + "," + s.getTScore() + "," + s.getGenes().Count);

 }

 sw.Close();

 sw = new StreamWriter(directory + timeString + " " + "(BarChart)" + fileName + ".csv");

 sw.WriteLine("1, 2-5, 6-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, >70");

 foreach (int i in getBarChart(subnetworks))

 sw.Write(i + ",");

 sw.Close();

 }

25

 /// <summary>

 /// returns two list

 /// list1: all the genes in this subnetwork list

 /// list2: all the pathwayID in this subnetworks list

 /// </summary>

 /// <param name="subnetworks"></param>

 /// <returns></returns>

 public List<List<string>> getGeneList(List<Subnetwork> subnetworks)

 {

 List<string> geneList = new List<string>();

 List<string> pathwayList = new List<string>();

 foreach (Subnetwork sn in subnetworks)

 {

 if (sn.getPValue() <= 0.05)

 {

 foreach (Gene g in sn.getGenes())

 {

 geneList.Add(g.getGeneName());

 }

 if (!pathwayList.Contains(sn.getPathwayID()))

 pathwayList.Add(sn.getPathwayID());

 }

 }

 List<List<string>> strList = new List<List<string>>();

 strList.Add(geneList);

 strList.Add(pathwayList);

 return strList;

 }

 public List<string> printGenes(List<Subnetwork> subnetworks, string fileName)

 {

 DateTime currentTime = new DateTime();

 currentTime = DateTime.Now;

 string timeString = currentTime.Year + "-" + currentTime.Month + "-" + currentTime.Day + " " +

currentTime.Hour + "." + currentTime.Minute + "." + currentTime.Second + "." + currentTime.Millisecond;

 StreamWriter sw = new StreamWriter("F:/Temp/FYP/Test/TestData/temp/" + timeString + " " +

fileName + ".rtf");

 List<string> strList = new List<string>();

 foreach (Subnetwork sn in subnetworks)

 {

 if (sn.getPValue() <= 0.05)

 foreach (Gene g in sn.getGenes())

 {

 sw.WriteLine(g.getGeneName());

 strList.Add(g.getGeneName());

 }

 }

 sw.Close();

 return strList;

 }

 public void printString(string file, string directory, string fileName)

 {

 DateTime currentTime = new DateTime();

 currentTime = DateTime.Now;

 string timeString = currentTime.Year + "-" + currentTime.Month + "-" + currentTime.Day + " " +

currentTime.Hour + "." + currentTime.Minute + "." + currentTime.Second + "." + currentTime.Millisecond;

26

 StreamWriter sw = new StreamWriter(directory + timeString + " " + fileName + ".rtf");

 sw.Write(file);

 sw.Close();

 }

 #endregion

 public double checkOverlap(List<string> list1, List<string> list2)

 {

 int count = 0;

 int minimum;

 list1 = removeDuplication(list1);

 list2 = removeDuplication(list2);

 if (list1.Count < list2.Count)

 minimum = list1.Count;

 else minimum = list2.Count;

 foreach (string str in list1)

 {

 if (list2.Contains(str))

 count++;

 }

 return Convert.ToDouble(count) / Convert.ToDouble(minimum);

 }

 public List<string> removeDuplication(List<string> strList)

 {

 List<string> tempList = new List<string>();

 foreach (string str in strList)

 {

 if (!tempList.Contains(str))

 tempList.Add(str);

 }

 // foreach (string str in tempList) 2011-10-31

 // Console.Write(str + " "); 2011-10-31

 // Console.WriteLine(); 2011-10-31

 // Console.WriteLine(); 2011-10-31

 return tempList;

 }

 // each list is a pair of SN

 // snid1, snid2, overlap, overlap ratio, sn1.count, sn2.count, sn1.pvalue, sn2.pvalue, sn1.PathwayID,

sn2.PathwayID

 public List<List<string>> checkOverlap(List<Subnetwork> snList1, List<Subnetwork> snList2, double

gama)

 {

 List<List<string>> strList = new List<List<string>>();

 int overlap;

 foreach (Subnetwork sn1 in snList1)

 {

 if (sn1.getPValue() <= 0.05)

 foreach (Subnetwork sn2 in snList2)

 {

 if (sn2.getPValue() <= 0.05)

 {

 overlap = sn1.overlap(sn2);

 double overlapRatio = Convert.ToDouble(overlap) /

max(Convert.ToDouble(sn1.getGenes().Count), Convert.ToDouble(sn2.getGenes().Count));

 List<string> tempList = new List<string>();

 tempList.Add(Convert.ToString(sn1.getID()));

 tempList.Add(Convert.ToString(sn2.getID()));

 tempList.Add(Convert.ToString(overlapRatio));

 tempList.Add(Convert.ToString(overlap));

 tempList.Add(Convert.ToString(sn1.getGenes().Count));

27

 tempList.Add(Convert.ToString(sn2.getGenes().Count));

 tempList.Add(Convert.ToString(sn1.getPValue()));

 tempList.Add(Convert.ToString(sn2.getPValue()));

 tempList.Add(Convert.ToString(sn1.getPathwayID()));

 tempList.Add(Convert.ToString(sn2.getPathwayID()));

 if (overlapRatio > gama)

 strList.Add(tempList);

 }

 }

 }

 return strList;

 }

 // Check a SN list against a gene list, snID, overlap, overlapRatio, count, p, pathwayID

 public List<List<string>> checkOverlap(List<Subnetwork> snList, List<string> geneList, double gama)

 {

 List<List<string>> strList = new List<List<string>>();

 double overlap;

 double overlapRatio;

 foreach (Subnetwork sn in snList)

 {

 if (sn.getPValue() <= 0.05)

 {

 overlap = checkOverlap(sn, geneList);

 overlapRatio = overlap / Convert.ToDouble(sn.getGenes().Count);

 List<string> tempList = new List<string>();

 tempList.Add(Convert.ToString(sn.getID()));

 tempList.Add(Convert.ToString(overlap));

 tempList.Add(Convert.ToString(overlapRatio));

 tempList.Add(Convert.ToString(sn.getGenes().Count));

 tempList.Add(Convert.ToString(sn.getPValue()));

 tempList.Add(Convert.ToString(sn.getPathwayID()));

 if (overlapRatio > gama)

 strList.Add(tempList);

 }

 }

 return strList;

 }

 // check how many genes in sn are contained in genelist

 // return number of overlap

 public double checkOverlap(Subnetwork sn, List<string> geneList)

 {

 double overlap = 0;

 foreach (Gene g in sn.getGenes())

 {

 if (geneList.Contains(g.getGeneName()))

 overlap++;

 }

 return overlap;

 }

 // check if two subnetworks are the same

 public List<string> checkSame(Subnetwork sn1, Subnetwork sn2)

 {

 List<string> strList = new List<string>();

 List<string> str1 = new List<string>();

 List<string> str2 = new List<string>();

 foreach (Gene g in sn1.getGenes())

28

 {

 str1.Add(g.getGeneName());

 }

 foreach (Gene g in sn2.getGenes())

 {

 str2.Add(g.getGeneName());

 }

 double overlap = checkOverlap(str1, str2);

 int count = Convert.ToInt16(overlap * min(str1.Count, str2.Count));

 strList.Add(Convert.ToString(sn1.getID()));

 strList.Add(Convert.ToString(sn2.getID()));

 strList.Add(Convert.ToString(overlap));

 strList.Add(Convert.ToString(count));

 return strList;

 }

 private int min(int a, int b)

 {

 if (a < b) return a;

 return b;

 }

 private double min(double a, double b)

 {

 if (a < b) return a;

 return b;

 }

 private double max(double a, double b)

 {

 if (a > b) return a;

 return b;

 }

 }

}

// UI

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using MySql.Data;

using MySql.Data.MySqlClient;

using System.IO;

namespace SNet_V2._0.Module

{

 public partial class UI : Form

 {

 public double _alpha0, _alpha1, _beta, _gama;

 public string _dataset1, _dataset2, _host, _userName, _password, _directory, _outputName;

 List<Subnetwork> sn1 = null;

 List<Subnetwork> sn2 = null;

 string _currentSN = null;

 //private List<Subnetwork> subnetworks;

 Logic logic;

 public UI()

29

 {

 InitializeComponent();

 _host = "localhost";

 _userName = "root";

 _password = "root";

 _directory = "F:/Temp/FYP/Data/Output/";

 _alpha0 = Convert.ToDouble(alpha0.Text);

 _alpha1 = Convert.ToDouble(alpha1.Text);

 _gama = 0.74;

 _dataset1 = dataset1.Text;

 _dataset2 = dataset2.Text;

 _outputName = outputName.Text;

 logic = new Logic(this);

 }

 private void button4_Click_1(object sender, EventArgs e)

 {

 Database db = new Database(this);

 db.Show();

 }

 private void button1_Click_1(object sender, EventArgs e)

 {

 shield();

 //generateSubentwrok();

 }

 private void button2_Click(object sender, EventArgs e)

 {

 variousAlpha();

 }

 private void button3_Click(object sender, EventArgs e)

 {

 mergeSubnetwork();

 }

 private void shield()

 {

 List<List<Subnetwork>> snList1 = shield(1262, 1893, "dmd_haslettdata");

 StreamWriter sw = new StreamWriter(_directory + "1.1.txt");

 sw.Close();

 List<List<Subnetwork>> snList2 = shield(2228, 3342, "dmd_pescatoridata");

 string str1 = compareDifference("dmd", snList1, snList2);

 StreamWriter sw1 = new StreamWriter(_directory + "compareResult_dmd.txt");

 sw1.Write(str1);

 sw1.Close();

 snList1 = shield(1262, 1893, "lung_bhattdata");

 snList2 = shield(2416, 3625, "lung_garberdata");

 string str2 = compareDifference("lung", snList1, snList2);

 sw1 = new StreamWriter(_directory + "compareResult_lung.txt");

 sw1.Write(str2);

 sw1.Close();

 snList1 = shield(4300, 6451, "prostate_lapointedata");

 snList2 = shield(1262, 1893, "prostate_singhdata");

 string str3 = compareDifference("prostate", snList1, snList2);

 sw1 = new StreamWriter(_directory + "compareResult_prostate.txt");

 sw1.Write(str3);

 sw1.Close();

30

 snList1 = shield(2228, 3342, "subtype_allendata");

 snList2 = shield(1262, 1893, "subtype_marydata");

 string str4 = compareDifference("subtype", snList1, snList2);

 sw1 = new StreamWriter(_directory + "compareResult_subtype.txt");

 sw1.Write(str4);

 sw1.Close();

 }

 private string compareDifference(string dataset, List<List<Subnetwork>> snList1,

List<List<Subnetwork>> snList2)

 {

 List<List<List<string>>> strList1 = new List<List<List<string>>>();

 strList1.Add(logic.getGeneList(snList1[0]));

 strList1.Add(logic.getGeneList(snList1[1]));

 strList1.Add(logic.getGeneList(snList1[2]));

 List<List<List<string>>> strList2 = new List<List<List<string>>>();

 strList2.Add(logic.getGeneList(snList2[0]));

 strList2.Add(logic.getGeneList(snList2[1]));

 strList2.Add(logic.getGeneList(snList2[2]));

 string str = null;

 str += dataset + ":\n";

 double geneOverlap = logic.checkOverlap(strList1[0][0], strList2[0][0]);

 double pathwayOverlap = logic.checkOverlap(strList1[0][1], strList2[0][1]);

 double geneOverlapVariousAlpha = logic.checkOverlap(strList1[1][0], strList2[1][0]);

 double pathwayOverlapVariousAlpha = logic.checkOverlap(strList1[1][1], strList2[1][1]);

 double geneOverlapMerge = logic.checkOverlap(strList1[2][0], strList2[2][0]);

 double pathwayOverlapMerge = logic.checkOverlap(strList1[2][1], strList2[2][1]);

 List<List<List<string>>> snOverlap = new List<List<List<string>>>();

 snOverlap.Add(logic.checkOverlap(snList1[0], snList2[0], _gama));

 snOverlap.Add(logic.checkOverlap(snList1[1], snList2[1], _gama));

 snOverlap.Add(logic.checkOverlap(snList1[2], snList2[2], _gama));

 List<List<List<string>>> snPartialOverlap = new List<List<List<string>>>();

 snPartialOverlap.Add(logic.checkOverlap(snList1[0], logic.getGeneList(snList2[0])[0], _gama));

 snPartialOverlap.Add(logic.checkOverlap(snList1[1], logic.getGeneList(snList2[1])[0], _gama));

 snPartialOverlap.Add(logic.checkOverlap(snList1[2], logic.getGeneList(snList2[2])[0], _gama));

 snPartialOverlap.Add(logic.checkOverlap(snList2[0], logic.getGeneList(snList1[0])[0], _gama));

 snPartialOverlap.Add(logic.checkOverlap(snList2[1], logic.getGeneList(snList1[1])[0], _gama));

 snPartialOverlap.Add(logic.checkOverlap(snList2[2], logic.getGeneList(snList1[2])[0], _gama));

 str += "Gene Overlap: " + Convert.ToString(geneOverlap) + "\n";

 str += "Gene Overlap (Various Alpha): " + Convert.ToString(geneOverlapVariousAlpha) + "\n";

 str += "Gene Overlap (Merged): " + Convert.ToString(geneOverlapMerge) + "\n";

 str += "Pathway Overlap: " + Convert.ToString(pathwayOverlap) + "\n";

 str += "Pathway Overlap (Various Alpha): " + Convert.ToString(pathwayOverlapVariousAlpha) +

"\n";

 str += "Pathway Overlap (Merged): " + Convert.ToString(pathwayOverlapMerge) + "\n";

 str += "Subnetwork Overlap: " + Convert.ToString(snOverlap[0].Count) + "\n";

 str += "Subnetwork Overlap (Various Alpha): " + Convert.ToString(snOverlap[1].Count) + "\n";

 str += "Subnetwork Overlap (Merged): " + Convert.ToString(snOverlap[2].Count) + "\n";

 str += "Subnetwork Partial Overlap: " + Convert.ToString(snPartialOverlap[0].Count) + "\n";

 str += "Subnetwork Partial Overlap (Various Alpha): " +

Convert.ToString(snPartialOverlap[1].Count) + "\n";

 str += "Subnetwork Partial Overlap (Merged): " + Convert.ToString(snPartialOverlap[2].Count) +

"\n";

 str += "Subnetwork Partial Overlap2: " + Convert.ToString(snPartialOverlap[3].Count) + "\n";

 str += "Subnetwork Partial Overlap2 (Various Alpha)2: " +

Convert.ToString(snPartialOverlap[4].Count) + "\n";

 str += "Subnetwork Partial Overlap2 (Merged)2: " + Convert.ToString(snPartialOverlap[5].Count) +

"\n";

31

 DateTime currentTime = new DateTime();

 currentTime = DateTime.Now;

 string timeString = currentTime.Year + "-" + currentTime.Month + "-" + currentTime.Day + " " +

currentTime.Hour + "." + currentTime.Minute + "." + currentTime.Second + "." + currentTime.Millisecond;

 StreamWriter sw = new StreamWriter(_directory + timeString + dataset + "_snOverlapRecord.csv");

 sw.WriteLine("snid1, snid2, overlap, overlap ratio, sn1.count, sn2.count, sn1.pvalue, sn2.pvalue,

sn1.PathwayID, sn2.PathwayID");

 foreach (List<string> ls in snOverlap[0])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 sw = new StreamWriter(_directory + timeString + dataset + "_snOverlapRecord(VariousAlpha).csv");

 sw.WriteLine("snid1, snid2, overlap, overlap ratio, sn1.count, sn2.count, sn1.pvalue, sn2.pvalue,

sn1.PathwayID, sn2.PathwayID");

 foreach (List<string> ls in snOverlap[1])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 sw = new StreamWriter(_directory + timeString + dataset + "_snOverlapRecord(Merged).csv");

 sw.WriteLine("snid1, snid2, overlap, overlap ratio, sn1.count, sn2.count, sn1.pvalue, sn2.pvalue,

sn1.PathwayID, sn2.PathwayID");

 foreach (List<string> ls in snOverlap[2])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 sw = new StreamWriter(_directory + timeString + dataset + "_snPartialOverlapRecord.csv");

 sw.WriteLine("snID, overlap, overlapRatio, count, p, pathwayID");

 foreach (List<string> ls in snPartialOverlap[0])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 sw = new StreamWriter(_directory + timeString + dataset +

"_snPartialOverlapRecord(VariousAlpha).csv");

 sw.WriteLine("snID, overlap, overlapRatio, count, p, pathwayID");

 foreach (List<string> ls in snPartialOverlap[1])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 sw = new StreamWriter(_directory + timeString + dataset +

"_snPartialOverlapRecord(Merged).csv");

 sw.WriteLine("snID, overlap, overlapRatio, count, p, pathwayID");

32

 foreach (List<string> ls in snPartialOverlap[2])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 sw = new StreamWriter(_directory + timeString + dataset + "_snPartialOverlapRecord2.csv");

 sw.WriteLine("snID, overlap, overlapRatio, count, p, pathwayID");

 foreach (List<string> ls in snPartialOverlap[3])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 sw = new StreamWriter(_directory + timeString + dataset +

"_snPartialOverlapRecord(VariousAlpha)2.csv");

 sw.WriteLine("snID, overlap, overlapRatio, count, p, pathwayID");

 foreach (List<string> ls in snPartialOverlap[4])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 sw = new StreamWriter(_directory + timeString + dataset +

"_snPartialOverlapRecord(Merged)2.csv");

 sw.WriteLine("snID, overlap, overlapRatio, count, p, pathwayID");

 foreach (List<string> ls in snPartialOverlap[5])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 return str;

 }

 private string compareDifference(string dataset, List<Subnetwork> snList1, List<Subnetwork> snList2)

 {

 List<List<string>> strList1 = new List<List<string>>();

 strList1 = logic.getGeneList(snList1);

 List<List<string>> strList2 = new List<List<string>>();

 strList2 = logic.getGeneList(snList2);

 string str = null;

 str += dataset + ":\n";

 double geneOverlap = logic.checkOverlap(strList1[0], strList2[0]);

 double pathwayOverlap = logic.checkOverlap(strList1[1], strList2[1]);

 List<List<List<string>>> snOverlap = new List<List<List<string>>>();

 snOverlap.Add(logic.checkOverlap(snList1, snList2, _gama));

 List<List<List<string>>> snPartialOverlap = new List<List<List<string>>>();

 snPartialOverlap.Add(logic.checkOverlap(snList1, logic.getGeneList(snList2)[0], _gama));

 snPartialOverlap.Add(logic.checkOverlap(snList2, logic.getGeneList(snList1)[0], _gama));

 str += "Gene Overlap: " + Convert.ToString(geneOverlap) + "\n";

33

 str += "Pathway Overlap: " + Convert.ToString(pathwayOverlap) + "\n";

 str += "Subnetwork Overlap: " + Convert.ToString(snOverlap[0].Count) + "\n";

 str += "Subnetwork Partial Overlap: " + Convert.ToString(snPartialOverlap[0].Count) + "\n";

 str += "Subnetwork Partial Overlap2: " + Convert.ToString(snPartialOverlap[3].Count) + "\n";

 DateTime currentTime = new DateTime();

 currentTime = DateTime.Now;

 string timeString = currentTime.Year + "-" + currentTime.Month + "-" + currentTime.Day + " " +

currentTime.Hour + "." + currentTime.Minute + "." + currentTime.Second + "." + currentTime.Millisecond;

 StreamWriter sw = new StreamWriter(_directory + timeString + dataset + "_snOverlapRecord" +

_currentSN + ".csv");

 sw.WriteLine("snid1, snid2, overlap, overlap ratio, sn1.count, sn2.count, sn1.pvalue, sn2.pvalue,

sn1.PathwayID, sn2.PathwayID");

 foreach (List<string> ls in snOverlap[0])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 sw = new StreamWriter(_directory + timeString + dataset + "_snPartialOverlapRecord" +

_currentSN + ".csv");

 sw.WriteLine("snID, overlap, overlapRatio, count, p, pathwayID");

 foreach (List<string> ls in snPartialOverlap[0])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 sw = new StreamWriter(_directory + timeString + dataset + "_snPartialOverlapRecord2." +

_currentSN + ".csv");

 sw.WriteLine("snID, overlap, overlapRatio, count, p, pathwayID");

 foreach (List<string> ls in snPartialOverlap[3])

 {

 for (int i = 0; i < ls.Count; i++)

 sw.Write(ls[i] + ",");

 sw.Write("\n");

 }

 sw.Close();

 StreamWriter sw1 = new StreamWriter(_directory + "compareResult_" + dataset + ".txt");

 sw1.Write(str);

 sw1.Close();

 return str;

 }

 /// <summary>

 /// strList: 三 ÿ个?list，ê?分¤?别Àe为aoriginal，ê?variousAlpha，ê?mergedList；ê?每?个?list里¤?

又®?含?有®D两¢?个?list，ê?分¤?别Àe为ageneList和 ª̈pathwayidList

 /// </summary>

 /// <param name="alpha0"></param>

 /// <param name="alpha1"></param>

 /// <param name="dataset1"></param>

 /// <returns></returns>

 private List<List<Subnetwork>> shield(double alpha0, double alpha1, string dataset1)

 {

 _alpha0 = alpha0;

 _alpha1 = alpha1;

34

 _dataset1 = dataset1;

 List<List<Subnetwork>> snList = new List<List<Subnetwork>>();

 /*List<List<List<string>>> strList = new List<List<List<string>>>();

 strList.Add(generateSubentwrok());

 strList.Add(variousAlpha());

 strList.Add(mergeSubnetwork());*/

 snList.Add(generateSubentwrok());

 snList.Add(variousAlpha());

 snList.Add(mergeSubnetwork());

 return snList;

 }

 private List<Subnetwork> generateSubentwrok()

 {

 List<Subnetwork> sn = logic.core(_dataset1 + "_disease", _dataset1 + "_normal", _alpha0, _alpha1,

_beta, 3);

 //List<List<string>> strList = logic.getGeneList(subnetworks);

 logic.printSubnetworks(sn, _directory, _dataset1 + "_disease");

 logic.printSubnetworksCSV(sn, _directory, _dataset1 + "_disease");

 logic.drawSubnetworks(sn, _directory, _dataset1 + "_disease", 1);

 return sn;

 }

 private List<Subnetwork> variousAlpha()

 {

 List<Subnetwork> subnetworks = logic.core(_dataset1 + "_disease", _dataset1 + "_normal", _alpha0,

_alpha1, _beta, 3);

 subnetworks = logic.alpha1alpha2(subnetworks, _dataset1 + "_disease", _alpha1, _beta, 3);

 subnetworks = logic.scoring(subnetworks, _dataset1 + "_disease", _dataset1 + "_normal", _alpha0,

3);

 foreach (Subnetwork sn in subnetworks)

 sn.addPValue(logic.calPValue(sn.getTScore(), logic._totalTScore));

 subnetworks = logic.sortSubnetworksBasedOnPValue(subnetworks);

 List<List<string>> strList = logic.getGeneList(subnetworks);

 logic.printSubnetworks(subnetworks, _directory, _dataset1 + "_disease" + "_VariousAlpha");

 logic.printSubnetworksCSV(subnetworks, _directory, _dataset1 + "_disease" + "_VariousAlpha");

 logic.drawSubnetworks(subnetworks, _directory, _dataset1 + "_disease" + "_VariousAlpha", 2);

 return subnetworks;

 }

 private List<Subnetwork> mergeSubnetwork()

 {

 List<Subnetwork> subnetworks = logic.core(_dataset1 + "_disease", _dataset1 + "_normal", _alpha0,

_alpha1, _beta, 3);

 subnetworks = logic.detectNearSubnetwork(subnetworks, _dataset1 + "_disease", _alpha0, _beta, 3,

_directory);

 subnetworks = logic.scoring(subnetworks, _dataset1 + "_disease", _dataset1 + "_normal", _alpha0,

3);

 foreach (Subnetwork sn in subnetworks)

 sn.addPValue(logic.calPValue(sn.getTScore(), logic._totalTScore));

 subnetworks = logic.sortSubnetworksBasedOnPValue(subnetworks);

35

 List<List<string>> strList = logic.getGeneList(subnetworks);

 logic.printSubnetworks(subnetworks, _directory, _dataset1 + "_disease" + "_merged");

 logic.printSubnetworksCSV(subnetworks, _directory, _dataset1 + "_disease" + "_merged");

 logic.drawSubnetworks(subnetworks, _directory, _dataset1 + "_disease" + "_merged", 3);

 return subnetworks;

 }

 private void button4_Click(object sender, EventArgs e)

 {

 Database db = new Database(this);

 db.Show();

 }

 private void button1_Click(object sender, EventArgs e)

 {

 sn1 = null;

 sn2 = null;

 if (checkBox1.Checked == true)

 {

 Status.Text = "processing...";

 _alpha0 = Convert.ToDouble(alpha0.Text);

 _alpha1 = Convert.ToDouble(alpha1.Text);

 _beta = Convert.ToDouble(beta.Text);

 _gama = Convert.ToDouble(gama.Text);

 _outputName = outputName.Text;

 _dataset1 = dataset1.Text;

 sn1 = generateSubentwrok();

 Status.Text = "done";

 }

 if (checkBox2.Checked == true)

 {

 Status.Text = "processing...";

 _alpha0 = Convert.ToDouble(alpha0.Text);

 _alpha1 = Convert.ToDouble(alpha1.Text);

 _beta = Convert.ToDouble(beta.Text);

 _gama = Convert.ToDouble(gama.Text);

 _outputName = outputName.Text;

 _dataset1 = dataset2.Text;

 sn2 = generateSubentwrok();

 Status.Text = "done";

 }

 _currentSN = "SNet";

 }

 private void button2_Click_1(object sender, EventArgs e)

 {

 sn1 = null;

 sn2 = null;

 if (checkBox1.Checked == true)

 {

 Status.Text = "processing...";

 _alpha0 = Convert.ToDouble(alpha0.Text);

 _alpha1 = Convert.ToDouble(alpha1.Text);

 _beta = Convert.ToDouble(beta.Text);

 _gama = Convert.ToDouble(gama.Text);

 _outputName = outputName.Text;

 _dataset1 = dataset1.Text;

 sn1 = variousAlpha();

 Status.Text = "done";

 }

 if (checkBox2.Checked == true)

36

 {

 Status.Text = "processing...";

 _alpha0 = Convert.ToDouble(alpha0.Text);

 _alpha1 = Convert.ToDouble(alpha1.Text);

 _beta = Convert.ToDouble(beta.Text);

 _gama = Convert.ToDouble(gama.Text);

 _outputName = outputName.Text;

 _dataset1 = dataset2.Text;

 sn2 = variousAlpha();

 Status.Text = "done";

 }

 _currentSN = "VariousAlpha";

 }

 private void button3_Click_1(object sender, EventArgs e)

 {

 sn1 = null;

 sn2 = null;

 if (checkBox1.Checked == true)

 {

 Status.Text = "processing...";

 _alpha0 = Convert.ToDouble(alpha0.Text);

 _alpha1 = Convert.ToDouble(alpha1.Text);

 _beta = Convert.ToDouble(beta.Text);

 _gama = Convert.ToDouble(gama.Text);

 _outputName = outputName.Text;

 _dataset1 = dataset1.Text;

 sn1 = mergeSubnetwork();

 Status.Text = "done";

 }

 if (checkBox2.Checked == true)

 {

 Status.Text = "processing...";

 _alpha0 = Convert.ToDouble(alpha0.Text);

 _alpha1 = Convert.ToDouble(alpha1.Text);

 _beta = Convert.ToDouble(beta.Text);

 _gama = Convert.ToDouble(gama.Text);

 _outputName = outputName.Text;

 _dataset1 = dataset2.Text;

 sn2 = mergeSubnetwork();

 Status.Text = "done";

 }

 _currentSN = "Merge";

 }

 private void button5_Click(object sender, EventArgs e)

 {

 Jump j;

 if (sn1 == null)

 {

 j = new Jump("Subnetwork List 1 is empty!");

 j.ShowDialog();

 }

 else if (sn1 == null)

 {

 j = new Jump("Subnetwork List 2 is empty!");

 j.ShowDialog();

 }

 else

37

 {

 compareDifference(_dataset1, sn1, sn2);

 }

 }

 }

}

// Database UI

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace SNet_V2._0.Module

{

 public partial class Database : Form

 {

 UI ui;

 public Database(UI _ui)

 {

 ui = _ui;

 InitializeComponent();

 host.Text = ui._host;

 username.Text = ui._userName;

 password.Text = ui._password;

 directory.Text = ui._directory;

 }

 private void button1_Click_1(object sender, EventArgs e)

 {

 ui._host = host.Text;

 ui._userName = username.Text;

 ui._password = password.Text;

 ui._directory = directory.Text;

 this.Close();

 }

 }

}

// Pop Window

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace SNet_V2._0.Module

{

 public partial class Jump : Form

 {

 public Jump(String text)

 {

38

 InitializeComponent();

 label1.Text = text;

 }

 private void button1_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 }

}

1

Follow Up for FYP
2011-11-07

Chai Haoqiang

Modifications Made
In this follow up, two modifications to the algorithm were made: change p-value and remove singleton

subnetworks.

Change P-Value: p-value generation was changed from two-sided to one-sided, which means for each

tested subnetwork, only count number of random subnetworks whose t-score are bigger than its.

Remove Singletons: in the original output, many significant subnetworks were of size one. They were

called singleton. This modification removes such singleton subnetworks from significant list.

Results
Table 1.1 and 2.1 were the original output for gene overlap and pathway overlap. Table 1.2 and 2.2 were

the output after modifying p-value generation. Table 1.3 and 2.3 were the output after modifying p-

value generation and removing singletons.

From comparison of Table 1.1 and 1.2, it is shown that there was a decrease of gene overlap when p-

value generation was changed from two-sided to one-sided.

From comparison of Table 1.1 and 1.3, it is clearly shown that overlap of genes increased for most

datasets when singletons were removed. The only exception was ALL, whose gene overlap ratio

decreased vastly when singletons were removed. This suggested that in ALL, the overlapped

subnetworks were mostly singletons.

For the pathway overlap, it is shown that both p-value modification and removing singletons has

resulted a decrease on pathway overlap.

2

 SNet Various Alpha Neighbour Merged

DMD 27% 20% 32%

Lung 25% 26% 29%

Prostate 42% 44% 43%

All 27% 29% 31%

Table 1.1 Gene Overlap for Two Tailed P-value, Singleton Subnetworks Inclusive

 SNet Various Alpha Neighbour Merged

DMD 20% 24% 30%

Lung 19% 23% 26%

Prostate 35% 38% 34%

All 12% 12% 29%

Table 1.2 Gene Overlap for One Tailed P-value, Singleton Subnetworks Inclusive

 SNet Various Alpha Neighbour Merged

DMD 38% 26% 38%

Lung 29% 28% 33%

Prostate 46% 48% 45%

All 9% 13% 28%

Table 1.3 Gene Overlap for One Tailed P-value, Singleton Subnetworks Exclusive

 SNet Various Alpha Neighbour Merged

DMD 74% 71% 71%

Lung 83% 84% 83%

Prostate 96% 96% 95%

All 84% 80% 75%

Table 2.1 Pathway Overlap for Two Tailed P-value, Singleton Subnetworks Inclusive

 SNet Various Alpha Neighbour Merged

DMD 68% 67% 64%

Lung 82% 85% 82%

Prostate 95% 96% 92%

All 74% 79% 74%

Table 2.2 Pathway Overlap for One Tailed P-value, Singleton Subnetworks Inclusive

 SNet Various Alpha Neighbour Merged

DMD 48% 42% 68%

Lung 62% 60% 68%

Prostate 89% 90% 89%

All 42% 44% 52%

Table 2.3 Pathway Overlap for One Tailed P-value, Singleton Subnetworks Exclusive

Follow Up 2 for FYP

2011-11-18

Chai Haoqiang

Modifications Made

In this follow up, the singletons (subnetworks contain only one gene) were removed, and the subnetworks

overlap were checked again for both Perfect Match and Partial Match.

The reason for doing this modification is because in the original output, singletons contribute to a major part

of all subnetworks, and this introduces noises for overlap checking.

Results and Discussion

Table 1 shows the Perfect Match found for each datasets after removing singletons, and Table 2 shows the

Partial Match found for each datasets after removing singletons. It was shown that Neighbour Merge produces

more Perfect Matches and Partial Matches than SNet. Recall that when singletons were not removed,

Neighbour Merge produces less subnetworks overlap than SNet in most cases; it can be concluded that the

original high overlap for SNet was indeed resulted from large portion of singletons. On the other side, this

result supported the hypothesis that Neighbour Merge and Various Alpha performs better than SNet in the

way of producing higher overlaps for large subnetworks.

 SNet Various Alpha Neighbour Merged

DMD 3 2 4

Lung 13 15 7

Prostate 34 89 42

All 0 7 4

Table 1 Perfect Match within Subnetworks Lists Produced by SNet, Various Alpha and Neighbour

Merge after Removing Singletons

 SNet Various Alpha Neighbour Merged

DMD-Has 2 2 10

DMD-Pec 9 22 30

Lung-Bha 27 37 32

Lung-Gar 6 11 6

Prostate-Lap 7 17 21

Prostate-Sin 106 157 138

ALL-All 12 41 18

ALL-Mar 2 14 11

Table 2 Partial Match within Subnetworks Lists Produced by SNet, Various Alpha and Neighbour

Merge after Removing Singletons

	Chai-Haoqiang-FYP2011
	Chai-Haoqiang-FYP2011
	xxx

	FYP_Follow_Up_2

